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ARTICLE INFO 

 
ABSTRACT- Infiltration rate is one of the most important parameters used in irrigation 
water management. Direct measurement of infiltration process is laborious, time 
consuming and expensive. Therefore, in this study application of some indirect methods 
such as artificial neural networks (ANNs) for prediction of this phenomenon was 
investigated. Different ANNs structures including two training algorithms (TrainLM and 
TrainBR), two transfer functions (Tansig and Logsig), and different combinations of the 
input variables such as sand, silt, and clay fractions, bulk density (BD), soil organic 
matter (SOM), cumulative infiltration (CI) and elapsed time were used to predict 
sorption coefficient (S) and hydraulic conductivity (A) in Philip equation (I=S*t0.5+A*t), 
which corresponded to 30 soil samples from study areas located in the Agricultural 
College, Shiraz University, (Bajgah). A two-hidden layer ANNs with two and three 
neurons in the hidden layers, respectively and TrainLM algorithm performed the best in 
predicting S when Logsig and Tansig were used. Silt+ clay+ sand+ time+ CI 
combination was the most basic influential variables for the S prediction. Furthermore, a 
two-hidden layer ANNs with two and three neurons in the hidden layers, respectively 
and TrainBR algorithm performed the best in predicting A when Tansig and Tansig were 
used. Silt +clay +sand +BD + OM+ time+ CI combination was the most basic influential 
variables for A prediction. Results showed that increasing the hidden layers and input 
variables significantly improved the ANNs performance. The coefficient of 
determination (R2) confirmed that the ANNs predictions for A (84.6 %) fit data better 
than S (77.5 %). 
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INTRODUCTION 

 
 

Water infiltration plays an important role in the 
hydrological cycle. Estimating the quantity of water 
infiltration in soil results in proper irrigation 
management and prevents land, soil and water resources 
degradation. Different physical and empirical models 
are provided to quantify the infiltration process such as 
Philip (1957), Horton (1940), Kostiakov (1932), Holtan 
(1961) and Green and Ampt (1911). These models can 
be classified into three categories, i.e. physical models, 
analytical or semi-empirical models, and purely 
empirical models. In the first group, one can obtain 
parameters just from soil-water characteristics without 
any need to measure the infiltration date (Igbadun et al.,  
2016). The analytical models are based on mathematical 
or graphical analysis and utilize the capacity of steady 
state or asymptomatic infiltration. Empirical methods 
less depend on soil surface assumptions and their profile 
condition. In fact, their evaluation conditions play more 
important roles because their parameters are evaluated 
by real data of field measurement infiltration (Hillel and 
Gardner, 1970). However, some researchers simplified 
the models and verified them well with the experimental 
measurements (Ogbe et al., 2008). 

The important criterion for choosing a model, 
among others, is the simplicity of its parameter 
estimation (Mehrabi and Sepaskhah, 2013). There are 
some coefficients in infiltration models that are 
dependent on the soil conditions. Some experiments and 
calibrations are needed to determine these coefficients 
(Machiwal et al., 2006). Due to rapid spatial variation of 
infiltration characteristics of soils, simulation of these 
variations is difficult and a large number of 
measurements is required. In addition, these 
measurements are time-consuming and expensive, and 
using a mean value for this parameter is not accurate 
(Cosby et al., 1984; Igbadun et al., 2016; Lili, et al., 
2008; Saxton et al., 1986). Using indirect methods to 
measure the infiltration may help to overcome this 
problem. According to the results of most studies, Philip 
(1957) model is the best model to describe the spatial 
characteristics of infiltration in a particular region (Lei 
et al., 1989; Machiwal et al., 2006; Richter, 1989). In 
recent decades, techniques based on the soft computing 
such as artificial neural networks (ANNs) have been 
used greatly to predict and model various problems 
effectively. The most important feature of ANNs is the 
ability to formulate complicated systems without using 
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any correlation (Sablani et al., 1997). Because of this 
feature and the ANNs ability to predict even noisy, 
inconsistent and incompatible systems with acceptable 
accuracy, ANNs have been used widely in agricultural 
engineering problems (Shaalan et al.,  1999). 

Using artificial intelligence system is one of the 
indirect methods to estimate soil hydraulic properties. 
ANNs are part of this system. This method is a 
mathematical structure and simulation of the human 
brain function that is able to show the processes and the 
nonlinearity of the relationship between inputs and 
outputs. The hidden relationships between them are 
found by processing the experimental data. 

