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Although theories over portfolio speculation have made 

remarkable progress so far, the performance of its proposed 

portfolios depends mainly on the degree of accuracy in predicting 

future stocks prices dynamics. This study focuses on improving 

the performance of optimal stock portfolios by modeling 

unprecedentedly the stocks prices dynamics through a time-

inconsistent multivariate diffusion specification with a drift 

vector. To this end, the share prices are simulated using a semi-

martingale process with time-inconsistent (local) martingale and 

information drift parts over the entire optimization horizon. Then, 

using the results of price simulation, we have looked into its 

consequences for constructing the portfolio of assets in the Sharpe 

ratio maximization method and mean-variance analysis 

framework. Findings indicate that for the stock market under 

study (Tehran) within the trading dates spanning the interval 24-

Mar-2001 to 19-Sep-2020, return and risk (standard deviation) of 

the portfolios obtained from applying this simulation scheme for 

mean-variance analysis and maximization of Sharpe ratio are both 

respectively higher and lower than those realized by the 

conventional methods. Additionally, a comparison of the 

simulation approach with the performance of the actual market 

portfolios indicates that the Sharpe ratios of the simulation method 

are higher than those resulting from the market portfolios. 
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1. Introduction 
The optimal portfolio selection theory has always been one of the main 

concerns in financial engineering. Many scholars developed various methods to 

improve portfolio optimization efficiency. One of the core approaches in the field 

is mean-variance analysis, in which Markowitz made significant progress 

(Markowitz, 1952, 1959). Markowitz suggests that to constitute an optimal 

portfolio, one should include stocks' returns by the mean of returns, stocks' risks 

by the standard deviation of stocks' returns, and the stocks' returns Co-movements 

in the form of covariance. Based on this, the return and risk of the portfolio can 

be obtained considering the weights of each stock in the portfolio. Finally, this 

method considers the relationship between risk and return to acquire the optimal 

portfolio. 

One of the limitations of the mean-variance method is the sensitivity of 

portfolios. Portfolio sensitivity means that portfolio performance massively 

depends on the returns and risk of portfolio inputs. If the returns or risks of 

portfolio stocks change even slightly, the subsequent optimal portfolio will be so 

different. Therefore, the accuracy of predicting stocks' returns and risks plays a 

crucial role in portfolio selection and performance. The mean-variance method 

exploits the ex-post stocks information to construct the optimal portfolio; namely, 

the average rate of returns as the portfolio expected rate of returns and the actual 

standard deviation of the rate of returns as the portfolio predicted risks. In other 

words, the underlying assumption is that the stocks' prices behave precisely as in 

the past. However, not surprisingly, the real-world experiences show that this 

method has a significant estimation error. Since introducing this method, several 

studies have been conducted to overcome this shortcoming and modify and 

improve the results. The primary purpose of this study is to increase the prediction 

robustness of stocks' prices dynamics and provide more robust portfolios for 

different investment horizons (Kim & Fabozzi, 2015). 

In addition, one of the fundamental weaknesses of the mean-variance method 

is that it doesn't include the stochastic part of the stocks' prices behavior. Bachelor 

first identified stochastic behavior of stock prices, and since then, many 

researchers have tried to model it (Bachelor, 1900; Muteba Mwamba & Suteni, 

2010). Many scholars utilize stochastic differential equations to comprise 

stochastic behavior in stocks prices simulations. One of the significant studies in 

this field is the study of Black and Scholes (Black & Scholes, 1973), which used 

Brownian geometric motion (GBM) to simulate prices. This method assumes that 

the variables under study are always positive, consistent with stock prices. On the 

other hand, it considers the stochastic part of stock prices in the simulation. This 

study initially employs a time-inconsistent Multidimensional Geometric 

Brownian Motion (MGBM) specification, which considers the relationships 

between all stocks' prices to simulate each stock price dynamics. This way, we 

would be able to, one way or another, enlarge the filtration of stock prices 

dynamics and to make our prime departure from the mainstream literature (e.g., 

Browne, 1997; Hörfelt, 2003; Pemy et al., 2008; Ladde & Wu, 2009; Zhu, 2009; 
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Gulisashvili & Stein, 2010; Yam et al., 2012; Mota & Esquível, 2016; Reddy & 

Clinton, 2016; de Oliveira et al., 2017; Lu et al., 2017; Tie et al., 2018). 

The mean-variance method would offer numerous portfolios at any time, 

ranging from risk-free to maximum risk ones. As a result, a single portfolio is not 

necessarily obtained as the optimal one. Thus, one needs a criterion to single out 

among many. The Sharpe ratio (Sharpe, 1966, 1994), defined as the amount of 

excess return relative to a risk-free asset per unit of risk, has usually served as one. 

Though market researchers and analysts have tried many alternative models to 

investigate the performance of stock portfolios, the Sharpe ratio is still one of the 

most popular ratios in ranking portfolios (Kourtis, 2016). 

