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 ABSTRACT The rheological behaviors of liquid and semi-solid foods during production 

processes play a critical role in the design and optimization of processing equipment. 

Consequently, continuous monitoring of properties such as the viscosity of non-Newtonian 

liquids is essential in food processing industries. To address this need, the present study 

explores the feasibility of using image processing techniques to estimate the apparent viscosity 

of non-Newtonian fluids. Both regression analysis and artificial neural network (ANN) models 

were developed to interpret the measured data. The regression models yielded coefficients of 

determination (R²) ranging from 0.96 to 1.00, with average absolute estimation errors between 

0.02% and 15.27%. Additionally, two ANN architectures, multilayer perceptron (MLP) and 

radial basis function (RBF), were evaluated for their predictive performance. The high 

correlation coefficients achieved during both training and testing phases indicate the strong 

predictive capability of these models. Overall, the findings support the use of image processing, 

specifically through analysis of surface area variations, as a viable and accurate approach for 

estimating the apparent viscosity of non-Newtonian liquids in food processing applications. 

INTRODUCTION  

The measurement of viscosity is essential at various stages 

of industrial food production, as it directly influences the 

flow behavior, appearance, and stability of liquid food 

products. Accurate viscosity monitoring is particularly 

important for controlling the quality of liquid raw materials 

upon entry into the production line. Pumps, which are 

central to the transportation of food products throughout 

processing and packaging stages, rely on precise viscosity 

data for determining power requirements and optimal pipe 

sizing. Thus, understanding fluid flow behavior is critical for 

selecting and designing suitable processing equipment. In 

food processing operations, viscosity can vary significantly 

during unit operations such as heating, cooling, 

concentration, and industrial fermentation. Designing 

efficient systems requires careful consideration of these 

viscosity fluctuations to ensure that equipment can 

accommodate the changing rheological properties of the 

product throughout production (Razavi, 2006). In some 

cases, selective or continuous (in-line) viscosity 

measurements are necessary to maintain product quality in 

real time (PCE Instruments, 2016). Traditional viscosity 

measurement methods typically involve direct-contact 

viscometers, which can be time-consuming, costly, and 

prone to human error. These devices may also require 

frequent recalibration to maintain accuracy (Bourne, 2002). 

A variety of viscometers have been developed to measure 

the viscosity of non-Newtonian fluids, including capillary 

tube, falling ball, cone and plate, concentric cylinder 

viscometers, and the Bostwick consistometer (Bhattad, 

2023; Bourne, 2002). Additionally, instruments based on 

shear force, Stokes’ law, rotational torque, and flow time 

have been employed to estimate apparent viscosity (Bano et 

al., 2003; Bhattad, 2023; Bourne, 2002; Kulicke and Clasen, 

2004; Mohammadi, 2013; Noel et al., 2011; Park and Irvine, 

1997; Sadat and Khan, 2007; Shin et al., 2001; Zavrsnik and 

Strasser, 2013). Non-invasive and real-time viscosity 

measurement techniques have also emerged. For instance, 

ultrasonic wave-based systems have been developed to 

monitor the viscosity of highly viscous, moving fluids 

without direct contact (Kazys et al., 2014). Simulations of 

fluid viscosity have been achieved by mapping the velocity 

of non-Newtonian fluids within interstitial pores (Eberhard 

et al., 2019; 2020). More recently, image-based methods 

have been introduced as a novel approach to estimate the 

viscosity of non-Newtonian liquids (Li et al., 2021).  

The quality of semi-liquid food products has 

traditionally been assessed using the static surface area 

occupied by the liquid, as exemplified by instruments such 

as the Haugh meter (Bourne, 2002). However, most 

conventional methods and devices are designed for use in 

laboratory settings and lack the capability for real-time, in-

line monitoring. In modern food processing industries, 

where product appearance and mechanical properties can 

vary considerably, there is a growing demand for real-time 

quality assessment tools. These tools must enable rapid 

feedback and control through programmable logic 

controllers (PLCs) integrated into processing lines. In this 
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context, image processing techniques have emerged as 

promising alternatives for estimating the apparent viscosity 

of non-Newtonian liquids. Nassiri et al. (2013) 

demonstrated that changes in the liquid's surface area over 

time could be used to estimate viscosity, reporting a strong 

linear correlation and an average relative error of 7.7%. 

Their findings suggest the potential for developing a simple, 

real-time device for viscosity measurement based on surface 

area variation. Similarly, Jafari and Tatar (2016) used image 

analysis to estimate the viscosity of date sap. By observing 

the shape of falling sap droplets at different temperatures 

and concentrations, they found the fluid's behavior followed 

a power-law model, confirming the effectiveness of image-

based methods for characterizing non-Newtonian fluids. 

Other innovations in image-based viscosity estimation 

include measuring the dispersion of an incident light beam 

through a fluid in a glass cylinder (Santhosh and Shenoy, 

2016), analyzing the falling velocity of a submerged ball 

(Tang, 2016), tracking fluid travel time between fixed points 

in a microchannel (Puneeth et al., 2020), and estimating 

shear rate in a curved capillary tube while accounting for 

fluid inertia (Kornaeva et al., 2023). Nevertheless, high 

viscosity, opacity, and the presence of solid particles in 

many non-Newtonian food liquids complicate the use of 

these methods, especially when tracking submerged objects. 

