
تعداد نشریات | 24 |
تعداد شمارهها | 849 |
تعداد مقالات | 7,535 |
تعداد مشاهده مقاله | 13,283,576 |
تعداد دریافت فایل اصل مقاله | 11,519,752 |
Study on the Effect of Fabrication Method on the Polarization of Solid Oxide Fuel Cells | ||
Iranian Journal of Materials Forming | ||
دوره 12، شماره 1، فروردین 2025، صفحه 4-9 اصل مقاله (1.73 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22099/ijmf.2025.52070.1316 | ||
نویسندگان | ||
A. Karimi؛ M.H. Paydar* | ||
Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran | ||
چکیده | ||
A promising strategy for reducing concentration polarization in solid oxide fuel cells (SOFCs) is the creation of an anode layer with aligned, channel-like pores to facilitate efficient gas transport with minimal resistance. Freeze casting is an advanced shaping technique capable of forming such a unique microstructure. In this study, three NiO-YSZ|YSZ|LSM-YSZ SOFCs were fabricated using three different methods, and their electrochemical performances were compared. The first cell featured an anode prepared via freeze casting, while the other two utilized conventional dry pressing— one with a pore former and one without. All anodes were composed of NiO-50 wt.% YSZ composite powder, with YSZ electrolyte and LSM-YSZ cathode layers subsequently applied. The microstructures were analyzed using scanning electron microscopy (SEM), and electrochemical impedance spectroscopy was conducted within the 650–800 °C temperature range. The concentration polarization resistance of the freeze-cast anode-supported SOFC was 0.09 and 0.07 Ω.cm² at 750 and 800 °C, respectively. At 800 °C, concentration polarization resistance was accounted for 13% of total cell resistance in the freeze-cast anode SOFC, compared to 20% and 22% in the dry-pressed anodes with and without a pore former, respectively. | ||
کلیدواژهها | ||
Electrochemical impedance spectroscopy؛ Freeze-casting؛ Polarization resistance؛ SOFC | ||
مراجع | ||
[1] Singh, M., Zappa, D., & Comini, E. (2021). Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46(54), 27643-27674. https://doi.org/10.1016/j.ijhydene.2021.06.020
[2] Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990
[3] Gadsbøll, R. Ø., Thomsen, J., Bang-Møller, C., Ahrenfeldt, J., & Henriksen, U. B. (2017). Solid oxide fuel cells powered by biomass gasification for high efficiency power generation. Energy, 131, 198-206. https://doi.org/10.1016/j.energy.2017.05.044
[4] Zhao, F., & Virkar, A. V. (2005). Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of Power Sources, 141(1), 79-95. https://doi.org/10.1016/j.jpowsour.2004.08.057
[5] Tsipis, E. V., & Kharton, V. V. (2011). Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects. Journal of Solid State Electrochemistry, 15, 1007-1040. https://doi.org/10.1007/s10008-011-1341-8
[6] Fleig, J. (2003). Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance. Annual Review of Materials Research, 33(1), 361-382. https://doi.org/10.1146/annurev.matsci.33.022802.093258
[7] Bae, Y., Lee, S., & Hong, J. (2019). The effect of anode microstructure and fuel utilization on current relaxation and concentration polarization of solid oxide fuel cell under electrical load change. Energy conversion and management, 201, 112152. https://doi.org/10.1016/j.enconman.2019.112152
[8] Jeon, D. H., Nam, J. H., and Kim, C. J. (2006). Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model. Journal of the Electrochemical Society, 153(2), A406. https://doi.org/10.1149/1.2139954
[9] Bunch, J., Chen, Y., Chen, F., & May, M. (2012). Freeze-tape casting for the design of anode-delivery layer in solid oxide fuel cells. In P. Singh & N. P. Bansal (Ed.), Advances in solid oxide fuel cells VIII (pp. 13-21). John Wiley & Sons.
[10] Chen, Y., Liu, Q., Yang, Z., Chen, F., & Han, M. (2012). High performance low temperature solid oxide fuel cells with novel electrode architecture, RSC Advances, 2(32), 12118-12121. https://doi.org/10.1039/C2RA21921B
[11] Souza, D. F., Nunes, E. H., & Vasconcelos, W. L. (2018). Preparation of Ba0.5Sr0.5Co0.8Fe0.2O3–𝛿 asymmetric structures by freeze-casting and dip-coating. Ceramics International, 44(1), 1002–1006. https://doi.org/10.1016/j.ceramint.2017.10.035
[12] Sofie, S. W. (2007). Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze-tape-casting process. Journal of the American Ceramic Society, 90(7), 2024–2031. https://doi.org/10.1111/j.1551-2916.2007.01720.x
[13] Cable, T. L., Sofie, S. W. (2007). A symmetrical, planar SOFC design for NASA’s high specific power density requirements. Journal of Power Sources, 174(1), 221–227. https://doi.org/10.1016/j.jpowsour.2007.08.110
[14] Gannon, P., Sofie, S., Deibert, M., Smith, R., & Gorokhovsky, V. (2008). Thin film YSZ coatings on functionally graded freeze cast NiO/YSZ SOFC anode supports, Journal of Applied Electrochemistry, 39, 497–502. https://doi.org/10.1007/s10800-008-9682-4
[15] Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process, Journal of Power Sources, 213, 93–99. https://doi.org/10.1016/j.jpowsour.2012.03.109
[16] Karimi, A., & Paydar, M. H. (2024). Investigation on the mechanical behavior and fracture mode of ice-templated NiO-ysz anode electrode for solid oxide fuel cells application. Journal of Materials Engineering and Performance, 33(13), 6499–6506. https://doi.org/10.1007/s11665-023-08419-x
[17] Talebi, T., Haji, M., & Raissi, B. (2010). Effect of sintering temperature on the microstructure, roughness and electrochemical impedance of electrophoretically deposited YSZ electrolyte for SOFCs. International Journal of Hydrogen Energy, 35(17), 9420-9426. https://doi.org/10.1016/j.ijhydene.2010.05.079
[18] Nakajima, H., Kitahara, T., & Konomi, T. (2010). Electrochemical impedance spectroscopy analysis of an anode-supported microtubular solid oxide fuel cell. Journal of the Electrochemical Society, 157(11), B1686. https://doi.org/10.1149/1.3486805
[19] Wang, B., Bi, L., & Zhao, X. (2018). Fabrication of one-step co-fired proton-conducting solid oxide fuel cells with the assistance of microwave sintering. Journal of the European Ceramic Society, 38(16), 5620-5624. https://doi.org/10.1016/j.jeurceramsoc.2018.08.020
[20] Liu, M., Dong, D., Peng, R., Gao, J., Diwu, J., Liu, X., & Meng, G. (2008). YSZ-based SOFC with modified electrode/electrolyte interfaces for operating at temperature lower than 650 C. Journal of Power Sources, 180(1), 215-220. https://doi.org/10.1016/j.jpowsour.2008.01.066 | ||
آمار تعداد مشاهده مقاله: 36 تعداد دریافت فایل اصل مقاله: 42 |