Another problem is that the mean-variance method for a given period and a 

certain number of stocks offers countless optimal portfolios defined at different 

risk levels. Therefore, this method does not provide a single portfolio as the 

optimal one. We use Sharpe ratio maximization to solve this problem, a prevalent 

practice in determining the optimal portfolio. The Sharpe ratio is defined as excess 

return relative to a risk-free asset per unit of risk. We use the constrained quadratic 

programming method to obtain the maximum Sharpe ratio, a subset of the 

nonlinear programming method. 

In this paper, the results of the conventional method and the simulation 

method using the time-inconsistent MGBM specification and the Sharpe ratio 

maximization method for a large number of stocks (808 stock symbols) in a 

relatively long period (nearly 20 years), as well as different investment horizons 

and implications of the following enriched information are presented. Therefore, 

one of the features of our paper is the scale and comprehensiveness of the 

research. Also, the study period is divided into smaller investment periods, and 

the stocks' prices are predicted for later periods, and their results are presented in 

tables and graphs. This enables us to evaluate somewhat the predictive power and 

performance of the conventional method and our proposed method in different 

investment horizons and volume of the information. 

Although there are many studies in the literature on the mean-variance 

analysis, Sharpe ratio maximization, GBM, and MGBM methods, to our best 

knowledge, there is no endeavor towards modeling the stock prices by a time-

inconsistent MGBM specification to find the Sharpe-ratio maximizing portfolio. 

Therefore, we try to present the most relevant and closest part of the existing 

literature to our study in the following. 

The rest of the paper has been structured as follows: Section 2 and 3 

respectively provide a review of the related literature and a brief overview of the 

pursued methodology and its background. Section 4 outlines the employed data 

and significant characteristics of the Tehran Stock Exchange (TSE). Section 5 

presents the results and their distinct features. Section 5 concludes. 

 

2. Literature Review 
To provide some relevant literature, one may refer to Merton's portfolio 

model (Merton, 1971), which selects the optimal intertemporal portfolio of 
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stock(s) and bond (as a riskless asset) by maximizing the expected utility. This 

model typically uses a GBM or MGBM to simulate risky assets (stocks). In 

general, in this model, the utility function is converted to a value function that is 

a continuous version of the HJB equation, which usually needs to be solved 

numerically. Significantly when several state variables rise, the time required for 

a numerical solution increases exponentially; in other words, this model has a 

dimensionality problem (Weiner, 2004; Lakner & Ma Nygren, 2006; Chellathurai 

& Draviam, 2007; Back, 2010; Buckley et al., 2012; Castellano & Cerqueti, 2012; 

Tourin & Yan, 2013; Pun & Wong, 2016; Biagini & Pınar, 2017; Mariani et al., 

2019). The fundamental difference between the Merton portfolio model and our 

study is that the households maximize the expected lifetime utility in Merton's 

model. Therefore, the portfolio is optimized for a lifetime. In our model, the long-

term period is divided into shorter periods according to the selected investment 

horizon, and the optimization is done separately in each period. In addition, the 

Merton method is performed on a limited number of stocks due to the curse of 

dimensionality, whereas our approach would allow us to bypass this issue 

somehow. Another group of studies on the Makowitz mean-variance problem uses 

the GBM to simulate stock prices (Xie, 2009; Muteba Mwamba & Suteni, 2010; 

Spinu, 2015; Abensur et al., 2020). The main difference between our study and 

this group of studies places the use of the time-inconsistent MGBM specification 

in the Sharpe ratio maximization as the reward function for many stocks. 

The other group solves the problem of constituting an optimal stock portfolio 

using the utility function maximization under the Markowitz mean-variance 

criterion. This group uses MGBM to model stock prices. But in the numerical 

solution of the model, they use one stock that converts the model to GBM (Xie et 

al., 2008; Zeng & Li, 2011; Wei & Wang, 2017). One research does the same 

thing but uses three stocks in model simulation (Yunita et al., 2015). Pedersen and 

Peskir (Pedersen & Peskir, 2017) study the dynamics of a nonlinear mean-

variance optimal control problem that uses the MGBM model to model risky stock 

prices. The approach of these studies is mainly Analytical. The two studies tried 

to improve the performance of portfolios focusing only on different risk measures. 

In their models, share prices follow MGBM, too (Dmitrašinović & Ware, 2006; 

Gambrah & Pirvu, 2014). One exciting piece of research that focuses on the 

shortcoming of the mean-variance model predicts stocks prices by a hybrid model 

based on machine learning, then selects stocks with higher potential returns for 

mean-variance portfolio optimization (Chen et al., 2021). None of those 

mentioned above strands of literature share the same trading strategy offered in 

this paper. 

Starting from the influential study by Beasley et al. (2003), a branch of 

portfolio optimization is the enhanced indexation approach that tries to find 

portfolio outperforming a given index (Beasley et al., 2003; Canakgoz & Beasley, 

2008; Roman et al., 2013; Xu et al., 2018; Chen et al., 2019; Li et al., 2021). 
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3. The Methodology & Background 
The optimal stock portfolio detection regularly involves using equity data in 

its raw format. Instead, this paper offers a simulation of share prices by the 

MGBM process and then uses the result to obtain the Sharpe-ratio maximizing 

portfolio. Next, the resulting portfolio will be compared with the conventional 

method. 