Pachepsky et al. (1996) evaluated ANNs 
performance for soil water retention curve estimation. 
Results showed the same performance of ANNs and the 
regression models in soil water retention curve 
estimation. Schaap et al.  (1998) used artificial neural 
networks for estimation of van Genuchten (1980) and 
Gardner (1958) parameters and significant differences 
were observed between the measured and predicted 
values. Minasny and McBratney (2002) conducted 
similar research for van Genuchten parameters 
estimation in Australia. They proposed a new objective 
function for the design of ANNs. Results of this study 
showed that the provided objective function is 
acceptable to improve network performance. Moreover, 
Merdun et al.,  (2006) used pedotransfer functions and 
artificial neural network model to estimate van 
Genuchten (1980) parameters and saturated hydraulic 
conductivity. Results of this study showed that 
estimation of the regression models is more accurate 
than artificial neural network whereas the results were 
not significantly different. Therefore, possibility of 
using the new method, i.e., artificial neural networks, as 
a new option for accurate estimation was proposed. 

Schaap et al., (1998) calibrated the artificial neural 
network to predict soil capacity for holding water and 
saturated hydraulic conductivity by using basic soil 
characteristics. They concluded that increasing the 
number of samples improved prediction of the soil 
capacity for holding water and hydraulic conductivity 
and high accuracy and flexibility was observed for 
ANNs by them. Jain et al. (2004) evaluated the ANNs 
for estimation of soil water retention curve. Results 
showed acceptable performance of the ANNs in 
comparison with other methods.  

Parasuraman et al. (2006) compared the estimated 
saturated hydraulic conductivity by two different 
designs of the ANNs and Rosetta (Parasuraman et al., 
2006). Results showed that the ANNs had better 
performance in comparison with Rosetta to estimate the 
soil saturated hydraulic conductivity.  

Sy (2006) modeled infiltration with multilayer 
perceptron neural network using rainfall data in the 
network. It was observed that neural networks had 
better performance than conventional methods as Philip 

(1957) and Green and Ampt (1911) and the network 
performance was improved by the entrance of new 
variables like rainfall. Furthermore, the artificial neural 
networks were considered as an acceptable model for 
estimating the cumulative infiltration at certain times 
from the beginning of the infiltration process. Holtan 
(1961) evaluated the artificial neural networks to 
calibrate the infiltration equations. Results showed that 
the artificial neural network, especially in situations 
where data are limited, had higher accuracy than 
conventional methods such as curve fitting. 

Moosavi and Sepaskhah (2011) used the ANNs to 
predict the unsaturated hydraulic conductivity at six 
applied tensions and sorptive number at five applied 
tensions. They stated that the input combination of sand, 
clay, silt, bulk density, and organic matter was the best 
influential input variable for predictions of unsaturated 
hydraulic conductivity and sorptive number at almost all 
values of applied tensions. Due to obtaining reliable 
predictions for unsaturated hydraulic conductivity and 
almost for sorptive number, it is recommended that such 
artificial intelligence models be used to predict these 
vital soil hydraulic characteristics (Mehrabi and 
Sepaskhah, 2013). 

Moosavizadeh-Mojarad and Sepaskhah (2011) used 
the ANNs to determine the soil water retention curve. 
Two basic neural network structures were considered, 
including volumetric soil water content prediction and 
soil matric head prediction. Observations showed that 
the ANNs estimated the soil water retention curve by 
acceptable accuracy. Therefore, it was suggested to use 
such artificial intelligence models to predict the soil 
hydraulic properties. 

In a study by Machiwal et al. (2006), the cumulative 
infiltration at specific time steps was predicted by using 
readily available soil data and ANNs. Two types of 
neural networks were prepared. In the first one, the 
basic soil properties of the first upper soil horizon were 
hierarchically used as inputs, and in the second one, 
models were developed while the available soil 
properties of the two upper soil horizons were 
implemented as inputs using principal component 
analysis technique. Results indicated that the first 
networks series had the best performance in estimating 
cumulative infiltration curves at all times. It was 
concluded that the Kostiakov (1932) model performed 
better than other infiltration models. 

