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Abstract– Natural frequency is one of the parameters that represent useful information about the 

dynamic behavior of structures. Controlling this parameter can decrease the probability of damage 

under dynamic loading. Weight optimization on layout and sizing with frequency constraints is a 

well known problem because of its highly non-linear behavior. Improved ray optimization (IRO) 

algorithm is utilized to solve truss layout and sizing optimization with multiple natural frequency 

constraints. This is a multi-agent algorithm and each agent is modeled as a ray of light with a 

location and direction. At each iteration, each light ray approaches a point which is defined based 

on the historically best position of the entire agents and the historically best positions of one agent 

to find the global or near-global optimum solution. To verify the efficiency of the IRO, five well-

known benchmark problems are studied and their results illustrate the ability of the proposed 

algorithm in finding the optimal solution.           

 

Keywords– Improved ray optimization, multiple natural frequency constraints, layout and size optimization, truss 

structures  

 

1. INTRODUCTION 
 

In most of the low frequency vibration problems the response of a structure is a primary function of its 

fundamental frequency and mode shape [1]. This demonstrates that the natural frequencies of a structure 

should be controlled to keep the structural behavior desirable and avoid the resonance phenomenon. 

Mass reduction conflicts with the frequency constraints, especially when they are lower bounded [2]. 

Also, frequency constraints are highly nonlinear, non-convex and implicit with respect to the design 

variables [1]. In this type of optimization problems which involves different design variables under 

complex constraints, local search algorithms are not suitable, and only global search algorithms should be 

used to obtain optimal solutions [3]. Therefore, mathematical programming approaches would be hard to 

apply and time-consuming in these optimization problems. Furthermore, a good starting point is vital for 

these methods to be executed successfully and they may converge to the local optima [4].  

Meta-heuristics solve instances of problems that are believed to be hard in general, by exploring the 

usually large solution search space of these instances. These algorithms achieve this by reducing the 

effective size of the space and by exploring the search space efficiently. Moreover, mataheuristics are 

simple to design and easy to implement, and are very flexible. In recent years, these algorithms have been 

successfully applied to a large variety of structural optimization problems [5-10]. 

One recent addition to meta-heuristic methods is Ray Optimization (RO) [11] that is based on the 

transition of ray from one medium to another from physics. As the light passes through a surface of two 
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certain transparent materials, its path is changed slightly. This phenomenon was formulated by the Snell’s 

law. In RO, by utilizing Snell’s refraction law and a number of random terms, each agent moves in the 

search space to find the global or near-global optimum solution. Kaveh et al. [12] developed Improved 

Ray Optimization (IRO) and it is shown to be competent in structural optimization problems considering 

stresses and displacements as the constraints. The formulation of generating solution vectors and returning 

violated agents to feasible search space is changed in IRO. In this study, IRO is used to solve truss layout 

and sizing optimization with multiple natural frequency constraints. 

The remaining sections of this paper are organized as follows. The proposed method is described in 

Section 2. The optimization design problem is formulated in Section 3. To show the efficiency and 

robustness of the IRO, it is applied to five well-known benchmark problems in Section 4. Finally the paper 

is concluded in Section 5. 

 

2. IMPROVED RAY OPTIMIZATION ALGORITHM 

Recently, a new physics-based optimization algorithm, so-called Ray Optimization (RO), is introduced by 

Kaveh and Khayatazad [11] that uses Snell’s light refraction law. Similar to other multi-agent algorithms, 

RO has a number of agents, each agent being considered as a ray of light. When a light ray passes from a 

lighter medium to a darker medium, the direction of its movement is changed. Inspired by this 

phenomenon, RO is formulated to find a global or near-global optimum solution. To have a simple 

structure and more effective method, Improved Ray Optimization (IRO) algorithm was developed by [12]. 

The solution vectors are generated by new formulations and unlike the RO they have no limitation on the 

number of variables. Furthermore, the procedure which returns the violated agents into feasible search 

space is modified. In the following, the steps of the IRO algorithm are presented and for further clarity the 

corresponding pseudo code is provided in Fig. 1. 

procedure Improved Ray Optimization (IRO) 

Initialize algorithm parameters 

for each agent 

Initial position and velocity are created randomly 

Fitness value is evaluated 

end for 

LBM and GB are updated          /* LBM and GB are local best memory and global best, respectively*/ 

While maximum iterations is not fulfilled 

for each agent  

new_positioni = current_positioni + movement_vectori 

Violated components are regenerated by Eq. (2) 

end for 

LBM and GB are updated 

for each agent  

The direction of movement vector is calculated by Eq. (5) 

The magnitude of movement vector is calculated by Eqs. (9-11) 

end for 

end while 

end procedure 

Fig. 1. Pseudo code of the Improved Ray Optimization algorithm 

 

Step 1. The initial positions of the agents are determined randomly in the search space and the goal 

function is evaluated for each agent. 