 

3.1 Multidimensional Geometric Brownian Motion 
To simulate the price of market shares, we use multidimensional geometric 

Brownian motion, in which case the correlation between the returns of all shares 

is considered in the simulation. For this purpose, we consider the following 

stochastic differential equations system. 

𝑑𝑋𝑡 = 𝜇𝑡𝑋𝑡𝑑𝑡 + 𝐴(𝑋𝑡)Σ𝑡𝑑𝐵𝑡       (1) 

Where 𝑑𝑋𝑡, 𝜇𝑡, 𝑋𝑡 , 𝐴(𝑋𝑡), Σ𝑡 and 𝐵𝑡 are respectively 𝑛 × 1 vector of the 

differential processes, 𝑛 × 𝑛 matrix of expected returns (the drift parameter), 𝑛 ×
1 state vector of the random process variables, a square matrix of order 𝑛 whose 

primary diagonal values are the same as the elements of the 𝑋𝑡  and the other values 

are zero, a square matrix of order 𝑛 that the primary diagonal values are standard 

deviation of the random variables and other off-diagonal elements represent the 

covariance between the variables, and 𝑛 × 1 vector of one-dimensional 

independent Brownian motion. To solve system (1), we need Ito's formula. For 

simplicity, we show the solution of one process; other processes follow the same 

solution. 

 

3.2 Ito's Formula 

If 𝑋𝑖𝑡  is an Ito process such that 𝑑𝑋𝑖𝑡 = 𝜇𝑖𝑋𝑖𝑡𝑑𝑡 + 𝑋𝑖𝑡 ∑ 𝜎𝑖𝑗𝑑𝐵𝑗𝑡
𝑛
𝑗=1  and 

𝑓: 𝑅2 → 𝑅 is a twice continuously differentiable function, then 𝑌𝑖𝑡 = 𝑓(𝑋𝑖𝑡) is 

also an Ito process, and we have 

𝑑𝑌𝑖𝑡 = 𝑓𝑥(𝑋𝑖𝑡)𝑑𝑋𝑖𝑡 +
1

2
𝑓𝑥𝑥(𝑋𝑖𝑡)(𝑑𝑋𝑖𝑡)2        (2) 

If 𝑌𝑖𝑡 = 𝑙𝑛 𝑋𝑖𝑡 , using the stochastic differential equations system (1) and Ito's 

formula for 𝑖 ∈ [1, 𝑛] we have 

𝑋𝑖𝑡 = 𝑋𝑖0𝑒𝑥𝑝 [(𝜇𝑖 −
1

2
∑ 𝜎𝑖𝑗

2𝑛
𝑗=1 ) 𝑡 + ∑ 𝜎𝑖𝑗𝐵𝑗𝑡

𝑛
𝑗=1 ]                       (3)  

Equation (3) defines 𝑋𝑖𝑡  as a geometric Brownian motion process (Duffie, 

2001) (Glasserman, 2013). 

Where 𝑋𝑖0, 𝜇𝑖, 𝜎𝑖𝑗 and 𝐵𝑗𝑡 are the last observation of 𝑖-th stock price (where 

the future price simulation begins), the drift parameter obtained from the realized 

(ex-post) mean of the 𝑖-th stock price, the standard deviation of the 𝑖-th stock price 

if 𝑖 = 𝑗 and the covariance between the two stocks if 𝑖 ≠ 𝑗 and the 𝑗-th Brownian 

motion at the time 𝑡. 

Brownian motion is a Gaussian Markov process with stationary independent 

Increments (Duffie, 2001) and geometric Brownian motion is an exponentiated 

Brownian motion. Although ordinary Brownian motion can take negative values, 

which is an undesirable feature for stock prices simulation, as prices cannot be 
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negative, geometric Brownian motion always takes positive values as it is an 

exponential function. The advantage of the MGBM model over the GBM is that 

in the MGBM model, the correlation between all stocks prices is taken into 

account in the simulation of the prices of each stock price. Consequently, due to 

the large number of stocks studied in this paper, much more information than the 

GBM model is included to simulate the prices (Glasserman, 2003). 

 

3.3 Portfolio Optimization 
This section explains how an investor builds the optimal stock portfolio by 

maximizing the Sharpe ratio. To form the Sharpe ratio problem, we use Back 

(2010) assumptions and settings: Our market is composed of a riskless asset and 

n  stocks (risky assets)1, 𝑟𝑖 is the return on stock i  at time 𝑡 and 𝑟̅ > 0  represents 

the return on riskless asset. 𝑅, 𝐸[𝑅], Σ and 𝐼 are respectively n-dimensional vector 

with 𝑟𝑖  as its i th element, vector of the expected returns, 𝑛 × 𝑛 nonsingular 

covariance matrix, and n-dimensional column vector of ones. Since Σ  is  

nonsingular, all possible portfolios are risky. 𝜔′𝑅 is the portfolio's return, where 

𝜔 is the portfolio's vector of assets' weights. 𝜔′𝜇 and 𝜔′Σ𝜔 are respectively mean 

and variance of the portfolio's return. 