The novelty of the present study lies in its approach to 

estimating viscosity based on changes in liquid surface 

area—an approach that does not require object tracking 

within the fluid. This method offers several advantages: it 

supports real-time measurement, enables rapid estimation, 

and is cost-effective, making it a practical solution for 

industrial applications. 

MATERIALS AND METHODS  

The study was conducted in two stages. In the first stage, the 

apparent viscosity of a non-Newtonian fluid was measured 

using both a rotational viscometer and a custom image 

processing test rig, across varying temperatures and 

concentrations. In the second stage, the data collected were 

used to develop predictive models using regression analysis 

and artificial neural networks (ANN). These models were 

calibrated to relate the input variables, surface area, angular 

velocity, temperature, and concentration, to the output 

variable, apparent viscosity. To prepare the non-Newtonian 

fluid samples, Carboxymethyl Cellulose (CMC) powder 

(Sigma-Aldrich, 99% purity) was selected due to its stability 

under varying conditions and its high solubility in cold 

water. Different viscosity levels were achieved by 

dissolving varying amounts of CMC powder in distilled 

water. The powder was gradually added to the water while 

stirring, and the resulting solution was placed in an incubator 

shaker for 12 hours to ensure complete homogenization. To 

enhance contrast between the solution and the background 

during image analysis, 10 mL of crystal violet was added to 

each sample, turning the solution purple. Crystal violet was 

chosen since it does not affect the viscosity and is commonly 

used as a pH indicator. Samples were prepared at 

concentrations of 1.00%, 1.15%, 1.30%, 1.45%, 1.60%, and 

1.75% (w/w) (Eq. (1)). Preliminary tests confirmed that 

even at a concentration of 1.75%, the solution exhibited high 

viscosity, despite the relatively low CMC content.  

𝑊𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

=
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑏𝑒𝑙 𝑠𝑜𝑙𝑖𝑑 × 100

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑜𝑙𝑣𝑒𝑛𝑡
 Eq. (1) 

A sample volume of 200 mL was used for each test, 

which corresponded to the minimum volume required for 

accurate viscosity measurement using a Brookfield 

rotational viscometer (Model HADVII Pro, USA). This 

volume ensured an appropriate clearance between the 

spindle and the container wall, preventing wall effects that 

could compromise measurement accuracy. To maintain the 

target temperature during measurement, the sample 

container was immersed in a hot water bath. Viscosity 

measurements were conducted using spindle number 06 at 

rotational speeds of 5, 10, 20, 30, 50, 60, and 100 rpm. Each 

measurement lasted 60 seconds, during which ten data 

points were recorded. The average of these ten readings was 

used to determine the apparent viscosity for each condition. 

In parallel, a custom test rig was developed to estimate 

viscosity using image processing techniques. The rig was 

designed to regulate the surrounding temperature to account 

for its influence on fluid viscosity (Fig. 1), ensuring 

consistency between measurements obtained from both the 

viscometer and the image processing system. 

A temperature-controlled chamber with internal 

dimensions of 50 × 70 × 70 cm3 was constructed to facilitate 

consistent environmental conditions during image-based 

viscosity measurements. The chamber body was made of 

polyvinyl chloride (PVC), selected for its low thermal 

conductivity (0.19 W/m·K) (Onyeaju et al., 2012), which 

helps minimize heat loss. The top side of the chamber 

featured a glass door with a circular opening (6 cm in 

diameter), allowing for the placement of a cylindrical 

sample container. The temperature control system 

comprised a digital control unit with a display, a PT100 

temperature sensor (± 0.1 °C accuracy), a 500 W heater, and 

a 12 V circulation fan. These components ensured stable and 

uniform temperature conditions inside the chamber. A 

schematic of the complete setup is shown in Fig. 1. A glass 

table was mounted within the chamber, with a high-

resolution camera (XP 955M; see specifications in Table 1) 

fixed beneath it. The camera was oriented to capture vertical 

video footage of the fluid as it spread on the glass surface 

(Fig. 2). The camera was connected to a laptop equipped 

with an Intel Core i7 processor and 8 GB of RAM for data 

acquisition and processing. For each test, a cylindrical 

container filled with 200 mL of CMC solution, 

preconditioned to match the chamber temperature, was 

placed in the chamber. Upon lifting the container, the fluid 

spread across the glass surface. The area of the spreading 

liquid was measured by analyzing video frames captured at 

a rate of approximately eight images per second. Real-time 

image processing was carried out using LabVIEW 2014 

software (National Instruments), which enabled the 

detection and quantification of surface area changes 

corresponding to the fluid flow behavior. 

Graphical commands in the software toolkit were 

utilized to distinguish and separate the fluid images from the 

background. By adjusting the histogram in the Vision 

Assistant menu, the image's contrast was enhanced, making 

it easier to identify the fluid from its background. 

Subsequently, the image was converted into binary format 

by applying a threshold, as illustrated in Fig. 3. 
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(a) (b) 

Fig. 1. (a) Test rig (temperature control chamber-TCC), and (b) Schematic of TCC. 1-Main PVC chamber, 2-glass table, 3- 

sample container, 4- camera, 5- air circulating fan, 6- heater, and 7- temperature control unit. 