The objective of this study was to estimate two-
component Philip equation parameters by ANNs using 
cumulative infiltration measured in double ring 
infiltrameter at different times and other soil parameters 
like percentage of sand, clay, silt, bulk density and 
organic matter. As explained before, though the Philip 
equation parameters can be fitted directly, using ANNs 
can improve the estimation and make the prediction 
more flexible and more intelligent. It also leads to 
predicting the parameters with fewer experimental data.
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MATERIALS AND METHODS 

 

Theory 

Artificial intelligence systems are similar to human 
brain foundation as simulating human thought, 
successful response to events, learning and the ability to 
solve and predict solutions to the problems. These 
networks are able to process information and solutions 
even if input data contain errors or defects (Basheer and 
Hajmeer, 2000). Furthermore, artificial neural networks 
are able to extract relationships between input and 
output of a process without any knowledge of their 
principles. Moreover, they do not require any 
assumptions about the relationship (linear or nonlinear) 
between the input and the output (Jain et al., 2004). 
Although the ANNs has high speed, in fact, they have 
lower ability in comparison with the biological system 
of human brain; therefore, the ANNs development 
requires a longer time (Jain et al., 2004). 

Neurons are the most basic part of the networks like 
the biological nervous system. One neuron is not 
enough to solve or build an ANNs and multiple neurons 
operating in parallel ways are needed. The numbers of 
these neurons, that are called nerve tissues in biological 
neural networks, transmit information and messages 
from one part to another. Each layer consists of a matrix 
of weights and bias, collectors set, boxes of transfer 
functions and output vectors (Hagan et al., 1996). 
Weight is multiplied by neuron’s input and is summed 
with a constant value that is called bias; afterwards, the 
net input is entered to the function that is called transfer 
function, by which the net input is converted to the 
output. Finally, the output neuron is obtained. Weights 
and biases are variable parameters that improve 
performance of ANN. All these neurons and layers can 
be connected in different ways that produce different 
structures of artificial neural networks.  

All artificial neural networks have the same building. 
They are formed by three layers including an input layer, 
middle or hidden layers and the output layer. The input 
layer is the first layer of the network. Basic information 
and data are transferred through this layer. The number 
of neurons in this layer depends on the parameters that 
are entered to the network. Trial and error is the best 
way to determine the optimal number of entries (Zhang 
et al., 1998). The last layer in the network, which 
produces the final output, is named the output layer. The 
numbers of neurons in the output layer depend on the 
nature of the problem, but researchers often use one 
neuron in the output layer in most cases (Graupe, 2013; 
Kim, 2017). When more than one neuron is used in the 
output layer, the network error should be minimized for 
all outputs and this action reduces the prediction 
accuracy and network performance. Therefore, it is 
better to consider a separate network for each prediction. 
The layers between input layer and output layer are 
hidden or middle layers. A common method for 
determining the optimal number of hidden layer neurons 
is trial and error (Zhang and Hu, 1998). Two-layer or 
three-layer networks are used in most cases and often 
the network with more layers will not improve network 
performance (Hagan et al., 1996). Increasing the  

 
 
 

number of hidden layers enhances the computing and 
training time, and also causes overfitting problems. 
Although networks with more hidden layers are likely to 
act stronger and two-hidden layers showed better results 
in some cases, one-hidden layer is preferred in most 
prediction issues (Gioqinang Zhang and Hu, 1998). 

Feedforward Multi-Layer Perceptron (MLP) 
networks are one of the most important neural networks 
structures. The network signals are forwarded from 
input to output and there is no feedback on the network. 
The output of each layer has no effect on the layer itself 
and it will be the input for the next layer; then, the next 
layers produce their output consecutively to reach the 
last output layer and the final output is achieved (Hagan 
et al., 1996). The number of neurons for input and 
output layers is determined by the nature of the 
problems, but designers specify the number of hidden 
layers and neurons by trial and error in order to reduce 
the error value. One hidden layer is usually selected in 
perceptron network because hidden layers are not 
directly related to output; layers changes do not affect 
weight adjustment significantly (Noori et al., 2010). 