We further assume 𝐼′𝜔 = 1  which guarantees that the portfolio consists of 

only risky assets. In addition, we assume that we have a possible portfolio 𝜔∗ such 

that 𝜇𝜔∗ > 𝑟̅ (Back, 2010).2 To obtain the maximum Sharpe ratio at the time 𝑡, 

we solve the following problem: 

𝑚𝑎𝑥       
𝜔𝑇𝜇−𝑟̅

√𝜔′𝛴𝜔
         (4) 

𝑠. 𝑡.          𝐼′𝜔 =  1 
                𝜇′𝜔∗ > 𝑟̅ 

The numerator and denominator of the model represent the portfolio's risk 

premium (portfolio' return over the risk-free rate) and the square root of the 

variance (risk) of the portfolio's return, respectively. The higher the value of this 

criterion, the higher the return per unit of volatility (risk) (Kourtis, 2016). 

To solve problem (5), we use the constrained quadratic programming 

method, a subset of the nonlinear programming method. The quadratic 

programming method minimizes the objective function, so it must first turn the 

Sharpe ratio maximization problem into the following minimization problem3: 

𝑚𝑖𝑛      𝛾′𝛴𝛾         (5)

    
𝑠. 𝑡.        𝜏 > 0, (𝛾, 𝜏) ∈  𝐻+ 
              (𝜇 − 𝑟̅𝐼)′𝛾 =  1 

                                                
1 These risky assets are in fact the stocks and risk-free asset is bank deposits. 
2 To solve the Sharpe ratio maximization problem with a convex quadratic programming problem, we need 

these two assumptions. 
3 Proof of it and the quadratic programming method to solve this problem are available upon request from 

the authors. 
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Where ),0,0(0,,: 








 HH n




  ℋ is a set of 

feasible portfolios with the properties that 𝐼′𝜔 = 1, ∀𝜔 ∈ ℋ and 𝜇′𝜔 ≥ 𝑟̅, ∃𝜔̂ ∈

𝐻,  𝜏 =  
1

(𝜇−𝑟̅𝐼)′𝜔
  and 𝛾 = 𝜏𝜔 (Cornuejols & Tütüncü, 2006). 

 

4. The Data 
All available data on the price of active symbols in the Tehran Stock 

Exchange within the trading dates spanning the interval 24-Mar-2001 to 19-Sep-

2020 were used to conduct the study. Some symbols, such as mutual funds and 

government securities, were removed from the analysis due to differences in risk 

and return from other symbols. Some other symbols that cannot be invested in, 

such as market indicators and test symbols, were removed from the list. After this 

refinement, 808 symbols remained. In addition, some companies have old and 

new symbols, which increases the number of symbols compared to the actual 

number of active companies. The method used in this research, which is described 

in the missing data section, will lead to the use of the original data and the removal 

of additional symbols. 

There are missing data in the time series of stock prices due to two main ins 

and outs. First, the period under study from 24-Mar-2001 onwards is considered 

the most extended period available. Many companies have entered the capital 

market after this date; thus, there is no data before arrival. Second, corporate 

symbols are often discontinued during their operation for various reasons, 

including extraordinary general meetings. 

There are several ways to manage missing data, including removing and 

estimating data. In the removal method, at each time, if the prices of all shares are 

available, we preserve data. Using this method causes much-lost information and 

extracts an unrealistic portfolio. Another standard method estimates missing data's 

mean and covariance of stock returns. This method is based on two strong 

assumptions. According to the first assumption, each observation is generated 

based on a multivariate normal distribution, and according to the second 

assumption, the data are lost randomly. We should use this method when it is 

impossible to estimate the mean and covariance of stock returns, and it is 

necessary to test the above assumptions beforehand. We employ another method 

that allows the estimation of mean and covariance; thus, do not need to utilize the 

estimation method. 

Since we are looking to evaluate the model's predictive power, we assume 

that the investor stands at the beginning of the period 𝑡 and wants to use the 

information of the last 𝐿 days to obtain an optimal portfolio, then buy these shares 

at the period 𝑡. As a result, the investor's criterion is the availability of price data 

for the shares in a significant number of last 𝐿 days and at the beginning of the 

period (𝑡). Shares that have lost more than 25 percent of their data in the last 𝐿 

few days or are not available at the time 𝑡 (have missing data) will be removed 
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from the list. For each share, initially, we fill missing prices with the last non-

missing value, then with the next non-missing value. We consider zero returns for 

trading suspensions corresponding to reality using this method. In this way, we 

will not have two other methods, i.e., losing information and estimation of 

unrealistic mean and covariance. There are five price data per share (open, last, 

close, highest, and lowest). Because the closing price determines the return on a 

stock at the end of the trading day, and over a period, we use the closing price as 

the criterion for calculating the return. Given the number of available periods is 

4240 trading days for 19.5 years accordingly, every 18 trading days is considered 

a month. The investor's strategy can be summarized as follows: the investor uses 

the price data of, say, the last 216 market days (one calendar year) to estimate and 

purchase an optimal stock portfolio and holds the purchased shares for 18 market 

days (1 calendar month), then at the end of the month, again uses the price data of 

the previous year to estimate and purchase the portfolio and repeats this process 

until the last period.  