 
Table 1. Specifications of the camera used in the research (Model 955 M) 

Item Specification 

Manufacturer company XP manufacturer, China 

How to transfer USB 2.0 data 

Number of pictures per second 30 fps 

Sensor type 300K Pixel CMOS Chip 640 × 480 pixels 

Photo resolution quality Up to 16 megapixels 

Lens diameter f = 3.85 mm 

Automatic adjustment range From 10 cm to infinity 

 

 
Fig. 2. Schematic of temperature control chamber. 

 

 
(a) (b) (c) 

Fig. 3. Image segmentation and binary process. (a) original, (b) binary, and (c) eliminated background images. 

The output of the image processing program was 

displayed as a three-column array consisting of the image 

capture timestamp, the number of fluid pixels detected at 

that time, and the corresponding surface area of the fluid. To 

estimate the fluid surface area, the program first identified 

and counted the number of pixels representing the liquid 

region in each image. Based on calibration, it was 

established that each square centimeter corresponded to an 

average of 454 pixels. This pixel-to-area conversion enabled 

accurate calculation of the fluid’s surface area over time. 

Fig. 4 presents a flowchart detailing the image processing 

algorithm employed for surface area estimation. 

The output data of LabVIEW were transferred to 

MATLAB software (version 2014) and the average velocity 

of fluid movement was calculated. To calculate the average 

rate of area change (RAC = S) of liquid, the area of liquid 

expansion on the glass table from zero to about a second 

after releasing (t1-t0 = 1 s) was computed by Eq. (2). 

 

𝑆 =
𝛥𝑎

𝛥𝑠
=

𝑎1 − 𝑎0

𝑡1 − 𝑡0
= 𝑎1 − 𝑎0 (cm2

s⁄ ) Eq. (2) 

where a0 and a1 represent the fluid surface area at the 

initial time and at time 1, respectively. 
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Fig. 4. Image processing flowchart.  

This study aimed to investigate the influence of two 

key factors, solution concentration and temperature, on 

the average rate of change in the spreading area of the 

solution, with particular attention to the impact of 

viscosity. The solution concentration was tested at six 

levels: 1.00%, 1.15%, 1.3%, 1.45%, 1.6%, and 1.75% 

(w/w). Temperature was varied across five levels: 25, 35, 

45, 55, and 65 °C (Saifur Rahman et al., 2021). 

Regression models were developed using SPSS (version 

21, SPSS Inc.) and Minitab (version 18), with 

coefficients estimated via the unconstrained Levenberg–

Marquardt optimization algorithm. Independent 

variables were selected through the “best subset” 

approach, guided by Mallow’s Cp and the maximum 

adjusted coefficient of determination (Hair et al., 2009). 

Model performance was assessed using 10-fold cross-

validation along with several statistical criteria: mean 

bias error (MBE), Wilmot’s index of agreement (distance 

index) (d), corrected Akaike Information Criterion for 

small samples (AICc), Bayesian Information Criterion 

(BIC), and predicted residual error sum of squares 

(PRESS). MBE quantifies the average tendency of the 

predictions to under- or overestimate the observed 

values, while AICc and BIC provide comparative metrics 

for model adequacy, particularly in the presence of 

heteroscedasticity and differing model complexities 

(Brewer et al., 2016; Kuha, 2004). The formulas used to 

compute MBE and d are given in Eq. (3) and Eq. (4), as 

defined by Quej et al. (2016). 

𝑀𝐵𝐸 = 𝑁−1 ∑(𝑃𝑖 − 𝑂𝑖)

𝑁

𝑖=1

 Eq. (3) 

𝑑 = 1 − [
∑ (𝑃𝑖 − 𝑂𝑖)2𝑁

𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑁
𝑖=1

] Eq. (4) 

In the above equations, P, O, and N denote the predicted 

value, the observed (measured) value, and the number of 

data points, respectively. The d is a metric designed to 

evaluate the degree of agreement between predicted and 

observed data series. Unlike correlation coefficients, d 

specifically emphasizes the accuracy of estimations rather 

than their linear association. It ranges from 0 to 1, with 

values closer to 1 indicating a stronger agreement and 

minimal deviation between measured and modeled results 

(Deo and Sahin, 2015). To enhance the reliability of the 

selected regression models, uncertainty analysis was 

conducted using the principles of uncertainty propagation. 

Since the models were developed based on temperature and 

concentration as input variables, uncertainty propagation 

was applied to assess the resulting uncertainty in predicted 

viscosity values. This approach, described by Eq. (5), allows 

the estimation of the combined effect of input uncertainties 

on the model output (Kroese et al., 2011; Skoog et al., 2007). 

 

𝜎𝑓(𝑇,𝐶) = √(
𝜕𝑓

𝜕𝑇
)2(𝜎𝑇)2 + (

𝜕𝑓

𝜕𝐶
)2(𝜎𝐶)2 Eq. (5) 

 

Two classes of ANN, namely multi-layer perceptron 

(MLP) and radial basis function (RBF), including their 

structure and training process concept were assessed. The 

MLP and RBF are two well-known ANNs that details of 

their structures, training algorithms, and modeling are 

available in the literature (Nematollahi et al., 2020; 

Nematollahi and Mousavi Khaneghah, 2019). A MLP is a 

type of well- known feed-forward ANN architecture that is 

shown in Fig. 5.  