The most common training algorithm for artificial 
neural network is back propagation algorithm that is 
based on error correcting learning rule and subset of 
supervised training methods. Due to the fast 
convergence, among different methods of back 
propagation training algorithm, Levenberg - Marquardt 
(TrainLM) is usually selected for networks training 
(Ghobadian et al., 2009; Hagan et al., 1996; Ibn 
Ibrahimy et al., 2013; Sharma et al., 2016). In addition, 
the modified Levenberg - Marquardt algorithm, named 
Bayesian Regularization (BR), is used for training 
networks. 

 
Methods 

Measurement 

In this study, required data were obtained from Mehrabi 
and Sepaskhah (2013). They measured cumulative 
infiltration in different soils in Agriculture College of 
Shiraz University farmlands, located at 16 km northeast 
of Shiraz in Bajgah (Longitude (52º38′), latitude (29º46′) 
and 1810 m above mean sea level). Infiltration rate and 
cumulative infiltration were measured by Mehrabi and 
Sepaskhah (2013) using double ring method in 30 
different locations selected randomly in the area (Figure 
1). The textures of experimental locations are provided 
in Table 1. Geographical coordinates (UTM) of these 
points were recorded by GPS device. 
 
Table 1. Soil texture of experimental locations 

Experimental locations Soil texture 

1-7 Clay Loam 
8-9 Loam 
10-25 Clay Loam 
26 Loam 
27-30 Clay Loam 
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As aforementioned, the Philip model is the best 
model to describe the spatial characteristics of 
infiltration; therefore, Mehrabi and Sepaskhah (2013) 
calculated the parameters of Philip equation [Eq. (1)]; 
sorption coefficient (S) and hydraulic conductivity (A), 
using least squares (Solver) method for each infiltration 
test by Excel software. 

AtSttI  2/1)(  (1) 

Where, t is the time in (min), S is the sorption 
coefficient in (cm/min-0.5), A is the hydraulic 
conductivity in (cm/min) and I is the cumulative 
infiltration in (cm). 

It should be noted that the values of A were negative 
in five locations (1, 3, 5, 6 and 30) that could be due to 
errors resulted from using only two terms of the Philip 
(1957) analytic solution, or because of the soil 
heterogeneity or non-uniformity of soil moisture in the 
lower soil depth. These reasons can be seen clearly in 
the experimental locations of 1 and 30, because the 
initial infiltration rate was much higher than other 
elapsed times due to the fact that the soil moisture was 
higher in lower soil depth. They used multivariate 
regression and solved the (A) and (S) equations to fix 
this problem. Therefore, the Philip parameters values 
were modified before being used by Mehrabi and 
Sepaskhah (2013). Other required soil physical 
properties were measured by the authors in the current 
study as follows: sand, silt and clay fractions by the 

hydrometer method (Gee and Bauder, 1986); soil 
organic matter (SOM) by the wet oxidation method 
(Nelson and Sommers, 1996) and bulk density (BD) by 
the core method (Blake and Hartge, 1986). Both 
disturbed and undisturbed samples were taken at a depth 
of 0–20 cm in each experimental location in the current 
study. 

 
Artificial Neural Network Modeling 

Afterward, a program was written as m file in MATLAB 
R2011a (7.12.0.635) to design ANN for estimation and 
simulation of the parameters of the Philip equation. In 
order to design and train a neural network, data should be 
divided to two different sets, training samples and test 
samples. This data fragmentation is essential for network 
design (Zhang et al., 1998). Both training data set and test 
data set were randomly selected from total number of 
available data. Training sample is a set of inputs and 
outputs of the network that is used to train network for a 
specific task. Test sample does not interfere in the network 
during the training process but is used to determine and 
draw error and check network performance after training. 
As the number of samples increased, the network 
performance improved (Zhang et al., 1998). The total 
number of measurements in 30 experimental locations is 
516, of which 356 (80 percent) were used in the training 
phase and 160 (about 20%) were used in the test phase. 
 

 

 

Fig. 1. The view of the area and measurement locations. 
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Network accuracy and speed is reduced by importing 
raw data to the network. Therefore, input and output data 
should be in the range of the transfer function to increase 
network training efficiency and maintain data uniformity. 
Therefore, Preprocessed (data normalization), which is 
usually done before training network, means applying 
some changes in the inputs and outputs of the network to 
locate them in a specific range. After the training process 
finished and the results turned out, the network output was 
converted to its original form, which is called post-
processing. According to previous studies, data 
normalization should be done so that the data are close to 
0.5 (Kumar et al., 2002). Therefore, a program was 
developed in MATLAB R2011a (7.12.0.635) to normalize 
the data linearly before the training process as follows: 
 

b

ax
x n




 
(2) 

where x is the observed value, and xn is the 
normalized observed value, a and b are constants and 
calculated as follows: 

 

'
min

'
max

minmax

xx

xx
b






 

(3) 

min
'
min xbxa   

(4) 

 
where xmin and xmax are the minimum and maximum 

values of data, respectively, x'min  and x'max are the 
minimum and maximum values of the normalized data. 