We assume that at the beginning of each period, investors sell the previous 

portfolio and purchase a new one, so to calculate the profit of each method, the 

stock trading commission will be deducted from it. Before implementing the new 

law on July 22, 2020, the transaction fee was equal to 1.43 percent, equal to 1.25 

percent after that. 

We consider the annual interest rate on the one-year investment deposits as 

the riskless asset's rate of return. We got the data from the Central Bank of Iran. 

Then we convert this rate to the daily rate using the following formula: 

𝐷𝑅 = (1 +
𝐴𝑅

100
)

1/216

− 1       (6) 

𝐴𝑅 and 𝐷𝑅 are the annual and daily interest rates on the investment deposits, 

respectively. Moreover, we have 216 trading days a year. 

 

5. Empirical Results 
As mentioned earlier, the conventional method of extracting the optimal 

stock portfolio uses raw price data to estimate the mean and covariance of returns, 

estimate the efficient boundary, and maximize the Sharpe ratio. This study 

proposes to simulate the stock price data using a MBGM model; then, we utilize 

the simulated results to determine the optimal portfolio through the Sharpe ratio 

maximization. To evaluate the performance of this method compared to the 

conventional method, the predictive power of the two methods in terms of mean 

and variance has been compared with each other. From now on, we call the 

method of this paper (using the simulated data) as the simulation method and the 

standard method (using the raw data) as the conventional method. 

 

5.1 Comparing the Efficient Frontier of the Two Methods 
To clarify the results of the two methods, Figure (1) plots the efficient 

frontier of the conventional method (with black mesh lines) and simulation 

method (without black mesh lines) for about 18 years (from December 2002 to 
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September 2020) at 18-days intervals.4 The outputs are based on the investors' 

beginning-period price information set for the last 378 days. Also, the results 

reflect one implementation of the method at each period. We have ended up with 

20 optimal investment portfolios for each method at any run.  

As Figure (1) shows, the graph's height represents the years studied. At a 

certain height (for example, 2010), we can examine how much each of the two 

methods has yielded at each level of the portfolio standard deviation. Suppose the 

stocks portfolio in one method has a higher yield at each standard deviation level, 

or similarly, it has a lower standard deviation at each level of return. In that case, 

its graph must be to the left and behind the graph of the other method. According 

to Figure (1), in all years, the graph of the simulation method is to the left and 

behind the graph of the conventional method, which is due to the superiority of 

the simulation method over the conventional one. 

 

 
Figure 1. Mean-variance efficient frontier of conventional method (with black mesh 

lines) and simulation method (without black mesh lines) for 18-year period (December 

2002 to September 2020) at 1-month intervals (18 trading days). 
Source: Research findings 

 
Figure (2) shows a bivariate histogram of conventional (green) and 

                                                
4 Note that for greater clarity these charts are provided for a random lot only. The efficient boundary of the 

two methods separately are available upon request. 
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simulation (blue) methods.5 This diagram illustrates the frequency of efficient 

frontier points. That is, we have looked into 18 years (from December 2002 to 

September 2020) with one-month intervals (18 trading days), and at the beginning 

of each period, price information of the last 378 days has been used. Each period 

took account of 200 optimal portfolios. Overall, we kept in check 43,000 optimal 

portfolios for each method. Each point on the diagram shows how many of the 

43,000 portfolios have their returns and the standard deviations in the same range. 

As the diagram reports, most conventional (green) method portfolios are left of 

the simulation (blue) ones. At each standard deviation level, portfolios' returns of 

the conventional method are less than those of the simulation method. Diagram 

also depicts the points with the highest frequency that for the conventional 

method, we have 699 portfolios with the returns and the standard deviations in the 

range [0.001335 0.001504] and [0.00378 0.00567] respectively and for the 

simulation method 1418 portfolios with the returns and the standard deviations in 

the range [0.0039 0.004575] and [0 0.00257] respectively. 

 

 
Figure 2. Bivariate histogram of conventional (green) and simulation (blue) methods 

for 18-year period (December 2002 to September 2020) at 1-month intervals (18 

trading days). 
Source: Research findings 

 

5.2 Comparing Performance of the Two Methods and the Actual Market 

Portfolio 
This section compares two methods based on return, standard deviation 

                                                
5 The histogram of the two methods separately are available upon request.  
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(risk) and Sharpe ratio. The higher Sharpe ratio, which measures the rate of return 

on a portfolio per unit of taken risk, means that the investment strategy is superior 

in terms of return at each level of taken risk. In other words, it means that the 

investment risk is lower at each level of return. For this purpose and our results to 

be empirically robust, we have considered three different lengths of investment: 

quarterly, semi-annual, and one year. In the quarterly case, the investor constructs 

the optimal stocks portfolio once every three months during the investment period 

of approximately twenty years, particularly at the end of each quarter; he revises 

his constructed portfolio and possibly invests in a new portfolio. In addition, we 

have obtained the results for the various volumes of data used to form the 

portfolio. For this purpose, we have reported the results for 2.5-year, 5-year, and 

10-year data volumes. For example, in the case of 5 years, the investor uses the 

information of the last five years of all stocks understudy to construct the optimal 

portfolio. So in total, we have compared the results for nine different cases. 