 

Fig. 5. Schematic representation of a multilayer perceptron ANN. 

The MLP utilized the iterative back-propagation 

algorithm to determine the weights (Wij) at each iteration (q) 

in the following manner [Moosavi et al., 2021; Nematollahi 

et al., 2020]: 

 
𝑊𝑖𝑗(𝑞 + 1) = 𝑊𝑖𝑗(𝑞) + ∆𝑊𝑖𝑗(𝑞) Eq. (6) 

 

The generalized delta-learning rule was employed to 

compute the ∆𝑊𝑖𝑗(𝑞) values. For example, for a single 

hidden layer ANN, the weights (Wij) are computed as 

following: 

 

𝛥𝑊𝑗𝑖(𝑞) = 𝛾𝑓𝑗
′(. )𝑥𝑖 ∑{[(𝑃𝑚)𝑘

𝐾

𝑘=1

− (𝑃𝑝)𝑘]𝑓𝑘
′(. )𝑊𝑘𝑗(𝑞)}

+ 𝛼𝛥𝑊𝑗𝑖(𝑞 − 1) 

Eq. (7) 

 

where 𝛾, 𝑓′(. ), 𝑥𝑖, and 𝛼 are the learning rate, a derivative 

of the transfer (activation) function concerning its input, ith 

input to ANN, and momentum value, respectively. Also, Pm 

and Pp represents target (desired) output of node k and 

predicted output of node k, respectively. 

The RBF-ANN is a type of two-layer feed-forward 

ANN that is known for its fast training and widespread use, 

as well as its simple structure. In the RBF network, the 

learning process consists of two steps. The first step involves 

determining the parameters, such as the centers and the 

width of the basis functions. The second step focuses on 

adjusting the network weights. The RBF output is computed 

according to the following equation [Nematollahi and 

Mousavi Khaneghah, 2019]: 

 𝑌𝑘(𝑋) = ∑ 𝑤𝑘𝑗𝜑𝑗(‖𝑋 − 𝑈𝑗‖)𝑛
𝑗=1 + 𝑏𝑘 Eq. (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 Input Layer Hidden Layer Output Layer 

Input 

Parameter 
Output 

Parameter 
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In the ANN models, Yk represents the dependent variable, 

while X, Uj, and bk correspond to the input vector, the vector 

defining the center of the basis function 𝜑 and the bias, 

respectively. The Gaussian function was employed as the 

basis function in the design of the RBF-ANN. To optimize 

the parameters of the MLP network, including the number 

of hidden layers, neurons, transfer function, and learning 

algorithm, multiple iterations were carried out. The primary 

objective was to minimize the error between the ANN's 

predicted output and the actual measured data. For the MLP 

training process, a two-hidden-layer architecture was 

chosen, utilizing the Levenberg-Marquardt algorithm as the 

learning algorithm and the sigmoid function as the transfer 

function. The design and training of the ANN were 

implemented using MATLAB software. In the RBF model, 

the input parameters included spindle rotational speed at 

seven levels (5, 10, 20, 30, 50, 60, and 100 rpm) and the 

RAC measured using the image processing method. The 

output parameter was the apparent viscosity. The network 

consisted of two hidden layers, with 6 neurons in the first 

layer and 11 neurons in the second layer. The network 

topology was represented as 2-6-11-1, with the logarithmic 

sigmoid (logsig) function as the transfer function and the 

Levenberg-Marquardt algorithm used for training in 

MATLAB. During the training and calibration process, 80% 

of the data was used for training, while the remaining 20% 

was randomly selected for testing. The performance of the 

trained models was evaluated using the root mean squared 

error (RMSE), mean absolute percentage error (MAPE), 

and coefficient of determination (R2). 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖 − 𝑃𝑖)2𝑁

𝑖=1

𝑁
 Eq. (9) 

𝑀𝐴𝑃𝐸 = 𝑁−1 ∑ |
𝑂𝑖 − 𝑃𝑖

𝑂𝑖

|

𝑁

𝑖=1

× 100 Eq. (10) 

𝑅2 = 1 − [(∑(𝑃𝑖 − 𝑂𝑖)2)/(∑(𝑂𝑖 − �̅�)2

𝑁

𝑖=1

𝑁

𝑖=1

] Eq. (11) 

 

where P, O, and N refer to predicted value, observed 

(measured) value, and number of data points, 

respectively. 

RESULT AND DISCUSSION  

Two main factors of solution concentration and 

temperature, and their interaction significantly affected 

the rate of liquid expansion on the glass table at 1 % level 

of significance (Table 2). Temperature had a contrasting 

impact on viscosity, with concentration displaying a 

consistent upward influence (Fig. 6 and Fig. 7). The 

reduction in viscosity can be explained by the disruption 

of large molecular clusters. These clusters are frequently 

observed in polysaccharide-based polyelectrolytes when 

dissolved in water.  

