
تعداد نشریات | 24 |
تعداد شمارهها | 849 |
تعداد مقالات | 7,544 |
تعداد مشاهده مقاله | 13,307,847 |
تعداد دریافت فایل اصل مقاله | 11,532,746 |
Changes in shear strength parameters in two cultivations and soil orders | ||
Iran Agricultural Research | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 22 اردیبهشت 1404 اصل مقاله (821.89 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22099/iar.2025.51490.1641 | ||
نویسندگان | ||
Soheila Sadat Hashemi* 1؛ Zahra Khedri1؛ Hanie Abbaslou2 | ||
1Department of Soil Science, Faculty of Agriculture, Malayer University, Malayer, I. R. Iran | ||
2Environmental and Civil Engineering Department, Civil Engineering College, Sirjan University of Technology, Sirjan, I. R. Iran | ||
چکیده | ||
Soil shear strength is a fundamental mechanical property that influences various soil behaviors and interactions during tillage. Continuous cultivation can significantly alter soil mechanical properties, including shear strength. This study aimed to investigate changes in shear strength parameters in soils cultivated with sugar beet and canola. Eight soil profiles were excavated in fields planted with these two crops in the Gyan Plain, selected based on land suitability classifications. Each profile was described and sampled, and the physical and chemical properties of the soils were analyzed as predictors of surface shear strength across all horizons. Shear strength parameters were determined using the standard direct shear test, from which stress–shear curves were generated to calculate cohesion and internal friction angle. Correlation analysis revealed a significant positive relationship between cohesion and soil organic matter (r = 0.35, P < 0.05), while no significant relationship was found with clay content. Cohesion showed significant negative correlations with specific density (r = –0.37, P < 0.05) and internal friction angle (r = –0.70, P < 0.01). The angle of internal friction exhibited a significant positive correlation with both soil depth (r = 0.35, P < 0.05) and specific density (r = 0.56, P < 0.01), but a significant negative correlation with organic matter (r = –0.56, P < 0.01) and moisture content (r = –0.62, P < 0.01). Regression analysis confirmed a negative correlation between cohesion and the internal friction angle, with an R² of 0.53. The results indicated that shear stress was higher in soils under sugar beet cultivation compared to those under canola, while the modulus of elasticity (E) was greater in canola-cultivated soils. Overall, this study identified crop type and root system, soil moisture, specific density, organic matter content, and soil developmental stage as key factors influencing soil shear strength. To improve soil shear strength, it is recommended to adopt crop rotation strategies and avoid monoculture systems. | ||
کلیدواژهها | ||
Canola؛ Module؛ Sugar beet؛ Tension | ||
مراجع | ||
Al-Shayea, N. A. (2001). The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Engineering Geology, 62, 319-342. https://doi.org/10.1016/s0013-7952(01)00032-1
Ahmadi, M., Jafari M., & Mousavi, S. M. (2016). Investigating the effect of humidity on the resistance parameters of soil with an attitude towards its application in modeling physically in the environment. 5th International Conference Geotechnical Engineering and Soil Mechanics. Tehran. Tehran: Tehran University Publishing.
Asadi Langroudi, A. (2014). Shear strength in terms of Coulomb c-intercept. Journal of Geotechnical Geology, 9(4), 283-292.
ASTM D854-14. (2004a). Standard test methods for specific gravity of soil solids by water Pycnometer. ASTM International, West Conshohocken, PA. Retrieved from: www.astm.org
ASTM D3080-04. (2004b). Standard test method for direct shear test of soils under consolidated drained conditions. ASTM international, west Conshohocken, PA, 2004. Retrieved from: www.astm.org.
Bachmann, J., Contreras, K., Hartge, K. H., & Macdonald, R. (2006). Comparison of soil strength data obtained in situ with penetrometer and with vane shear test. Soil and Tillage Research, 87, 112-118. https://doi.org/10.1016/j.still.2005.03.001
Bardet, J. P. (1997). Experimental soil mechanics. Principles of direct shear test. Upper Saddle River, New Jersey: Prentice-Hall.