In addition, we have compared the results of the conventional and our 

proposed simulation methods with the overall market performance denoted by the 

market portfolio. This comparison helps us get a more concrete sense of how far 

the conventional and the simulation approaches are to the performance of market 

players and to find out how optimally market agents have acted. In what follows, 

we will explain this in more detail. 

To evaluate the performance of the two methods, we assume that the investor 

stands at the beginning of time 𝑡 and, using price information of last 𝐿 days, 

extracts two optimal portfolios by conventional and simulation methods. Then, 

buys these portfolios and keeps them for the next 𝑓 days. On the day 𝑡 + 𝑓, we 

survey the performance of these portfolios. In the next period, which is the 

beginning of the 𝑡 + 𝑓, again, it re-extracts the optimal portfolio using price 

information of last 𝐿 days and keeps it for next 𝑓 days. In the end, we survey the 

performance of these portfolios. This is repeated until the last possible period. 

Here, to show the robustness of the results, we report the model outputs for 

different values of 𝐿 and 𝑓. For this purpose, we chose three values, 54 days (3 

months), 108 days (6 months) and 216 days (1 year) for 𝑓 and three values, 540 

days (2.5 years), 1080 days (5 years) and 2160 days (10 years) for 𝐿. 

First, we consider 𝑓 equal to 216 market days (1 calendar year) and report 

the results of the two methods for different values of 𝐿. Since the simulation 

method is based on multidimensional geometric Brownian motion, a vector of 

random variables is generated to produce the Brownian motion vector in each 

simulation, so the simulation results depend on the generated random vector. For 

this reason, to evaluate the robustness of the results, for each 𝐿 and 𝑓, we 

simulated 1000 times the prices by the MGBM method then extracted the optimal 

stock portfolio using Sharpe ratio maximization. 

In addition to these two methods, we examine the performance of the market. 

The weight of each symbol in the market portfolio is the market capitalization of 

each symbol to the total market capitalization of the whole market (808 symbols 
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studied).6 We assume that the investor obtains the average weights of last 𝐿 and 

𝑓 days as well as the weights of the investment day to constitute the market 

portfolio and buys these three portfolios at the time 𝑡 and maintains them for the 

next 𝑓 days. This process will be repeated until the last possible period. In this 

way, the performance of the market portfolios can be obtained, which is the 

outcome of the activity of the whole market. 

Table 1 reports the investment results of two methods and portfolios offered 

by the market. For different values  𝐿, some of the portfolios' returns of the 

simulation method are significantly higher than the conventional method (results 

of the simulation methods are the average of 1000 times simulations). Also, the 

sum of the standard deviation of the portfolios' returns of the simulation method 

for different values  𝐿 is less than the conventional method, which means investing 

with the simulation method is less risky. The best result of the conventional 

method in terms of return is 30% for 𝐿 = 1080 and the simulation method 185% 

for 𝐿 = 2160. In addition, the best result of the conventional method in terms of 

the sum of standard deviation is 3957% for 𝐿 = 1080 and the simulation method 

2310% for 𝐿 = 2160.  

Also, the average Sharpe ratios7 of the simulation method for all 𝐿 values 

are higher than the Sharpe ratios of other methods and the market portfolios, 

which shows that the simulation method is superior to the conventional method 

and the market portfolios in terms of return per unit of risk. According to the 

Sharpe ratio, the best performance of the conventional method is 0.0108 for 𝐿 =
2160 the simulation method, 0.0557 for 𝐿 = 2160 and market portfolios 0.0446. 

To evaluate the performance of conventional and simulation methods in all 

investment periods, the number of periods in which the Sharpe ratio of the 

simulation method has been higher than the conventional method is reported as a 

percentage of the total number of investment periods in Table I. This percentage 

is always more than 68% for different values  𝐿, which means the Sharpe ratio of 

the simulation method is better than the conventional method. 

 

 

 

 

 

 

 

 

                                                
6 We define the market capitalization of a company as the total company’s outstanding shares times the 

current close price of a single share. 
7 To derive this criterion, first, in each f-days investment period we have calculated the optimal portfolio’s 

Sharpe ratio, then, the average ratio of all periods has been obtained. Using this method, we have only one 

Sharpe ratio for the conventional method, but 1000 ratios for the simulation method. The tables show the 

latter’s average.  
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Table 1. Performance of the two methods for f =216 

Last 𝐿 days used to form the portfolio  540 
(2.5 years) 

1080 
(5 years) 

2160 
(10 years) 

Sum of the portfolios’ returns (%) 

the Conventional method -209.98 30.31 3.4 
the Simulation method – Average of 1000 times 
simulations 

30.39 165.81 185.95 

Sum of standard deviation of the portfolios’ returns (%) 

the Conventional method 4757.4 3957.5 4238.4 
the Simulation method – Average of 1000 times 
simulations 

3645.6 2949.1 2310.4 

Sharpe ratios 

the Conventional method -0.0371 -0.0123 0.0108 
the Simulation method – Average of 1000 times 
simulations 

0.0105 0.0244 0.0557 

The Market Portfolio – Using last 𝐿 Days info. -0.0307 0.0072 0.0446 

The Market Portfolio – Using last 𝑓 Days info. -0.0354 -0.0004 0.0189 

The Market Portfolio – Using investment day 

info. 