 
Table 2. ANOVA of RAC on glass 

Source of variation df. MS F 

Liquid concentration 5 201916.2 1779.1** 

Liquid temperature 4 93540 824.2** 

Concentration × temperature 20 9801.8 86.3** 

Error 120 113.4 - 

Total 149 305371.4 - 
** shows significant difference at 1 % probability level. 

 

Fig. 6. Variation of apparent viscosity vs. shear rate at different 

temperature levels (log-log graph). 

 

 
Fig. 7. Variation of apparent viscosity vs. shear rate at different 

concentration levels (log-log graph). 

This implies that as temperature increases, the distance 

between molecules tends to expand, which reduces the 

solution’s resistance to flow, similar to the behavior of 

Newtonian fluids (Abdul Wahab et al., 2019; Benchabane 

and Bekkour, 2008; Florence, 2023; Girado et al., 2007; 

Holmes et al., 2011; Yasar et al., 2007). However, in some 

other non-Newtonian fluids, the effect of temperature is 

reversed; as temperature increases, the fluid structure 

becomes more solid, resulting in increased resistance to flow 

and, consequently, higher viscosity (Bourne, 2002). In the 

case of most plastic fluids, apparent viscosity tends to 

remain more consistent at higher concentration levels, 

although the rate of variation decreases as the solution 

temperature increases. The greater differences in apparent 

viscosity observed at higher concentrations may be due to 

the particle-particle interactions (Togrul and Arsalan, 2003). 

Both ANOVA and graphical analysis indicate that 

concentration has a more significant effect on apparent 

viscosity variation compared to the temperature (Fig. 8), 

which aligns with the findings of Kulicke and Clasen 

(2004). Apparent viscosity followed a logarithmic trend 

with respect to shear rate, indicating a plastic behavior for 

the CMC solution. This observation is consistent with the 

findings of Yaseen et al. (2005). CMC solutions with 

concentrations ranging from 0.2% to 7% (w/w) exhibited 

behavior consistent with the Cross (a type of power) model 

at 20 °C (Benchabane and Bekkour, 2008). Togrul et al. 

(2003) found that CMC solutions with a degree of 

substitution (DS) of 0.667 exhibited pseudoplastic behavior, 

which they described using a power law relationship. 

The expansion area of the solution on the glass was 

influenced by the temperature and concentration of the fluid 

(Fig. 9 and Fig. 10). The RAC increased rapidly within one 
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second of solution release and then leveled off, indicating 

two distinct regimes in the graphs.  

 

 
Fig. 8. Variation of apparent viscosity vs. concentration levels 

at different spindel rotational speeds (shear rate) (semi-

log graph).  

 

 
Fig. 9. Solution expansion area at different temperatures for 

1.3% concentration. 

A transition point in the area change trend was 

observed at approximately one second for both 

concentration and temperature-based graphs. When the 

trends were plotted on a semi-logarithmic scale, the 

different regimes became more distinct, as shown in Fig. 

11. As a result, three distinct zones were identified for 

model development. The first zone extended from the 

start to about one second, the second zone spanned 

approximately one to two seconds, and the third zone 

ranged from three to six seconds, where the rate of area 

change followed a nearly linear trend, as illustrated in 

Fig. 11. Thus, Eq. (2) was used to calculate the RAC for 

all zones at different levels of solution concentration and 

temperature.  

 
Fig. 10. Liquid expansion area of different concentration levels at 

55 oC. 

 

It was observed that the RAC values between one to two 

seconds and three to six seconds showed weak 

correlations with the measured viscosity and were not 

suitable parameters for model development. This can be 

attributed to the slopes of the curves in these two linear 

intervals, as demonstrated in Fig. 11. 

 

 

 

 

 

 

 
 

Fig. 11. Log liquid expansion area at different temperatures for 1.3 

% concentration. 

As a result, next attempt was made based on the slope of 

the curves between zero and one second after the movement 

of the solution, during which all curves almost exhibited a 

nonlinear trend. As shown in Fig. 11, the RAC varied 

significantly at different temperature levels (25 to 65 oC). 

The same was followed at different solution concentrations. 

Initially, the correlation between each pair of RAC and 

concentration, as well as RAC and temperature, was 

visualized using scatter plots. It was observed that the RAC 

followed a nonlinear relationship with concentration (C) and 

temperature (T). Therefore, different relationships between 

RAC and C, T, T2, and C2 were evaluated using the best 

subset regression modeling method (Kulicke and Clasen, 

2004). According to the Mallow's index (Cp), the following 

relationship was selected as the best fit (Hair et al., 2009). 

 
𝑅𝐴𝐶 = 𝑆 = 349.1𝐶 + 2.05𝑇 − 211.6𝐶2 (cm2/s) Eq. (12) 
                     (34.82***)  (18.67***)  (-39.93***)   

 

Second row figures (in Eq. (12)) show the amount of “t” 

value of regression coefficients and exponent stars refer to 

significance (probability) level of “t” values. It is clear that 

all coefficients are significant at 1 % level of probability. 

Overall, F value shows that the regression model could 

significantly explain variation of RAC based on change in 

temperature and concentration (Table 3) and in good 

condition for generalization. The summary of the model is 

given in Table 4. 10-fold R2 as a model validation index, 

emphasizes on the strength of regression model for 

generalization.  
 