Furthermore, another program was prepared to 
reverse the pervious action and restore the result into an 
original state. Total inputs for each experimental 
location are infiltration value that are related to each 
elapsed time as the constant input and the percentage of 
sand, silt, clay and organic matter (OM) and bulk 
density (BD) as the variable input (Table 2). Based on 
the input parameters, various networks with different 
input parameters and different structures (variable 
number of neurons and layers) were defined for 
estimating sorption coefficient (S) and hydraulic 
conductivity (A) in Philip equation. Two trainings, 
TrainLM and TrainBR, were used to train the network. 
The most common type of transfer functions are 
sigmoid functions, logarithm- sigmoid and tangent- 
sigmoid that are considerable because of the uniformity 
and non-linear performance (Brown and Chris, 1994). 
After selecting the appropriate algorithm, the transfer 
function of each layer, the number of hidden layers, the 
number of neurons needed for each layer and other 
parameters were provided to the network. After network 
training was finished, the test data set was used in the 
network for evaluating the results. 

 

Accuracy Analysis  

Ultimately, the network was evaluated with statistical 
parameters, Normalized Root Mean Square Error 
(NRMSE), Mean Absolute Error (MAE), index of 
agreement (d) and the coefficient of determination R2 as 
follows: 
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(7) 

 
Where A(or)S  is the simulated value of  A(or)S   by 
ANNs; A(or)S   is the observed value of  A(or)S   and n 
is the number of observations. 
 

RESULTS AND DISCUSSION 

 
Different ANN structures and input combination and 
specific scenarios were considered and after several trial 
and errors, the best combination of input parameters and 
the best structure of the neural network were chosen. 
Try and error method and selecting criteria were 
described in previous sections. Thereafter, the Philip 
equation parameters were estimated by including and 
excluding the cumulative infiltration and elapsed time in 
input combinations. The lowest values of NRMSE and 
MAE and the maximum values of d and R2 are shown in 
Tables 3, 4, 5, 6 for different ANNs’ input combinations. 
Afterwards, the comparison of the measured and 
estimated values and their linear relationships are shown 
in figs. 2 and 3 

Determination of the Optimal Number of Hidden 

Layers for the Network 

All available inputs (elapsed time and cumulative 
infiltration, percentage of sand, silt, clay, organic matter, 
and bulk density) were used to determine the optimal 
number of hidden layers. Therefore, the neural networks 
with one, two and three hidden layers were designed to 
estimate S and A.  

The optimal mode was selected by trial and error. 
Comparison of the results in Table 3 indicated that S 
was estimated with relatively higher accuracy by ANNs 
with three hidden layers than the networks with one or 
two hidden layers; however, different results observed 
for A estimation and ANNs with three hidden layers had 
poor accuracy. Also, as a general principle in artificial 
neural networks, when the simpler networks that 
adequately represent the learning data are available, the 
complex networks are not preferred. In addition, the 
numbers of neurons are significantly increased in the 
neural networks with three hidden layers compared with 
one and two hidden layers networks. This event not only 
caused network complexity, but also made difficulty in 
the network generalization. Networks should be trained 
so that the prediction is done correctly; in other words, 
it should not be over-trained by the learning data. This 
situation occurs when a large number of neurons in the 
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hidden layer is selected. On this basis, neural networks 
with two hidden layers were preferably selected and 
they were considered for other models with different 
inputs and special scenarios (Fig. 2). 