-0.0324 0.011 0.0216 

Outperformed periods for the simulation method 
(%) 

68.47 72.83 71.91 

Source: Research findings 
 

Given that the simulation method depends on random variables and changes 

in each model run, we need to examine the results in multiple model runs. For this 

purpose, we produce the results of the simulation method 1000 times and compare 

the results with the conventional one. Figure (3) compares the simulation results 

(MGBM) and the conventional methods for all 1000 simulation trials 𝑓 = 216. 

In all 1000 times simulations, the sum of portfolios' returns, the sum of standard 

deviations, and the average of Sharpe ratios of the simulation method are more, 

less, and more than the conventional method, respectively, which indicates the 

superiority of the simulation method over the conventional method. In addition, 

in each simulation, the number of periods that the simulation method 

outperformed concerning Sharpe ratios is shown as a percentage of the total 

investment periods, which is 998 out of 1000 simulation periods; this measure is 

above 50%, which indicates the simulation method is more efficient than the 

conventional method. The simulation method also outperforms the other L s and 

𝑓 s.8 

 

                                                
8 Detailed simulations results for other Ls and fs are available upon request. 
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Figure 3. The performance of simulation (MGBM) and conventional methods for all 

1000 simulation trials, L = 540   and f = 216. 
Source: Research findings 

 

Table 2 reports the results for 𝑓 = 108 and different values of 𝐿. According 

to these results, the sum of portfolios' returns and the standard deviation of 

portfolios' returns of the simulation method are more and less than those of the 

conventional method. The best result in terms of returns for the conventional 

method is 19.4% with 𝐿 = 2160  and the simulation method (on average) 298.5% 

with 𝐿 = 2160. Moreover, the best result in terms of standard deviation for the 

conventional method is 4108% with 𝐿 = 2160   and the simulation method (on 

average) 2404% with 𝐿 = 2160  . As to the Sharpe ratio, the simulation method 

performed better in all cases. The best performance of the conventional Sharpe 

ratio is 0.0308 for 𝐿 = 2160 the simulation method 0.0898 for 𝐿 = 2160  and 

market portfolios 0.076. Also, the percentage of periods for which the simulation 

method has performed better in terms of Sharpe ratio for all values  is above 70%. 

This outperformance is best achieved 𝐿 = 2160  in 75% of periods. 
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Table 2. Performance of the two methods for f = 108 

Last 𝐿 days used to form the portfolio  540 
(2.5 years) 

1080 
(5 years) 

2160 
(10 years) 

Sum of the portfolios’ returns (%) 

the Conventional method -22.32 6.25 19.48 

the Simulation method – Average of 1000 times 
simulations 

238.69 271.5 298.58 

Sum of standard deviation of the portfolios’ returns (%) 

the Conventional method 4880.8 3359 4108.5 
the Simulation method – Average of 1000 times 
simulations 

3709.9 3015.2 2404.6 

Sharpe ratios 

the Conventional method -0.0102 -0.0123 0.0308 
the Simulation method – Average of 1000 times 
simulations 

0.0476 0.0557 0.0898 

The Market Portfolio – Using last 𝐿 Days info. 0.0019 0.0347 0.076 

The Market Portfolio – Using last 𝑓 Days info. 0.0033 0.0331 0.0511 

The Market Portfolio – Using investment day info. 0.0063 0.0368 0.051 
Outperformed periods for the simulation method 
(%) 

70.49 75.12 71.02 

Source: Research findings 

 

Table 3 reports outputs for 𝑓 = 54 and different values of 𝐿. The sum of 

portfolios' returns, the standard deviation of portfolios' returns, and the Sharpe 

ratios of the simulation method are respectively more, less, and more than those 

of the conventional method. In addition, increasing the last days' data to estimate 

the portfolio, the sum of returns and the sum of standard deviation in both methods 

increased and decreased, respectively. The best efficiency for the conventional 

method is the total return of 45% with 𝐿 = 2160  and for the simulation method 

290% 𝐿 = 2160. Furthermore, the best result in terms of standard deviation for 

the conventional method is 3688% with 𝐿 = 2160  and for the simulation method, 

2297% with 𝐿 = 2160. The best Sharpe ratio for the conventional method is 

0.0458 with 𝐿 = 2160, for the simulation method 0.0921 with 𝐿 = 2160  and for 

market portfolios 0.0595. Sharpe ratio of the simulation method is superior in all 

cases. 
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Table 3. The performance of the two methods for f = 54 

Last 𝐿 days used to form the portfolio  540 
(2.5 years) 

1080 
(5 years) 

2160 
(10 years) 

Sum of the portfolios’ returns (%) 

the Conventional method -82.87 -16.2 45.15 
the Simulation method – Average of 1000 times 
simulations 

237.28 254.91 290.48 

Sum of standard deviation of the portfolios’ returns (%) 

the Conventional method 4439.44 4222.57 3688.17 

the Simulation method – Average of 1000 times 
simulations 

3420.96 2852.91 2297.1 

Sharpe ratios 

the Conventional method -0.005 0.0065 0.0458 
the Simulation method – Average of 1000 times 
simulations 

0.0688 0.0669 0.0921 

The Market Portfolio – Using last 𝐿 Days info. -0.0079 0.0178 0.0595 

The Market Portfolio – Using last 𝑓 Days info. -0.0016 0.0288 0.0422 

The Market Portfolio – Using investment day 
info. 

