[2] Shen, G., Vedhanayagam, A., Kropp, E., & Altan, T. (1992). A method for evaluating friction using a backward extrusion-type forging. Journal of Materials Processing Technology, 33(1-2), 109-123. https://doi.org/10.1016/0924-0136(92)90314-I
[3] Khoddam, S., Fardi, M., & Solhjoo, S. (2021). A verified solution of friction factor in compression test based on its sample’s shape changes. International Journal of Mechanical Sciences, 193, 106175. https://doi.org/10.1016/j.ijmecsci.2020.106175
[4] Venugopal, S., Srinivasan, G., Venkadesan, S., & Seetharaman, V. (1989). A note on the determination of the friction factor by means of the reduction-capacity test. Journal of Mechanical Working Technology, 19(2), 261-266. https://doi.org/10.1016/0378-3804(89)90009-0
[5] Buschhausen, A., Weinmann, K., Lee, J. Y., & Altan, T. (1992). Evaluation of lubrication and friction in cold forging using a double backward-extrusion process. Journal of Materials Processing Technology, 33(1-2), 95-108. https://doi.org/10.1016/0924-0136(92)90313-H
[6] Frederiksen, N., & Wanheim, T. (1985). Development of friction tests for lubrication in model-material experiments. Journal of Mechanical Working Technology, 12(2), 261-268. https://doi.org/10.1016/0378-3804(85)90141-X
[7] Karami, P., & Abrinia, K. (2013). Development of a more realistic upper bound solution for the three-dimensional problems in the forward extrusion process. International Journal of Mechanical Sciences, 74, 112-119. https://doi.org/10.1016/j.ijmecsci.2013.05.004
[8] Rossel, M., Böhnke, M., Bielak, C. R., Bobbert, M., & Meschut, G. (2021). Development of a method for the identification of friction coefficients in sheet metal materials for the numerical simulation of clinching processes. Key Engineering Materials, 883, 81-88. https://doi.org/10.4028/www.scientific.net/KEM.883.81
[9] Male, A. T. (1971). The validity of mathematical solutions for determining friction from the ring compression test. Wear, 17, 219-22. https://doi.org/10.1115/1.3451419
[11] Bay, N. (1996). Testing of friction in cold forging by combined forward rod/backward cup extrusion. In Proc. 5th ICTP (pp. 311-318).
[12] Ghasempour-Mouziraji, M., Limouei, M. B., Najafizadeh, M., Hosseinzadeh, M., & Cavaliere, P. (2023). The effect of simple shear extrusion on the mechanical properties and microstructure of copper. Materials Letters, 335, 133815. https://doi.org/10.1016/j.matlet.2022.133815
[14] Bowden, F. P., & Tabor, D. (2001). The friction and lubrication of solids (Vol. 1). Oxford university press.
[15] Rao, K. P., & Sivaram, K. (1993). A review of ring-compression testing and applicability of the calibration curves. Journal of Materials Processing Technology, 37(1-4), 295-318. https://doi.org/10.1016/0924-0136(93)90098-Q
[16] Molaei, S. H., Shahbaz, M., & Ebrahimi, R. (2014). The relationship between constant friction factor and coefficient of friction in metal forming using finite element analysis. Iranian Journal of Materials Forming, 1(2), 14-22. https://doi.org/10.22099/ijmf.2014.2290
[17] Schrader, T., Shirgaokar, M., & Altan, T. (2007). A critical evaluation of the double cup extrusion test for selection of cold forging lubricants. Journal of Materials Processing Technology, 189(1-3), 36-44. https://doi.org/10.1016/j.jmatprotec.2006.11.229
[18] Aritzur, B. (1983). Handbook of metal-forming processes.
|