
تعداد نشریات | 24 |
تعداد شمارهها | 849 |
تعداد مقالات | 7,535 |
تعداد مشاهده مقاله | 13,283,506 |
تعداد دریافت فایل اصل مقاله | 11,519,733 |
The Effect of Tungsten on Microstructure and Mechanical Properties of Sintered Tantalum by Hot Pressing in a Vacuum | ||
Iranian Journal of Materials Forming | ||
دوره 12، شماره 1، فروردین 2025، صفحه 10-17 اصل مقاله (1.52 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22099/ijmf.2025.51766.1309 | ||
نویسندگان | ||
F. najafzadegan1؛ A khodabandeh* 1؛ H. Youzbashizadeh2؛ M. Tamizifar3 | ||
1Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
2Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran | ||
3School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran | ||
چکیده | ||
In this study, the effect of tungsten addition on the microstructure and mechanical properties of tantalum using hot pressing-sintering is investigated. Pure tantalum and tungsten powders were used to produce Ta-W alloys with varying tungsten content, including pure Ta, Ta-2.5 wt.% W, Ta-5 wt.% W, and Ta-7.5 wt.% W. The morphology of the powders was examined by scanning electron microscopy. Consolidation was performed via hot pressing-sintering at 1600 °C under vacuum conditions. Density was measured using the Archimedes method, and the microstructure was analyzed by optical microscopy. Hardness measurements were conducted on the sintered samples, and their deformation behavior was evaluated using uniaxial compression test at room temperature. The results indicated that the relative density of pure Ta is 97.5%, which decreases to 92.5% with the addition of 7.5 wt.% tungsten. With increasing tungsten content, the average grain size decreased while the porosity percentage increased. The properties of Ta-W alloys are influenced by three main characteristics: tungsten content, porosity percentage, and the grain size. The addition of tungsten to tantalum increased most mechanical properties, including hardness, compressive strength, yield strength, toughness, and resilience modulus, although ductility decreased by 10%. | ||
کلیدواژهها | ||
Tantalum alloy؛ Tungsten؛ Hot pressing؛ Mechanical properties؛ Resilience modulus | ||
مراجع | ||
[1] Caron, R. N., Staley, J. T. (1997). Effects of composition, processing, and structure on properties of nonferrous alloys. In G. E. Dieter (Ed.), Materials selection and design (pp. 953-957). ASM international.
[2] Burns, R. H., Fang, J. C., Kumar, P. (1996). Evolution of applications of tantalum. In A. Chen, A. Crowson, E. Lavernia, W. Ebihara, P. Kumar (Ed.), Proceeding of 125th TMS Annual Meeting and Exhibition (pp. 273–85). Anaheim, CA.
[3] Chou, P. C., & Crudza, M. E. (1992). The effects of liner anisotropy on warhead performance. In R. Asfahani, E. Chen, & A. Crowson (Eds.), High strain rate behavior of refractory metals and alloys (pp. 97–109). Warrendale, PA: TMS.
[4] Flater, P., House, J., O'Brien, J., & Hosford, W. F. (2007). High strain rate properties of tantalum processed by equal channel angular pressing (Report No. AFRL-RW-EG-TR-2007-7412). Air Force Research Laboratory Technical Report.
[5] Cardonne, S. M., Kumar, P., Muchaluk, C. A., Schwartz, H. D. (1995). Tantalum and its alloys. International Journal of Refractory Metals and Hard Materials, 13(4), 187–194. https://doi.org/10.1016/0263-4368(95)94023-R
[6] Kim, Y., Kim, E. P., Noh, J. W., Lee, S. H., Kwon, Y. S., & Oh, I. S. (2015). Fabrication and mechanical properties of powder metallurgy tantalum prepared by hot isostatic pressing. International Journal of Refractory Metals and Hard Materials, 48, 211-216. https://doi.org/10.1016/j.ijrmhm.2014.09.012
[7] Wang, S., Chen, C., Jia, Y. L., Wang, M. P., Li, Z., & Wu, Y. C. (2016). Evolution of deformation microstructures of cold-rolled Ta–2.5 W alloy with coarse grains at low to medium strains. International Journal of Refractory Metals and Hard Materials, 54, 104-115. https://doi.org/10.1016/j.ijrmhm.2015.07.023
[8] ASM International. Handbook Committee. (1990). Properties and selection: Nonferrous alloys and special-purpose materials (10th ed., Vol. 2, ASM Handbook). ASM International.