Table 3. ANOVA for regression model (Eq. (12)) 

Source df SS MS F-Value P-Value 

Regression 3 4438210 1479403 4058.48 0.000 

Error 147 53585 365   

Total 150 4491795    

 
Table 4. Model summary of regression model (Eq. (12)) statistical 

indices  

Cp R2 10-fold 

R2 

Predict 

R2 

SEE 10-fold 

SEE 
Lack-

of-Fit 

3 0.988 0.987 0.988 19.09 19.59 0.000 
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As the primary goal was to assess the feasibility of 

determining the RAC of a non-Newtonian fluid, the RAC at 

various treatments was correlated with the corresponding 

measured apparent viscosity of the samples. A nonlinear 

relationship was observed between RAC and apparent 

viscosity. According to the trend of scatter data plots, two 

types of relationships were established and evaluated (Eq. 

(13) and Eq. (14)). 

𝑉 = 𝑒𝑎−𝑏(𝑆) Eq. (13) 

𝑉 = 𝑎 − 𝑏𝑙𝑛(ln(𝑆)) Eq. (14) 

 

The a and b are equation constants and S is RAC. Each 

model was established by converting the x or y axis to 

natural log format. All relationship coefficients were 

computed at different spindle rotational speed (shear rate) 

and reported in Table 5 and Table 6.  

According to the table, the model based on viscosity data 

transformation (Ln transformation) has followed closer to 

the measured value as compared to RAC data 

transformation (Ln transformation). However, the AICc 

values revealed that model at spindle rotational speed of 100 

rpm (10.47 s-1 shear rate) was the best one amongst the 

models for both kinds of data set transformations. The final 

selected model for prediction of viscosity as a function of 

RAC is proposed in Eq. (15). 

 

𝑉 = 𝑒8.71−0.007(𝑆) = 6063𝑒−0.007(𝑆) Eq. (15) 

 

The normal probability plot and residual versus fitted 

values plot indicate that the modeling assumptions of 

normality and homoscedasticity of residuals were within 

acceptable limits (Fig. 12).

 
Table 5. Model coefficients (a and b) and statistical indices for Eq. (13) 

rpm Shear rate 

(s-1) 
 𝑽 = 𝒆𝒂−𝒃(𝑺) 

a b R2 SEE F 10-f R2 10-f SEE AICc BIC PRESS 

5 0.52 10.20 0.01 90.2 0.24 257.6*** 88.6 0.25 4.46 7.74 1.87 

10 1.05 9.87 0.009 91.6 0.20 306.8*** 90.4 0.21 -5.93 -2.65 1.23 

20 2.09 9.54 0.008 92.0 0.18 320.4*** 90.8 0.19 -12.98 -9.70 1.04 

30 3.14 9.33 0.008 92.1 0.17 327.8*** 91.0 0.17 -16.77 -13.49 0.92 

50 5.23 9.10 0.008 93.0 0.15 373.0*** 92.1 0.16 -22.98 -19.70 0.74 

60 6.28 9.0 0.008 91.4 0.15 396.4*** 92.53 0.15 -24.88 -21.60 0.69 

100 10.47 8.71 0.007 93.6 0.14 410.5*** 92.9 0.14 -29.20 -25.92 0.60 
*** shows significant difference at 1% level of probability, SEE,10-f, AICc and BIC are standard error of estimate, 10-fold, corrected 

Akaike information criterion and Bayesian information criterion, respectively. 

 
Table 6. Model coefficients (a and b) and statistical indices for Eq. (14)  

rpm Shear rate 

(s-1) 

𝑽 = 𝒂 − 𝒃𝒍𝒏(𝐥𝐧(𝑺)) 

a b R2 SEE F 10-f R2 10-f SEE AICc BIC PRESS 

5 0.52 68168 38534 89.2 1862 384.1*** 86.8 1987 525.8 531.1 7.42×107 

10 1.05 50479 28277 89 1378 227.4*** 87 1447 523.7 527.0 6.31×107 

20 2.09 36194 20040 89.4 957 237.1*** 87.8 994 501.8 505.1 2.98×107 

30 3.14 29513 16242 90.8 749 254.4*** 88.6 775 487.1 490.4 1.82×107 

50 5.23 22799 12470 91 546 281.5*** 89.6 567 468.2 471.5 9.73×106 

60 6.28 20702 11300 91.1 489 288.1*** 89.7 511 461.6 464.9 7.91×106 

100 10.47 15459 8364 91 365 284.5*** 89.3 385 443.9 447.2 4.52×106 
*** shows significant difference at 1% level of probability, SEE,10-f, AICc and BIC are standard error of estimate, 10-fold, corrected 

Akaike information criterion and Bayesian information criterion, respectively. 

 

 

 
(a) 

 
(b) 

Fig. 12. (a) Residual vs. fitted values and (b) normal probability plot of residuals. 
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By substituting the Eq. (12) into Eq. (15), Eq. (16) was 
derived that establishes a correlation between temperature, 
concentration, and viscosity (Kulicke and Clasen, 2004). 
When applying the model to the measured values of 
temperature and concentration within the experimental 
range, the calculated MBE and d were found to be 48.18 
mPa.s and 0.991, respectively at 100 rpm (10.47 s-1). These 
results indicate that the model accurately and precisely 
estimated the viscosity of the non-Newtonian solution, with 
only a negligible overestimation (Fig. 13). At higher 
rotational speeds, discriminant differences were observed 
amongst the viscosity of samples at different concentrations 
and temperature levels. Therefore, more precise model 
training occurred at the higher shear rates of spindle, 
especially at 100 rpm. 