Carvalho, R. C. R., Rocha, W. W., Pinto, J. C., Pires, B. S., Dias Juniar, M. S., & Nunes, A. H. B. (2010). Soil shear strength under non-irrigated and irrigated short duration grazing systems. Revista Brasileira de Ciência do Solo, 34(3), 631‑638. https://doi.org/10.1590/S0100-06832010000300004
Coulomb, C. A. (1776). Essai sur une application des regles de maximums et de mathematique et de physique. Academie Royale des Science, 3(38). 132-143.
Eteraf, H., Kovacs, B., Mikita, V., & Zahra Delshad, Z. (2023). Effect of particle size distribution on shear strength of soil. MATEC Web of Conferences, 385, 01043. https://doi.org/10.1051/matecconf/202338501043
Fattet, M., Fu, Y., Ghestem, M., Ma, W., Foulonneau, M., Nespoulous, J., Le Bissonnais, Y., & Stokes, A. (2011). Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 87(1), 60-69. https://doi.org/10.1016/j.catena.2011.05.006
Gardner, W. H. (1986). Water content. In: Klute, A. (Ed), Methods of soil analysis, part I, 3rd Ed. (pp. 493-544). America Society Agronomy, Madison, WI. https://doi.org/10.2136/sssabookser5.1.2ed.c21
Gee, G. W., & Bauder, J. W. (1986). Particle size analysis, hydrometer method. In: Klute, A. (Ed), Methods of Soil Analysis, Part I (3rd Ed pp. 404-408). Madison, WI: America Society Agronomy.
https://doi.org/10.2136/sssabookser5.1.2ed.c15
Gill, W. R., & VandenBerg, G. E. (1967). Soil dynamics in tillage and traction. USDA Agric. Handbook. no. 316. U.S. Washington, D. C: Government Printing Office. https://doi.org/10.2136/sssaj1968.03615995003200030005x
Hatibu, N., & Hettiaratchi, D. R. P. (1993). The transition from ductile flow to brittle failure in unsaturated soils. Journal of Agricultural Engineering Research, 54(4), 319-328. https://doi.org/10.1006/jaer.1993.1024
Han, Zh., Li, J., Gao, P., Huang, P., Ni, J., & Wei, Ch. (2020). Determining the shear strength and permeability of soils for engineering of new paddy field construction in a hilly mountainous region of southwestern China. International Journal Environment Research and Public Health, 17, 1555. https://doi/10.3390/ijerph17051555
Havaee, S., Mosaddeghi, M. R., & Ayoubi. S. (2015). In situ surface shear strength as affected by soil characteristics and land use in calcareous soils of central Iran. Geoderma, 137-148. http://doi.org/10. 10.16/j.geoderma.2014.08.016
Iqbal, J., Thomasson, J. A., Jenkins, J. N., Owens, P. R., & Whisler, F. D. (2005). Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society America Journal, 69(4), 1338-1350. https://doi.org/10.2136/sssaj2004.0154
Ismael, N. F., & Behbehani, M. (2014). Influence of relative compaction on the shear strength of compacted surface sands. International Journal of Environmental Science and Development, 5(1), 8-11. http://doi.org/0.7763/IJESD. 2014.V5.441
Jie, W., Binglin, S., Jinlin, L., Shasha, L., & Xiubin, Sh. (2018). Shear strength of purple soil bunds under different soil water contents and dry densities: A case study in the three Gorges reservoir area, China. Catena, 166, 124-133.
https://doi.org/10.1016/j.catena.2018.03.0.21
Ka’ab Omeir, G., Naserin, A., Daryaee, M., & Ansari, M. R. (2019). Evaluation of the effect of sand grain size on compressive strength and elasticity module of lime-treated soil. Iranian Journal of Irrigation and Drainage, 13(5), 1398-1409. https://doi.org/20.1001.1.20087942.1398.13.5.19.3
Khairuddin, M. N., Isa, I. M., Zakaria, A. J., Jol, H., & Syahlan, S. (2017). Shear strength and root length density analyses of Entisols treated with palm oil mill effluent sludge. Soil Environment, 36(2), 131-140. http://doi:10.25252/SE/1741141
Khalilmoghadam, B. (2009). Estimating shear strength, saturated hydraulic conductivity and infiltration rate using pedotransfer function and artificial neural networks. (Ph.D Thesis, Department of Soil Science, College of Agriculture, Isfahan University of Technology). (In persian).