 

 

 

 

Table 2. Different ANNs’ input combinations 

Output parameter Input parameters Name of ANN 
 
 
Hydraulic conductivity (A) 

Sand%, Silt%, Clay%, BD*, OM**, T***, CI**** ANNA
1 

Sand%, Silt%, Clay%, OM, T, CI ANNA
2 

Sand%, Silt%, Clay%, BD, T, CI ANNA
3 

Sand%, Silt%, Clay%, T, CI ANNA
4 

BD, OM, T, CI ANNA
5 

 
 

Sorptivity (S) 

Sand%, Silt%, Clay%, BD, OM, T, CI ANNS
1 

Sand%, Silt%, Clay%, OM, T, CI ANNS
2 

Sand%, Silt%, Clay%, BD, T, CI ANNS
3 

Sand%, Silt%, Clay%, T, CI ANNS
4 

BD, OM, T, CI ANNS
5 

* Bulk Density    ** Organic Matter   *** Time    **** Cumulative Infiltration 
 
 

 

 
Table 3. Optimal results of different ANNs’ structures for determining the number of hidden layers 

Inputs Outputs 
Number 
of hidden 
layers 

Number 
of 
neurons 

Transfer 
function 

Training 
algorithm 

Step R2 NRMSE MAE d 

 
 
 
 
 

Sand% 
Silt% 

Clay% 
 BD 

OM T 
CI 

 
 
S 

1 1 Tansig BR 
Train 0.560 0.304 0.162 0.684 
Ttest 0.622 0.281 0.153 0.742 

2 2-3 
Tansig-
tansig 

BR 
Train 0.685 0.328 0.170 0.714 
Test 0.676 0.324 0.167 0.719 

3 10-11-10 
Logsig-logsig-
tansig 

 LM 
Train 0.992 0.005 0.002 0.998 
Test 0.812 0.395 0.173 0.828 

 
 
A 

1  2 Llogsig BR 
Ttrain 0.805 0.371 0.024 0.875 

Test 0.827 0.389 0.025 0.867 

2 2-3 
Tansig-
tansig 

BR 
Train 0.820 0.344 0.021 0.905 
Test 0.846 0.392 0.024 0.882 

3 8-10-10 
Tansig-logsig-
tansig 

LM 
Train 0.994 0.019 0.002 0.999 

Test 0.816 0.554 0.077 0.882 

 

 

Table 4. Optimal results of different ANNs’ input combinations 

 Outputs Iinputs 
Number of 
hidden 
layers 

Number 
of neurons 

Transfer 
function 

Training 
algorithm 

Step R2 NRMSE MAE D 

S 
Sand% 

Silt% Clay% 
CI 

2 2-3 
Logsig-
tansig 

LM S 
 
Train 

0.808 0.214 0.097 

Test 0.775 0.269 0.144 
 
A 

Sand% Silt% 
Clay% BD 
OM T CI 

 
2 

 
2-3 

Tansig-
tansig 

 
BR 

 
A 

 
Train 

0.820 0.344 0.021 

Test 0.846 0.392 0.024 

 

Table 5. Optimal results of different ANNs by excluding the infiltration and elapsed time from input combinations 

 Outputs      Inputs 
Number of 
hidden 
layers 

Number 
of neurons 

Transfer 
function 

Training 
algorithm 

Step R2 NRMSE MAE D 

S 
Sand% Silt% 
Clay% BD 

OM 
2 7-10 

Logsig-
tansig 

 
LM 

Train 0.994 0.054 0.022 0.996 

Test 0.706 0.444 0.143 0.956 

 
A 

Sand% Silt% 
Clay% BD 

OM 

 
2 

 
9-11 

Tansig-
logsig 

 
LM 

Train 0.989 0.125 0.013 0.994 

Test 0.609 0.887 0.085 0.739 
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Table 6. Optimal results of different ANNs by excluding the infiltration and elapsed time from input combinations 

Outputs Inputs 
Number of 
idden 
layers 

Number of 
neurons 

Transfer 
function 

Training 
algorithm 

 Step R2  NRMSE MAE D 

 

S&A 

 

Sand% 

Silt% 

Clay% 

BD OM T 
CI 

 

2 

 

10-12 

 

tansig-
logsig 

 

BR 

S Train 0.997 0.001 0.002 0.997 

Test 0.612 0.370 0.205 0.749 

A Train 0.988 0.010 0.003 0.992 

Test 0.253 0.850 0.091 0.465 

 

 

 

Fig. 2. Relationship between the predicted value of (a) 
sorption coefficient (b) hydraulic conductivity and the 
measured values by two hidden layers network with 
the input combination including elapsed time and 
cumulative infiltration, percentage of sand, silt, clay, 
organic matter, and bulk density 

