Quantitative expression analyses of Dipeptidyl peptidase and Cytochrome P450 Monooxygenase genes of Beauveria bassiana during growth on insect cuticles | ||
Iran Agricultural Research | ||
مقاله 4، دوره 40، شماره 2، خرداد 2022، صفحه 25-32 اصل مقاله (1.05 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22099/iar.2021.41269.1450 | ||
نویسندگان | ||
masoumeh kordi؛ naser farrokhi* | ||
Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, I. R. Iran | ||
چکیده | ||
Beauveria bassiana is an entomopathogenic fungus that acts as a biological control agent and attacks varieties of insects by degrading and penetrating their cuticles. The relevant molecular basis of this action was investigated by comparing the expression analyses of dipeptidyl peptidase and cytochrome P450 monooxygenase, candidate genes involved in fungal pathogenesis, via Real-Time PCR. B. bassiana was grown in an artificial medium and in the cuticle extract media isolated from four species belonging to different insect orders. The expression of the two genes in the fungus was examined in different culture media. The results showed that dipeptidyl peptidase was upregulated in media containing insect cuticular extracts compared to the control synthetic medium, while Cytochrome P450 monooxygenase showed reduced expression in abundance. The effect of cuticle types in inducing gene expression was compared and discussed. It seems likely; information from different reactions of this fungus against different insect cuticles can be helpful in producing specific pesticides. | ||
کلیدواژهها | ||
Beauveria bassiana؛ gene expression؛ Real-Time PCR؛ transcript | ||
مراجع | ||
Alkin, N., Dunaevsky, Y., Elpidina, E., Beljakova, G., Tereshchenkova, V., Filippova, I., & Belozersky, M. (2021). Proline-specific fungal peptidases: Genomic analysis and identification of secreted DPP4 in alkaliphilic and alkalitolerant fungi. Journal of Fungi, 7, 744, 1-15. https://doi.org/10.3390/jof7090744. Andersen S. O. (1980). Cuticular sclerotization. In: Miller TA (Ed.) Cuticle Techniques in Arthropods (pp. 158-217). New York: Springer-Verlag Chen, C., Wang, C., Liu, Y., Shi, X., & Gao, X. (2018). Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga. Scientific Reports, 8, 2564, 1-9. https://doi.org/10.1038/s41598-018-20981-2. Cresnar, B., & Petric, S. (2011). Cytochrome P450 enzymes in the fungal kingdom. Biochimica et Biophysica Acta, 1814, 29-35. DOI: 10.1016/j.bbapap.2010.06.020. Dhar, P., & Kaur, G. (2010). Production of cuticle- degrading proteases by Beauveria bassiana and their induction in different media. African Journal of Biochemistry Research, 4, 65-72. Dias, B. A., Neves, P. M. O. J., Furlaneto-maia, L., & Furlaneto, M. C. (2008). Cuticle-degrading proteases produced by the entomopathogenic fungus Beauveria bassiana in the presence of coffee berry borer cuticle. Brazilian Journal of Microbiology, 39, 301-306. DOI: 10.1590/S1517-838220080002000019. Dionisio, G., Kryger, P., & Steenberg., T. (2016). Label-Free Differential proteomics and quantification of exoenzymes from isolates of the entomopathogenic fungus beauveria bassiana. Insects, 7(54), 301-306. doi:10.3390/insects7040054. Erler, F., & Ates, O. (2015). Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleopteran: Scarabaeidae), as biological control agents against the June beetle. Journal of Insect Science, 15(1), 1-6. doi: 10.1093/jisesa/iev029. Fialho, V. S., Rodrigues, V. B., & Elliot, S. L. (2018). Nesting strategies and disease risk in necrophagous beetles. Ecology and Evolution, 8, 3296-3310. https://doi.org/10.1002/ece3.3919. Forlani, L., Juarez, M. P., Lavarias, S., & Pedrini, N. (2014). Toxicological and biochemical response to the entomopathogenic fungus Beauveria bassiana after exposure to deltamethrin. Pest Management Science, 70, 751-756. doi: 10.1002/ps.3583. Galidevara, S., Reineke, A., & Koduru, U. D. (2016). In vivo expression of genes in the entomopathogenic fungus Beauveria bassiana during infection of lepidopteran larvae. Journal of Invertebrate Pathology, 136, 32-34. doi: 10.1016/j.jip.2016.03.002. Gupta, R., Beg, Q. K., Khan, S., & Chauhan, B. (2002). An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Applied Microbiology and Biotechnology, 60, 381-395. https://doi.org/10.1007/s00253-002-1142-1. Han, J., Park, J. C., Hagiwara, A., Park, H. G., & Lee, J. S. (2019). Identification of the full 26 cytochrome P450 (CYP) genes and analysis of their expression in response to benzo [α] pyrene in the marine rotifer Brachionus rotundiformis, Comparative Bochemistry and Physiology Part D Genomics and Proteomics, 29, 185-192. https://doi.org/10.1016/j.cbd.2018.12.001. Huang, F., Peter, A., & Schwab, W. (2014). Expression and characterization of CYP52 genes involved in the biosynthesis of sophorolipid and alkane metabolism from starmerella bombicola. Applied and Environmental Microbiology, 80(2), 766-776. Khan, S., Guo, L., Maimaiti, Y., Mijit, M., & Qiu, D. (2012). Entomopathogenic fungi as microbial biocontrol agent. Molecular Plant Breeding, 3, 63-79. Lin, L., Fang, W., Liao, X., Wang, F., Wei, D., & Leger, R. (2011). The MrCYP52 cytochrome P450 Monoxygenase gene of metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons. Plos One, 6(12) e28984. https://doi.org/10.1371/journal.pone.0028984. Lyu, Z., Kong, D., & Lin, T. (2020). Identification and expression analysis of cytochrome P450 genes in Plecoptera oculata (Lepidoptera: Noctuidae). Entomological Research, 50(2), 90-99. DOI:10.1111/1748-5967.12412. Moussian, B. (2010). Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochemistry and Molecular Biology, 40, 363-375. https://doi.org/10.1016/j.ibmb.2010.03.003. Ortiz-Urquiza, A., & Keyhani, N. O. (2013). Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects, 4, 357-374. DOI: 10.3390/insects4030357. Ortiz-Urquiza, A., & Keyhani, N. O. (2016). Molecular genetics of Beauveria bassiana infection of insect. Advanced Genetics, 94, 165-249. DOI: 10.1016/bs.adgen.2015.11.003. Pathan, A. A. K., Uma Devi, K., Vogel, H., & Reineke, A. (2007). Analysis of differential gene expression in the generalist entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin grown on different insect cuticular extracts and synthetic medium through cDNA-AFLPs. Fungal Genetics and Biology, 44, 1231-1241. DOI: 10.1016/j.fgb.2007.07.002. Pedrini, N., Ortiz-Urquiza, A., Bonnet, C. H., Zhang, S., & Keyhani, N. (2013). Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: Hydrocarbon oxidation within the context of a host-pathogen interaction. Microbiology, 4, 1-18. https://doi.org/10.3389/fmicb.2013.00024. Pedrini, N., Zhang, S., Jurez, M. P., & Keyhani, N. O. (2010). Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology, 156, 2549-2557. DOI: 10.1099/mic.0.039735-0. Perez, L. C. S., Florido, J. E. B., Navarro, S. R., Mayagoitia, J. F. C., & Lopez, M. A. R. (2014). Enzymes of entomopathogenic fungi, advances and insights. Advances in Enzyme Research, 2, 65-76. DOI: 10.4236/aer.2014.22007. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 2002-2007. DOI: 10.1093/nar/29.9.e45. Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wide comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36. DOI: 10.1093/nar/30.9.e36. Plaza, G. A., Upchurch, R., Brigmon, R. L., Whitman, W. B., & Ulfig, K. (2004). Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Polish Journal of Environmental Studies, 13, 315-318. Rios-Moreno, A., Garrido- Jurado, L., Resquin-Romero, G., Arroyo-Manzanares, N., Arce, L., & Quesada-Moraga, E. (2016). Destruxin a production by Metarhizium brunneum strains during transient endophytic colonisation of Solanum tuberosum. Biocontrol Science Technology, 26, 1574-1585. https://doi.org/10.1080/09583157.2016.1223274. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). Mega 6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729. DOI: 10.1093/molbev/mst197. Tartar, A., & Boucias, D. G. (2004). A pilot-scale expressed sequence tag analysis of Beauveria bassiana gene expression reveals a tripeptidyl peptidase that is differentially expressed in vivo. Mycopathologia, 158, 201-209. DOI: 10.1023/B:MYCO.0000041905.17948.42. Thomas, M. B. & Read, A. F. (2007). Can fungal biopesticides control malaria. Nature Reviews Microbiology, 5, 377-383. DOI: 10.1038/nrmicro1638. Vega, F. E. (2008). Insect pathology and fungal endophytes. Journal of Invertebrate Pathology, 98, 277-279. https://doi.org/10.1016/j.jip.2008.01.008. Vikhe, A. G., Dale, N. S., Umbarkar, R. B., Labade, G. B., Savant, A. R., & Walunj, A. A. (2016). In vitro and in vivo induction, and characterization of toxins isolated from Beauveria bassiana. International Journal of Pure and Applied Bioscience, 4, 97-103. Vincent, J. F., & Wegst, U. G. (2004). Design and mechanical properties of insect cuticle. Arthropod Structure & Development, 33, 187-199. https://doi.org/10.1016/j.asd.2004.05.006. Xiao, G., Ying, S. H., Zheng, P., Wang, Z. L., Zhang, S., Xia, X. Q., Shang, Y., St. Leger, R .J., Zhao, G. P., Wang, C., & Feng, M. G. (2012). Genomic perspective on the evolution of fungal entomopathogenecity in Beauveria bassiana. Scientific Reports, 2(483) 1-10. doi: 10.1038/srep00483. Zhang, L.W., Liu, Y. J., Yao, J., Wang, B., Huang, B., Li, Z. Z., Fan, M. Z., & Sun, J. H. (2011). Evaluation of Beauveria bassiana (Hyphomycetes) isolates as potential agents for control of Dendroctonus valens. Insect Science, 18(2), 209-216. DOI: 10.1111/j.1744-7917.2010.01361.x. Zhang, S., Widemann, E., Bernard, G., Lesot, A., Pinot, F., Pedrini, N., & Keyhani, N.O. (2012). CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. Journal of Biological Chemistry, 287, 13477-1386. DOI: 10.1074/jbc.M111.338947 Zhang, Z., Zheng, C., Keyhani, N., Gao, Y., & Wang, J. (2021). Infection of the Western Flower thrips, frankliniella occidentalis, by the insect pathogenic fungus Beauveria bassiana. Agronomy, 11, 1910. https://doi.org/10.3390/agronomy11101910. | ||
آمار تعداد مشاهده مقاله: 308 تعداد دریافت فایل اصل مقاله: 340 |