
تعداد نشریات | 24 |
تعداد شمارهها | 849 |
تعداد مقالات | 7,535 |
تعداد مشاهده مقاله | 13,283,411 |
تعداد دریافت فایل اصل مقاله | 11,519,613 |
Deformation Behavior of Aluminum Alloy During Severe Plastic Deformation by Integrated Equal Channel Angular Pressing and Extrusion (ECAP-Extrusion) | ||
Iranian Journal of Materials Forming | ||
دوره 12، شماره 1، فروردین 2025، صفحه 18-27 اصل مقاله (1.16 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22099/ijmf.2025.52239.1320 | ||
نویسندگان | ||
A. Fardi Ilkhchi* 1؛ َA. Heidarzadeh2، 3 | ||
1Department of Materials Science and Engineering, University of Bonab, Bonab, 5551395133, Iran | ||
2Department of Materials Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran | ||
3Department of Materials and Metallurgy, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran | ||
چکیده | ||
This study investigates the deformation behavior of commercially pure aluminum using finite element analysis, focusing on the combined equal channel angular pressing (ECAP) and extrusion process. The objective is to analyze the effects of die angle, extrusion ratio, and friction coefficient on the process and the resulting material properties. The findings indicate that a smaller die angle, higher extrusion ratio, and increased friction coefficient all contribute to a greater required process force. While friction between the sample and die wall disrupts uniform plastic strain distribution, increasing the die angle up to 110° and using an extrusion ratio of 6.25 enhance strain uniformity. | ||
کلیدواژهها | ||
Severe plastic deformation؛ Extrusion؛ Equal channel angular pressing؛ Finite element simulation | ||
مراجع | ||
[1] Toth, L. S., & Gu, C. (2014). Ultrafine-grain metals by severe plastic deformation. Materials Characterization, 92, 1-14. https://doi.org/10.1016/j.matchar.2014.02.003
[2] Furukawa, M., Horita, Z., Nemoto, M., & Langdon, T. G. (2001). Review: Processing of metals by equal-channel angular pressing. Journal of Materials Science, 36, 2835-2843. https://doi.org/10.1023/A:1017932417043
[3] Ghalehbandi, S. M., Malaki, M., & Gupta, M. (2019). Accumulative roll bonding—a review. Applied Sciences, 9(17), 3627. https://doi.org/10.3390/app9173627
[4] Reis, L. M., Hohenwarter, A., Kawasaki, M., & Figueiredo, R. B. (2024). Evaluating high-pressure torsion scale-up. Advanced Engineering Materials, 26(19), 2400175. https://doi.org/10.1002/adem.202400175
[5] Kumar, S. (2023). Developing methods of constrained groove pressing technique: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(6), 1319-1346. https://doi.org/10.1177/14644207221143358
[6] Garbacz, H., Topolski, K., & Motyka, M. (2019). Hydrostatic extrusion. In Nanocrystalline Titanium (pp. 37-53). Elsevier.
[7] Ebrahimi, M., Wang, Q., & Attarilar, S. (2023). A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Progress in Materials Science, 131, 101016. https://doi.org/10.1016/j.pmatsci.2022.101016
[8] Pater, Z., Tomczak, J., & Bulzak, T. (2020). Problems of forming stepped axles and shafts in a 3-roller skew rolling mill. Journal of Materials Research and Technology, 9(5), 10434-10446. https://doi.org/10.1016/j.jmrt.2020.07.062
[9] Dutkiewicz, J., Kalita, D., Maziarz, W., Tański, T., Borek, W., Ostachowski, P., & Faryna, M. (2020). Effect of KOBO extrusion and following cyclic forging on grain refinement of Mg–9Li–2Al–0.5Sc Alloy. Metals and Materials International, 26(7), 1004-1014. https://doi.org/10.1007/s12540-019-00350-y
[10] Manjunath, G. A., Shivakumar, S., Fernandez, R., Nikhil, R., & Sharath, P. C. (2021). A review on effect of multi-directional forging/multi-axial forging on mechanical and microstructural properties of aluminum alloy. Materials Today: Proceedings, 47, 2565-2569. https://doi.org/10.1016/j.matpr.2021.05.056
[11] Fouad, D. M., Moataz, A., El-Garaihy, W. H., & Salem, H. G. (2019). Numerical and experimental analysis of multi-channel spiral twist extrusion processing of AA5083. Materials Science and Engineering: A, 764, 138216. https://doi.org/10.1016/j.msea.2019.138216
[12] Paydar, M. H., Reihanian, M., Bagherpour, E., Sharifzadeh, M., Zarinejad, M., & Dean, T. A. (2009). Equal channel angular pressing-forward extrusion (ECAP-FE) consolidation of Al particles. Materials and Design, 30(3), 429-432. https://doi.org/10.1016/j.matdes.2008.06.012
[13] Paydar, M. H., Reihanian, M., Bagherpour, E., Sharifzadeh, M., Zarinejad, M., & Dean, T. A. (2008). Consolidation of Al particles through forward extrusion-equal channel angular pressing (FE-ECAP). Materials Letters, 62(17–18), 3266-3268. https://doi.org/10.1016/j.matlet.2008.02.038
[14] Segal, V. M., Reznikov, V. I., Dobryshevshiy, A. E., & Kopylov, V. I. (1981). Plastic working of metals by simple shear. Russian Metallurgy (Metally), 1, 99-105.
[15] Hans Raj, K., Sharma, R. S., Sahai, A., & Gupta, N. K. (2013). Different die designs for processing of al alloy using equal channel angular pressing: A FEM study. Proceedings of the Indian National Science Academy, 79(4), 829-836. https://doi.org/10.16943/ptinsa/2013/v79i4/48011
[16] Lyu, Y. (2022). Finite element method: Element solutions, Springer Singapore. https://doi.org/10.1007/978-981-19-3363-9
[17] Yoon, S. C., & Kim, H. S. (2008). Finite element analysis of the effect of the inner corner angle in equal channel angular pressing. Materials Science and Engineering: A, 490(1–2), 438-444. https://doi.org/10.1016/j.msea.2008.01.066
[18] Xu, S., Zhao, G., Ma, X., & Ren, G. (2007). Finite element analysis and optimization of equal channel angular pressing for producing ultra-fine grained materials. Journal of Materials Processing Technology, 184(1–3), 209-216. https://doi.org/10.1016/j.jmatprotec.2006.11.025
[19] Djavanroodi, F., & Ebrahimi, M. (2010). Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Materials Science and Engineering: A, 527(4–5), 1230-1235. https://doi.org/10.1016/j.msea.2009.09.052
[20] Abd El Aal, M. I. (2017). 3D FEM simulations and experimental validation of plastic deformation of pure aluminum deformed by ECAP and combination of ECAP and direct extrusion. Transactions of Nonferrous Metals Society of China, 27(6), 1338-1352. https://doi.org/10.1016/S1003-6326(17)60155-9
[21] Basavaraj, V. P., Chakkingal, U., & Kumar, T. P. (2009). Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation. Journal of Materials Processing Technology, 209(1), 89-95. https://doi.org/10.1016/j.jmatprotec.2008.01.031 | ||
آمار تعداد مشاهده مقاله: 65 تعداد دریافت فایل اصل مقاله: 60 |