𝑉 = 𝑓(𝐶, 𝑇) = 6063𝑒(211.6𝐶2−349.1𝐶−2.05𝑇) Eq. (16) 

 
By taking into account the mathematical principles of 

uncertainty propagation, the modeled RAC of the fluid (Eq. 
(12)), uncertainty of RAC can be simplified as Eq. (17). 

𝜎𝑆

= √(4.2𝜎𝑇
2 ) + [𝜎𝐶

2(349.1 − 423.3𝐶)2 ]   (
𝑐𝑚2

𝑠
) 

Eq. (17) 

 
As is obvious from Eq. (17), the uncertainty of RAC is 

affected by the uncertainty of the temperature and 
uncertainty of concentration as well as the amount of 
concentration. The same manner was followed for 
computing the uncertainty of the modeled viscosity by 
considering Eq. 13, and the uncertainty of RAC (σS). 
Finally, the total uncertainty of the viscosity can be 
described by Eq. (18) (Skoog et al., 2007).  
 

𝜎𝑣 = 𝑎𝜎𝑆𝑒−𝑏(𝑆)
(mPa.s) Eq. (18) 

 
The values of a and b is listed in Table 7 at different 

rotational speeds (shear rate) of spindle. Since modeled 
viscosity would be matched with the corresponding values 
measured from viscometer outputs at the same condition, 
and taking into account the outputs of the Table 5 and Table 
6 for selection of the best model for viscosity prediction (at 

rpm = 100), and assumption of 1 oC and 0.1 % uncertainty 
for temperature and concentration, respectively, total 
uncertainty of the model is summarized in Table 8. The 
relative uncertainty is limited to approximately ± 0.04 or 4% 
at lower solution concentration. 

As previously mentioned, the identical dataset for the 
interval of zero to one second underwent analysis using 
MLP and RBF ANNs. In order to predict the apparent 
viscosity, input parameters considered were temperature at 
five levels (25, 35, 45, 55, and 65 °C) and concentration at 
six levels (1.15%, 1.3%, 1.45%, 1.6%, and 1.75%). The 
performance metrics of MLP and RBF models for 
prediction of RAC as function of temperature and 
concentration were measured and compared to the 
corresponding relation modeled by regression (Eq. (12)). 
Metrics are listed in Table 9.  

Based on the statistical metrics presented in Table 10, it 
is evident that the viscosity values obtained from the 
viscometer at higher rotational speeds exhibited a closer 
agreement with the modeled viscosity for both the ANN and 
MLR models. Furthermore, the results obtained from the 
ANN models validated the outcomes of the MLR 
predictions. 

However, a closer examination of MBE and Willmott 
distance (d) showed that both the ANN models possess the 
capability to predict viscosity based on the rate of area 
change within the time frame of zero to one second after the 
release of the solution. These metrics were computed 0.1 
mPa.s and 1, respectively for RBF model and 
correspondingly 1.2 mPa.s and 1 for MLP model at 100 
rpm. The values are graphically demonstrated in Fig. 14 and 
can be compared to Fig. 13 for MLR with the same metrics 
with the values of 48.18 mPa.s and 0.991, respectively at 
100 rpm (10.47 s-1).  

It is implied from the results that if an image-gathering 
and processing hardware is installed on a processing line of 
a non-Newtonian fluid, it is more accurate to develop ANN 
models for viscosity estimation. However, multiple linear 
regression gives a visual equation in hand to use at any 
moment to estimate the apparent viscosity with acceptable 
accuracy. 

 

 

 

 

 

 

 

Fig. 13. Modeled vs. actual viscosity to visualize model accuracy at 100 rpm (10.47 s-1 shear rate). 

 
Table 7. Eq. (18) constants of a and b  

Spindle rpm Shear rate (s-1) a b 

5 0.52 269.0 0.01 

10 1.05 174.0 0.009 

20 2.09 111.2 0.008 

30 3.14 90.2 0.008 

50 5.23 71.6 0.008 

60 6.28 64.8 0.008 

100 10.47 42.4 0.007 
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CONCLUSION  

The study hypothesized that the area occupied by a non-

Newtonian liquid during free flow can estimate its 

apparent viscosity. Since real-time measurement of non-

Newtonian food liquid viscosity is crucial during 

processing, the rate of area expansion (rate of change) 

was analyzed using image processing, and the results 

were modeled with multiple regression and ANNs. An 

exponential relationship was established for estimating 

apparent viscosity based on the computed rate of change 

in liquid expansion area (RAC = S), represented as 

𝑉 = 𝑎𝑒−𝑏(𝑆) through multiple regression analysis. 