-0.0013 0.0278 0.0387 

Outperformed periods for the simulation method 
(%) 

63.64 63.8 59.29 

Source: Research findings 

 

Consequently, all of the results for different investment horizons (quarterly, 

six-month and one-year) and different data volumes (2.5, 5, and 10 years) showed 

that the sum of portfolios' returns, the sum of the standard deviation of portfolios' 

returns, and the Sharpe ratios of the simulation method are respectively more, less 

and more than those of the conventional method. Also, in all cases, the simulation 

method has a higher Sharpe ratio than the market portfolio. Therefore, it can be 

said that the simulation method has performed better than market players. In other 

words, market players have not been acted optimally through the investment 

period.  

To study the difference between the two methods over time in terms of 

returns' mean, risk, and Sharpe ratio, we obtained optimization results for 𝐿 =
540  and 𝑓 = 18. The selection of these two numbers makes it possible to 

evaluate the performance of the two methods with monthly accuracy in a long-

term period. For this purpose, we first calculate the difference in returns of the 

two methods in each one month, then accumulate these differences.9 Thus, the 

more this measure increases over time, the greater the advantage of the simulation 

method over the conventional one. As presented in Figure (4), in 205 months 

(from October 2003 to September 2020), this measure has always been positive, 

which indicates the advantage of the simulation method over the conventional 

                                                
9 In other words, the accumulated return per month is equal to the sum of the returns of all months up to the 

month under review, which includes the month under review. Considering that 1000 times simulation has 

been done for the simulation method in each 18-days period, for each period the average return of this 1000 

times has been calculated as the return of the simulation method. 
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method during this period. In addition, this criterion has had an upward trend 

despite various fluctuations throughout the period, which indicates an increase in 

the advantage of the simulation method. 

 

 
Figure 4. Accumulation of the difference between the returns of simulation method 

and conventional method (October 2003 - September 2020). 
Source: Research findings 

 

We have taken the same approach to compare the two methods in terms of 

standard deviation 𝐿 = 540  and 𝑓 = 18. We have accumulated differences in the 

standard deviations of the two methods.10 The more this measure decreases over 

time, the greater the advantage of the simulation method over the conventional 

one in terms of standard deviation (risk). As presented in Figure (5), from October 

2003 to September 2020, the criterion is always negative, which shows the 

advantage of the simulation method over the conventional one. Moreover, from 

October 2003 to April 2013, this criterion has always had a downward trend, 

which shows an increase in the advantage of the simulation method. Although, 

from April 2013 to September 2020, this criterion has had an upward trend but 

remained negative, which indicates the persistence of the simulation method 

outperformance during the entire study period. 

 

                                                
10 Considering that 1000 runs have been made for the simulation method in each 18-days period, for each 

period the average standard deviation of these 1000 times has been calculated as the standard deviation of 

the simulation method. 
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Figure 5. Accumulation of the difference between the standard deviation of simulation 

method and conventional method (October 2003 - September 2020). 
Source: Research findings 

 

Figure (6) plots the performance of two methods in terms of accumulated 

differences in Sharpe ratios during the same period 𝐿 and 𝑓 the previous 

assessments. Enhancement of this criterion over time indicates an increase in the 

advantage of the simulation method concerning both returns and standard 

deviation (Risk) criteria. As Fig. 6 reports, from October 2003 to September 2020, 

this criterion has always been positive, showing the simulation method's 

advantage during the entire study period. In addition, despite the various 

fluctuations, this criterion has always had an upward trend, which indicates an 

increase in the advantage of the simulation method in terms of the Sharpe ratio 

during the period under review. 

 

 
Figure 6. Accumulation of the difference between the sharpe ratios of simulation 

method and conventional method (October 2003 - September 2020). 
Source: Research findings 
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6. Concluding Remarks  
In this paper, we utilized a novel method to perk up the performance of the 

conventional method, informing the optimal investment portfolio. In the 

conventional method, raw data is tapped to form the optimal portfolio. In our 

proposed simulation method, a system of MGBM equations plays a central role 

in optimal portfolio speculation. To assess the robustness of our original findings, 

the actual market portfolios have been thoroughly investigated for the 

corresponding periods too. In doing so, we identified the market portfolios based 

on the market capitalization of each symbol relative to the total market 

capitalization using the information of last 𝐿 and 𝑓 days, along with information 

of the investment day (time 𝑡). As far as Sharpe ratio maximization is concerned, 

the results show that the proposed simulation method performs better than the 

conventional method and actual market portfolios in all cases. 

Further research needs to be undertaken to see if our findings are related to 

the market's fundamental characteristics of the market? And if they can be 

extended to several other selected stock exchange markets in, for instance, 

emerging and developed economies. The latter concern is the subject of our next 

endeavor.   
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