[9] Chen, C., Wang, S., Jia, Y. L., Wang, M. P., Li, Z., Zhong, Z. H., Lu, P., Wu, Y. C., & Cao, L. F. (2016). The evolution of dislocation microstructure in electron beam melted Ta-2.5 W alloy during cold rolling. International Journal of Refractory Metals and Hard Materials, 61, 136-146. https://doi.org/10.1016/j.ijrmhm.2016.09.001
[10] Lassila, D. H., LeBlanc, M. M., & Meyers, M. A. (1996). Effects of shock prestrain on the mechanical behavior of tantalum and tantalum-tungsten alloys (No. UCRL-JC-124181; CONF-960202-32). Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States).
[11] Muller, J. F., & Dinh, P. M. (1994). Evaluation of powder metallurgy tantalum liners for explosively formed penetrators. Tungsten and Refractory Metals, 573-586.
[12] James, W. (2015). Powder metallurgy methods and applications. In P. Samal, & J. Newkirk (Ed.), Powder metallurgy, AME International. https://doi.org/10.31399/asm.hb.v07.a0006022
[13] Briant, C. L., Lassila, D. H. (1999). The effect of tungsten on the mechanical properties of tantalum. Journal of Engineering Materials and Technology, 121(2), 172-177. https://doi.org/10.1115/1.2812363
[14] Nemat-Nasser, S., & Kapoor, R. (2001). Deformation behavior of tantalum and a tantalum tungsten alloy. International Journal of Plasticity, 17(10), 1351-1366. https://doi.org/10.1016/S0749-6419(00)00088-7
[15] Efe, M., Kim, H. J., Chandrasekar, S., & Trumble, K. P. (2012). The chemical state and control of oxygen in powder metallurgy tantalum. Materials Science and Engineering: A, 544, 1-9. https://doi.org/10.1016/j.msea.2012.01.100
[16] Florêncio, O., Barbosa, G. F., Silva, P. S., Ishikawa, T. T., & Rodrigues, D. (2007, February). Interstitial diffusion of oxygen in tantalum obtained by anelastic relaxation measurements. In Defect and diffusion forum (Vol. 258, pp. 146-151). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.258-260.146
[17] Florêncio, O., Silva, P. S., Barbosa, G. F., Melo, F. X., Grandini, C. R., & Ishikawa, T. T. (2008, January). Mechanical damping of the snoek peak in tantalum–oxygen system. In Defect and diffusion forum (Vol. 273, pp. 239-244). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DDF.273-276.239
[18] Angerer, P., Neubauer, E., Yu, L. G., & Khor, K. A. (2007). Texture and structure evolution of tantalum powder samples during spark-plasma-sintering (SPS) and conventional hot-pressing. International Journal of Refractory Metals and Hard Materials, 25(4), 280-285. https://doi.org/10.1016/j.ijrmhm.2006.10.001
[19] Angerer, P., Artner, W., Neubauer, E., Yu, L. G., & Khor, K. A. (2008). Residual stress in spark-plasma-sintered and hot-pressed tantalum samples determined by X-ray diffraction methods. International Journal of Refractory Metals and Hard Materials, 26(4), 312-317. https://doi.org/10.1016/j.ijrmhm.2007.08.002
[20] Schwartz, A. J., Lassila, D. H., & LeBlanc, M. M. (1998). The effects of tungsten addition on the microtexture and mechanical behavior of tantalum plate. Materials Science and Engineering: A, 244(2), 178-190. https://doi.org/10.1016/S0921-5093(97)00690-4
[21] Yoo, S. H., Sudarshan, T. S., Sethuram, K., Subhash, G., & Dowding, R. J. (1999). Consolidation and high strain rate mechanical behavior of nanocrystalline tantalum powder. Nanostructured Materials, 12(1-4), 23-28. https://doi.org/10.1016/S0965-9773(99)00059-8
[22] Ashby M., Shercliff H., & Cebon D. (2007). Materials engineering, science, processing and design. Butterworth-Heinemann.
[23] Waters, C., Salih, M., & Ajinola, S. (2015). Porosity comparative analysis of porous copper and OOF modelling. Journal of Porous Materials, 22, 989-995. https://doi.org/10.1007/s10934-015-9973-1
[24] Dieter, G. E. (1986). Mechanical metallurgy. McGraw-Hill.
[25] Da Silva, V. D. (2005). Mechanics and strength of materials. Springer Science & Business Media, 125-127.
| ||
آمار تعداد مشاهده مقاله: 35 تعداد دریافت فایل اصل مقاله: 26 |