Abdul Wahab, H., Zeb, H., Bhatti, S., Gulistan, M., Kadry, S., & Nam, Y. (2019). Numerical study for the effects of temperature dependent viscosity flow of non-Newtonian fluid with double stratification. Applied Science, 10, 708. https://doi.org/10.3390/app10020708
Bánó, M., Strharsky, I., & Hrmo, I. (2003). A viscosity and density meter with a magnetically suspended rotor. Review of Scientific Instruments, 74(11), 4788-4793. https://doi.org/10.1063/1.1614881
Benchabane, A., & Bekkour, K. (2008) Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polymer Science, 286, 1173-1180. https://doi.org/10.1007/s00396-008-1882-2
Bhattad, A. (2023). Review on viscosity measurement: devices, methods and models. Journal of Thermal Analysis and Calorimetry, 148, 6527-6543. https://doi.org/10.1007/s10973-023-12214-0
Bourne, M. C. (2002). Food texture and viscosity: Concept and measurement. New York: Academic Press.
Brewer, M. J., Butler, A., & Cooksleym, S. L. (2016) The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods in Ecology and Evolution, 16(7), 679-692. https://doi.org/10.1111/2041-210X.12541
Deo, R. C., & Şahin, M. (2015). Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmospheric Research, 153, 512-525. https://doi.org/10.1016/j.atmosres.2014.10.016
Eberhard, U., Seybold, H. J., Floriancic, M. G., Bertsch, P., Jimenez-Martinez, J., Andrade, J. S., & Holzner, M. (2019). Determination of the effective viscosity of non-Newtonian fluids flowing through porous media. Frontiers in Physics, 7, 71. https://doi.org/10.3389/fphy.2019.00071
Eberhard, U., Seybold, H. J., Secchi, E., Jimenez-Martinez, J., Ruhs, P. A., Ofner, A., Andrade Jr., J. S., & Holzner, M. (2020). Mapping the local viscosity of non‑Newtonian fluids flowing through disordered porous structures. Scientific Reports, 10, 11733. https://doi.org/10.1038/s41598-020-68545-7
Florence, A., D. (2023). Temperature-dependent variable viscosity and thermal conductivity effects on non-Newtonian fluids flow in a porous medium. World Journal of Engineering, 20(3), 445-457. https://doi.org/10.1108/WJE-03-2021-0130
Girado, S., Cingolani, R., & Pisignano, D. (2007). Investigating the temperature dependence of the viscosity of a non-Newtonian fluid within lithographically defined microchannels. The Journal of Chemical Physics,127, 164701. https://doi.org/10.1063/1.2789426
Hair, Jr. J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis. New Delhi: Pearson Publication.
Holmes, M. J., Parker, N. G., & Povey, M. J. W. (2011) Temperature dependence of bulk viscosity in water using acoustic spectroscopy. Journal of Physics: Conference Series, 269, 012011. https://doi.org/10.1088/1742-6596/269/1/012011
Jafari, A. A., & Tatar, A. (2016). Using image processing technique fin determining liquid viscosity (Case study: Date syrup). Presented at the 10Th National Conference on Iran Agricultural Machinery (Biosystems) and Mechanization, Mashhad: Ferdowsi University of Mashhad. (In Persian)
Kazys, R., Mazeika, L., Sliteris, R., & Raisutis, R. (2014) Measurement of viscosity of highly viscous non-Newtonian fluids by means of ultrasonic guided waves. Ultrasonics, 54, 1104-1112. https://doi.org/10.1016/j.ultras.2014.01.007
Kroese, D. P., Taimre, T., & Botev, Z. I. (2011). Handbook of Monte Carlo methods. New York: John Wiley & Sons.
Kornaeva, E. P., Stebakov, I. N., Koenaev, A. V., Dremin, V. V., Popov, S. G., & Vinokurov, A. Y. (2023). A method to measure non-Newtonian fluid viscosity using inertial viscometer with a computer vision system. International Journal of Mechanical Sciences, 242, 107967. https://doi.org/10.1016/j.ijmecsci.2022.107967
Kuha, J. (2004) AIC and BIC: Comparisons of assumptions and performance. Sociological Methods & Research, 33(2), 188-229. https://doi.org/10.1177/0049124103262065
Kulicke, W. M., & Clasen, C. (2004) Viscosimetry of polymers and polyelectrolytes. Berlin: Springer Berlin Heidelberg.