 

Determination of the Optimal Input Combination 

for the Network 

Based on the mentioned factors, the artificial neural 
network with two hidden layers was chosen; then, 
various types of training algorithms and transfer 
functions, and different numbers of neurons were used 
to design the networks. It should be noted that since no 
other correlations were used in the current research, it is 
preferred to study the effect of each parameter 
individually on the performance of the network to 
increase the accuracy of the study. Therefore, various 
combinations of the input parameters were tested. The 
best network structure and input combinations for S 
estimation were achieved when the percentage of sand, 
silt, clay, elapsed time and cumulative infiltration were 
used as inputs. Furthermore, this model with 5-2-3-1 
neuron structure, the logarithm sigmoid (log-sig) as 
transfer function for the first hidden layer and tangent 
sigmoid (tan-sig) as transfer function for the second 
hidden layer, and Levenberg-Marquardt algorithm as 
training algorithm showed the closest result to the 
measured data (Table 4). The regression equations for 
the relationship between the predicted and measured 
output for testing and training stages, derived from the 
best choice of neural network, are given in Figure 3a. 
The best network structure and input combinations for 
A estimation were achieved when the percentage of 
sand, silt, clay, bulk density, organic matter, elapsed 
time and cumulative infiltrations were used as inputs. 
Furthermore, this model with 7-2-3-1 neuron structure, 
the tangent sigmoid (tan-sig) as transfer function for 
both hidden layers, and Bayesian Regularization 
(TrainBR)  as training algorithm showed the closest 
result to the measured data (Table 4). The regression 
equations for the relationship between the predicted and 
measured output for testing and training stages, derived 
from the best choice of neural network, are given in Fig. 
3b. 
 
Estimation of Philip Equation Parameters by 

Excluding the Cumulative Infiltration and Elapsed 

Time from Input Combinations 

All of the available inputs including the elapsed time 
and cumulative infiltration, percentage of sand, silt, clay, 
organic matter, and bulk density were used in networks 
in the previous results. 
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Fig. 3. Relationship between the predicted value and the 

measured values for optimal result by two hidden 
layers network for(a) sorption coefficient with the 
input combination including elapsed time and 
cumulative infiltration, percentage of sand, silt and 
clay (b) hydraulic conductivity with the input 
combination including elapsed time and cumulative 
infiltration, percentage of sand, silt, clay, organic 
matter, and bulk density 

 
 

The total number of data was 516 for these 
combinations of inputs in 30 experimental locations; 
however, it was reduced to 30 by excluding the elapsed 
time and cumulative infiltration from the input 
combination. Therefore, the total numbers of data were 
30 for 30 locations in the new scenario. The best 
network structure for inputs combination including 
percentage of sand, silt, clay, organic matter, and bulk 
density for hydraulic conductivity (A) estimation were 
achieved when the tangent sigmoid (tan-sig) was used 
as transfer function for the first hidden layer and 

logarithm sigmoid (log-sig) was used as transfer 
function for the second hidden layer, TRAINLM was 
used as training algorithm with 5-9-11-1 neuron 
structure. 

The best network structure for the same inputs 
combination for sorption coefficient (S) estimation was 
achieved when the logarithm sigmoid (log-sig) was used 
as transfer function for the first hidden layer and tangent 
sigmoid (tan-sig) was used as transfer function for the 
second hidden layer, TrainLM was used  as training 
algorithm with 5-7-10-1 neuron structure (Table 5). 
Learning datasets should be large enough because of 
desirable networks generalization. Therefore, due to 
inadequate data for use in artificial neural network, it 
does not give acceptable results in this part. Almost 
among all studies, the linear transfer function was 
recognized as the best function for output layer in 
different neural network structures, but because of 
inadequate data, tangent- sigmoid transfer function was 
used for the output layer in the acceptable results. 
 
Simultaneous Estimation of the Philip Equation 

Parameters in a Network 

In another case, a network was designed to estimate 
both output i.e., S and A simultaneously by some little 
changes in the program. Soil parameters including the 
elapsed time and cumulative infiltration, percentage of 
sand, silt, clay, organic matter, and bulk density were 
used as inputs. According to the results, the network did 
not estimate S and A with acceptable accuracy (Table 6). 
As the network must accommodate errors with two 
outputs, this method of network design was not 
acceptable. 