However, the RBF-ANN model provided more accurate 

results. Additionally, the study aimed to create a general 

model that accounted for temperature and concentration 

effects on viscosity. Both parameters were incorporated 

into the regression and ANN models, which were 

calibrated accordingly. The findings confirm that both 

models effectively estimated the viscosity of the non-

Newtonian liquid (CMC solution). Future efforts could 

focus on developing a user-friendly device that leverages 

these concepts, incorporating more parameters for 

verification, while ensuring rapid results for real-time 

monitoring in a portable format.  

 
 

Table 8. RAC, viscosity, and relative uncertainties at different solution concentration levels for spindle rpm = 100 (10.47 s-1) 

Concentration (%) 
σ S 

(cm2/s) 

Viscositymean 

(mPa.s) 

Viscosity uncertainty 

(mPa.s) 

Relative uncertaintymean 

(SE/V) 

1 2.078* 1211.80 46.07 0.04 

1.15 2.078 1356.39 45.90 0.03 

1.3 2.078 1624.42 45.73 0.03 

1.45 2.078 2081.49 45.56 0.02 

1.6 2.078 2853.72 45.40 0.02 

1.75 2.078 4186.09 45.23 0.01 

RAC, SE and V are rate of area change, standard error and viscosity, respectively. * Difference is at the four decimal digit. 

 

Table 9. Modeling statistics of ANN (MLP and RBF) and MLR for RAC as function of concentration and temperature 

Model d MAPE (%) RMSE (cm2/s) R2 

MLP 0.999 2.29 4.87 0.995 

RBF 0.999 2.18 4.59 0.996 

MLR 0.982 14.92 18.16 0.932 

ANN (artificial neural network), MLP (multi-layer perceptron), RBF (radial basis function), MLR (multiple linear regression), 

RAC (rate of area change), MAPE (mean absolute of percentage error), RMSE (root of mean square of errors) 

 
Table 10. Modeling statistics of ANN (MLP and RBF) and MLR for viscosity prediction 

ANN (artificial neural network), MLP (multi-layer perceptron), RBF (radial basis function), MLR (multiple linear regression), 

RAC (rate of area change), MAPE (mean absolute of percentage error), RMSE (root of mean square of errors), d (distance 

index) 

 

Model rpm Based on measured RAC  Based on modelled RAC 

d MAPE (%) RMSE (cm2/s) R2  d MAPE (%) RMSE (cm2/s) R2 

MLP 5 0.999 3.05 233.9 0.998  0.995 10.82 753.1 0.979 

10 0.999 2.34 205.6 0.998  0.993 9.93 692.9 0.973 

20 0.999 2.90 153.9 0.997  0.993 9.06 491.9 0.973 

30 0.999 2.58 131.5 0.997  0.993 8.46 400.3 0.972 

50 0.999 2.58 112.2 0.996  0.992 7.78 308.1 0.968 

60 0.999 2.52 100.7 0.996  0.993 7.73 274.6 0.972 

100 1.000 0.19 15.9 0.999  0.994 6.24 185.6 0.975 

RBF 5 1 0.09 16.5 1  1 0.38 75.84 0.999 

10 1 0.09 8.8 1  1 0.32 53.23 0.999 

20 1 0.03 3.7 1  1 0.30 43.97 0.999 

30 1 0.06 3.7 1  1 0.27 33.30 0.999 

50 1 0.02 2.3 1  1 0.25 24.73 0.999 

60 1 0.02 1.8 1  1 0.24 22.62 0.999 

100 1 0.02 1.8 1  1 0.23 19.65 0.999 

MLR 5 0.992 15.27 928.9 0.971  0.967 20.48 1899.1 0.880 

10 0.992 13.99 715.7 0.968  0.968 17.09 1369.6 0.884 

20 0.994 13.14 488.4 0.971  0.971 15.67 922.6 0.895 

30 0.993 10.17 376.8 0.973  0.974 13.65 704.9 0.906 

50 0.992 9.14 302.0 0.971  0.977 12.91 513.6 0.914 

60 0.990 9.93 308.7 0.962  0.978 12.63 445.1 0.921 

100 0.991 10.08 221.4 0.965  0.983 11.66 296.8 0.936 
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(a) (b) 

Fig. 14. Modeld vs. actual viscosity to visulize model accuracy at 100 rpm (10.47 s-1 shear rate). (a) RBF model and (b) 

MLP model. 
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Nomenclatures  
 

Abbreviations Symbols and Greek letters 
CMC Carboxymethyl Cellulose Cp Mallow's index Pm Target output of node k 

RAC=S Rate of area change d Wilmot distance index Pp Predicted output of node k 

MBE Mean bias error σ Uncertainty k No. of ANN neurons 

AIC Akaike Information Criterion T Temperature Yk Dependent variable 

BIC Bayesian Information Criterion C Concentration φJ Basis function 

PRESS Prediction Residual Error Sum of 

Squares 

f`(.) Derivative of transfer function Uj Center of basis function vector 

ANN Artificial neural network ꝺf/ꝺT Partial derivative X Input matrix 

MLP Multi-layer perceptron Wij ANN weights bk Bias at node k  

RBF Radial basis function q Calculation iteration R2 Coefficient of determination 

RMSE Root mean squared error γ Learning rate V Apparent viscosity 

MAPE Mean absolute percentage error xi ith input in ANN   

MLR Multiple linear regression α Momentum value   

 

 

 

 