Li, H., Flé, G., Bhatt, M., Qu, Z., Ghazavi, S., Yazdani, L., Bosio, G., Rafati, I., & Cloutier, G. (2021). Viscoelasticity imaging of biological tissues and single cells using shear wave propagation. Frontier Physics, 9, 666192. https://doi.org/10.3389/fphy.2021.666192
Mohammadi, S. M. (2013) Design and development of a viscosity and molecular weight measurement device of food fluids with variable temperature and evaluation of its performance. Proceeding of 7th national student conference of Mechanical Engineering, Karaj. Karaj: Tehran University. (In Persian)
Moosavi, A. A., Nematollahi, M. A., & Rahimi, M. (2021). Predicting water sorptivity coefficient in calcareous soils using a wavelet–neural network hybrid modeling approach. Environmental Earth Sciences, 80(6), 226. https://doi.org/10.1007/s12665-021-09518-5
Munigela, N., Puranam, S. A., Goel, S., & Puneeth, S. B., (2020). Automated mini-platform with 3-D printed paper microstrips for image processing-based viscosity measurement of biological samples. IEEE Transactions on Electron Devices, 67(6), 2559-2565. https://doi.org/10.1109/TED.2020.2989727
Nassiri, S. M., Bakhshipour, A., Heydari Foroshani, M. M., & Barzegar Marvasti, M. (2013). Estimation of apparent viscosity of non-Newtonian fluids using image processing. Presented at the 8th National Conference on Iran Agricultural Machinery (Biosystems) and Mechanization, Mashhad: Ferdowsi University of Mashhad. (In Persian)
Nematollahi, M. A., Jamali, B., & Hosseini, M. (2020). Fluid velocity and mass ratio identification of piezoelectric nanotube conveying fluid using inverse analysis. Acta Mechanica, 231(2), 683-700. https://doi.org/10.1007/s00707-019-02554-0
Nematollahi, M. A., & Mousavi Khaneghah, A. (2019). Neural network prediction of friction coefficients of rosemary leaves. Journal of Food Process Engineering, 42(6), e13211. https://doi.org/10.1111/jfpe.13211
Noël, M., Semin, B., Hulin, J., & Auradou, H. (2011). Viscometer using drag force measurements. Review of Scientific Instruments, 82(2), 109. https://doi.org/10.1063/1.3556445
Onyeaju, M. C., Osarolube, E., Chukwuocha, E. O., Ekuma, C. E., & Omasheye, G. A. J. (2012). Comparison of the thermal properties of asbestos and polyvinylchloride (PVC) ceiling sheets. Material Science and Applied, 3, 240-244. https://doi.org/10.4236/msa.2012.34035
Park, N. A., & Irvine Jr, T. F. (1997). Liquid density measurements using the falling needle viscometer. International Communications in Heat and Mass Transfer, 24(3), 303-312. https://doi.org/10.1016/S0735-1933(97)00016-X
PCE Instruments. (2016). The importance of viscosity measurement in food production and processing. Retrieved from:
Quej, V. H., Almorox, J., Ibrakhimov, M., & Saito, L. (2016) Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico. Energy Conversion and Management, 110, 448-456. https://doi.org/10.1016/j.enconman.2015.12.050
Razavi, M. A. (2006) Biophysical properties of agricultural products and food materials. Mashhad. Mashhad: Ferdowsi University of Mashhad Press. (In Persian)
Sadat, A., & Khan, I. A. (2007) A novel technique for the measurement of liquid viscosity. Journal of Food Engineering, 80(4), 1194 -1198. https://doi.org/10.1016/j.jfoodeng.2006.09.009
Saifur Rahman, M., Saif Hasan, M., Nitai, A. S., Nam, S., Karmakar, A. K., Shsan, M. S., Shiddiy, M. J. A., & Ahmed, M. B. (2021) Recent developments of Carboxymethyl cellulose. Polymers, 13, 1345. https://doi.org/10.3390/polym13081345
Santhosh, K. V., & Shenoy, V. (2016) Analysis of liquid viscosity by image processing technique. Indian Journal of Science and Technology, 9(30), 1-7. 10.17485/ijst/2016/v9i30/98693
Shin, S., Lee, S. W., & Keum, D. Y. (2001) A new mass-detecting capillary viscometer. Review of Scientific Instruments, 72(7), 3127-3128. https://doi.org/10.1063/1.1378339
Skoog, D., Holler, J., & Crouch, S. (2007). Principles of instrumental analysis. (6th Ed). Belmont: Thomson Brooks/Cole publisher.
Tang, J. X. (2016). Measurements of fluid viscosity using a miniature ball drop device. Review of Scientific Instruments, 87(5), 054301. https://doi.org/10.1063/1.4948314
Togrul, H., & Arsalan, N. (2003). Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydrate Polymers, 45, 73-82. https://doi.org/10.1016/S0144-8617(03)00147-4
Yasar, F., Togrul, H., & Arslan, N. (2007). Flow properties of cellulose and carboxymethyl cellulose from orange peel. Journal of Food Engineering, 81, 187-199. https://doi.org/10.1016/j.jfoodeng.2006.10.022
Yaseen, E. I., Herald, T. J., Aramouni, F. M., & Alavi, S. (2005) Rheological properties of selected gum solutions. Food Research International, 38, 111-119. https://doi.org/10.1016/j.foodres.2004.01.013
Zavrsnik, M., & Strasser, M. J. (2013). Line viscometry for non-Newtonian viscosity characterization. Sensors, 587-591. https://doi.org/10.5162/sensor2013/D7.2