 
Comparison between the Measured and Predicted 

Value of Philip Equation  

For further evaluation of the result of neural network, 
the measured and predicted Philip equations in three 
experimental locations were compared (Fig. 4). Results 
showed acceptable agreement between the measured 
and predicted Philip equation. Therefore, it is indicated 
that neural networks are able to estimate the Philip 
equation with high accuracy. 

It should be noted that based on the reported values 
of the statistical parameters, the performance of the 
ANNs is not very excellent. This is because the 
experimental data set used for the training and 
prediction processes are scattered. This makes 
prediction or fitting of the Philip equation parameters 
with higher accuracy impossible. On the other hand, 
estimation of these parameters for the current case study 
based on the curve fitting method showed similar errors 
(Mehrabi and Sepaskhah, 2013). Therefore, ANNs can 
be used successfully to describe the current phenomena 
as illustrated in Fig. 4. In addition, by using the neural 
network, prediction of the parameters does not require 
hard, time-consuming and costly workouts. 

Train
y = 0.9695x + 0.019

R² = 0.8082

Test
y = 1.0042x - 0.1027

R² = 0.775

0

0.4

0.8

1.2

0 0.4 0.8 1.2

M
ea

su
re

d 
so

rp
ti

vi
ty

, S
, (

cm
/m

in
-0

/5
)

Predicted sorptivity, S, (cm/min-0/5)

1:1

Line

Trai

n

Test

Train
y = 1.0677x - 0.0032

R² = 0.8201

Test
y = 0.952x - 0.0098

R² = 0.8467

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

M
ea

su
re

d 
co

nd
uc

ti
vi

ty
, 

A
, 

(c
m

/m
in

)

Predicted conductivity, A, (cm/min)

1

:

1

Li

n

e
T

r

a

i

n



Abrishami and Sepaskhah / Iran Agricultural Research (2019) 38(2) 25-36 

 

33 
 

 

 

 
 
Fig.4. Comparison between the measured and predicted Philip 

infiltration equation for three experimental locations: (a) 
location Num. 8 (b) location Num. 12 (c) location 
Num.23  

 

 

CONCLUSIONS 

 
It is concluded that increasing network inputs and the 
number of hidden layers to two layers improved the 
network performance and showed a significant effect on 
results. The most appropriate artificial neural network 
structure for sorption coefficient (S) estimation is 
ANNS

4 model with five inputs (elapsed time, 
cumulative infiltration, percentage of sand, silt, and 
clay). It has two hidden layers with two neurons in the 
first layer and three neurons in the second one (5-2-3-1). 
Logarithm-sigmoid and tangent-sigmoid are the transfer 
functions for the first and the second hidden layers, 
respectively. The training algorithm is TrainLM. The 
values of R2, NRMSE, MAE and d are 0.775, 0.269, 
0.144, 0.820, respectively in the test stage. Also, the 
most appropriate ANNS structure for hydraulic 
conductivity for A estimation was ANNA

1 model, with 
seven inputs (elapsed time and cumulative infiltration, 
percentage of sand, silt, clay, organic matter, and bulk 
density). It has two hidden layers with two neurons in 
the first layer and three neurons in the second layer (7-
2-3-1). Tangent-sigmoid is the transfer functions for 
both hidden layers. The training algorithm is TrainBR. 
The values of R2, NRMSE, MAE and d are 0.846, 0.392, 
0.024, 0.882, respectively in the test stage. It is 
noteworthy that the network structure with Levenberg-
Marquardt training algorithm and sigmoid transfer 
functions in hidden layers and tangent-sigmoid transfer  
function in the output layer showed the best 
performance when the number of data is less than 
adequate (although it was not acceptable). However, the 
network with Bayesian Regularization (TrainBR) as 
training algorithm and sigmoid transfer functions in 
middle layers and linear transfer function in the output 
layer showed a better result by using an adequate 
number of data. Also, it is observed that the proposed 
network is able to predict only one output (i.e. S or A) 
with good accuracy and it is not acceptable to estimate 
several outputs (i.e. S and A) in a network 
simultaneously. Besides, it was confirmed that using 
ANNs simplifies the prediction process by decreasing 
the number of experimental data needed for the network 
training. 
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