Keller, T., Arvidsson, J., Dawiddowski, B., & Kollen, A. J. (2004). Soil pre compression stress ÍÍ. A comparison of different compaction test and stress displacement behavior of the soil during wheeling. Soil and Tillage Rsearch, 77(1), 97-108. https://doi.org/10.1016/j.still.2003.11.003
Loppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. In: Sparks, D. L. (Ed.) Method of soil analysis. Part III. (pp. 437-474). Madison, WI: America Society Agronomy.
Morgan, R. P. C. (1996). Soil erosion and conservation. UK: Longman group UK limited.
Mousavi, M., & Jiryaei Sharahi, M. (2021). Estimating the sand shear strength from its grain characteristics using an artificial neural network model and multiple regression analysis. AUT Journal of Civil Engineering, 5(3), 403-420. http://doi:10.22060/ajce.2021.19213.5721
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In: Sparks D. L. (Ed.), Method of soil analysis. Part III. (pp. 961-1010). Madison, WI: America Society Agronomy.
Ozelim, L. C. D. S. M., Ferrari de Campos, D. J., Cavalcante, A. L. B., Camapum de Carvalho, J., & Silva, C. M. (2022). Estimating shear strength properties of the surrounding soils based on the execution energies of piles. Geotechnics, 2, 457-466. https://doi.org/10.3390/geotechnics2020022
Rasti, A., Ranjkesh Adarmanabadi, H., Pineda, M., & Reinikainen, J. (2021). Evaluating the effect of soil particle characterization on internal friction angle. American Journal of Engineering and Applied Sciences, 14(1), 129–138. https://doi.org/10.3844/ajeassp.2021.129.138
Shahangian, S. (2011). Variable cohesion model for soil shear strength evaluation, 5th Pan-American Conference on Teaching and Learning of Geotechnical Engineering, Toronto, Canada: International Society for Soil Mechanics and Geotechnical Engineering
Shahnazari, H., Fatemi, M., Karami, H., & Talkhablou, M. (2021). Effects of texture and carbonate content on internal friction angle for soils of northern coasts of Persian Gulf. Journal of Engineering Geology, 14, 113-116. https://doi.org/10.52547/jeg.14.5.113
Silva, R. B., Junior, M. S., Iori, P., Silva, F. A. de M., Folle, S. M., Franz, C. A. B., & Souza, Z. M. de (2015). Prediction of soil shear strength in agricultural and natural environments of the Brazilian Cerrado. Pesq agropec bras Brasília, 50 (1), 82-91.
https://doi.org/10.1590/s0100-204x2015000100009
Stott, D. E., & Diack, M. (2004). Changes in surface soil physical, chemical and biological and biochemical properties under long-term management practice on a temperate Mollisol, 13th International Soil Conservation Organization Conference– Brisbane, Australia. Australia: Conserving Soil and Water for Society: Sharing Solutions.
Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In: Sparks, D. L. (Ed.) Method of soil analysis. Part III. 3rd Ed. (pp. 1201-1229). Madison, WI: America Society Agronomy.
Wei, Y., Wu, X., Xia, J., Miller, G. A., Cai, C., Guo, Z., & Hassanikhah, A. (2019). The effect of water content on the shear strength characteristics of granitic soils in South China. Soil and Tillage Research, 187, 50-59. https://doi.org/10.1016/j.still.2018.11.013
Yavuzcan, H. G., Vatandas, M., & Gurhan, R. (2002). Soil strength as affected by tillage system and wheel traffic in wheat-corn rotation in central Anatolia. Journal of Terra mechanics, 39, 23-34. https://doi.org/10.1016/S0022-4898(01)00004-0
Zhang, J., Shi, D., Jin, H., Li, H., Jiang, N., & Yu. Q. (2022). Characteristics of cultivated layer soil shear strength for sloping farmland in response to soil erosion in the three Gorges reservoir area, China. Catena, 215, 106304. https://doi.org/10.1016/j.catena.2022.106304 | ||
آمار تعداد مشاهده مقاله: 21 تعداد دریافت فایل اصل مقاله: 9 |