Step 2. A memory which saves some or all the best positions as local best memory (LBM) is considered, 

and the position of the best agent is saved as the global best (GB). 

Step 3. The initial movement vectors of agents are stated as: 
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randij .21V   j=1,2,…,n  (1) 

where Vij is the initial movement value of the jth variable for the ith agent. New positions are obtained by 

adding the position of each agent with its movement vector. 

Step 4. If any component of an agent violates a boundary, it must be regenerated by the following 

formula: 
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where Xij
k+1

 and Xij
k
 are the refined component and component of the jth variable for the ith agent in 

(k+1)th and kth iteration, respectively. Intij is the intersection point (in case an agent violates a boundary, 

it intersects the boundary at a specified point, because of having a specific movement vector). After 

regenerating all violated components, the goal function is evaluated for each agent and the LBM and GB 

are updated. 

Step 5. Consider the origin as a point which each agent wants to move toward and is specified by 
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where Oi
k
 is the origin of the ith agent for the kth iteration, and ite is the total number of iterations for the 

optimization process. For each agent, LB is a solution vector which is selected randomly from local best 

memory (LBM). Target vector is defined as:  

        ii XO iTv  (4) 

where Tvi and Xi are target vector and current position of the ith agent, respectively. 

Step 6. Direction of the new movement vector is defined by 
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where Vi
k+1 

and Vi
k 

are movement vectors for the ith agent in (k+1)th iteration and kth iteration, 

respectively. Finally, all the Vi
k+1 

vectors should be normalized. 

Step 7. Possibility like Stoch is considered and the magnitude of movement vectors are defined as: 

a. with probability like Stoch, 
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b. with probability like (1–stoch),  
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where Xj,max and Xj,min are the upper and lower bounds for the jth design variable, respectively. d and r are 

constant factors. 

The optimization process is terminated after a fixed number of iterations. If it is not fulfilled each 

movement vector is added to its current position vector and the process of optimization is continued from 

Step 4. 

 

3. STATEMENT OF THE PROBLEM 

In this study, the objective is to minimize the weight of the structure while satisfying some constraints on 

natural frequencies. The design variables are cross-sectional areas of structural elements and also, in some 

problems, several nodal coordinates are considered as variables. The mathematical formulation of these 

problems can be expressed as follows: 
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where {X} is the set of design variables; ng is the number of optimization variables which depends on 

element grouping; Di is the allowable set of values for the design variable xi which can be considered 

either as a continuous set or as a discrete one; W({X}) is the weight of the structure; nm is the number of 

members of the structure; ρi, Ai and Li denotes the material density, cross-sectional area and the length of 

the ith member, respectively; gj({X}) denote design constraints; n is the number of the constraints. 

In this study, the penalty function method is utilized as a constraint-handling approach, and the 

constrained objective function is expressed as follows: 
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where n represents the number of evaluated constraints for each individual design, and υ is the total 

constraint violation. The constants ε1 and ε2 are selected considering the exploration and the exploitation 

rates of the search space. Here, ε1 is set to unity and ε2 starts from 1.5 and linearly increases to 3. These 

values penalize the unfeasible solutions more severely as the optimization process proceeds. As a result, in 

the early stages, the agents are free to explore the search space, but at the end they tend to choose solutions 

without violation. 
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4.  BENCHMARK EXAMPLES 

The five benchmark examples given in this section have been widely used to show the validity and 

effectiveness of the optimization algorithms. These examples are as follows:  

 A 10-bar plane truss with ten sizing variables; 

 A simply supported 37-bar plane truss with five layout variables and fourteen sizing variables; 

 A 52-bar dome-like truss with five layout variables and eight sizing variables; 

 A 72-bar space truss with sixteen sizing variables. 

 A 120-bar dome truss with seven sizing variables. 

In our simulations, the number of agents and Stoch are set to 20 and 0.35, respectively. In all the 

examples the values of d and r are considered as 10 and 5, respectively. Each example has been solved 

twenty times independently and the best results are reported here. 

a) A 10-bar plane truss 

The ten bar plane truss shown in Fig. 2, is a well-known benchmark problem in the field of weight 

optimization of the structures with frequency constraints. The cross-sectional area of each of the members 

is considered to be an independent variable. As can be seen in Fig. 2, at each free node (1–4) a non-

structural mass of 453.6kg (1000lb) is attached. Material properties, variable bounds and frequency 

constraints are listed in Table 1. In this article, the allowable maximum area of the cross section is 50 cm
2
.  

  
Fig. 2. A 10-bar truss 

Table 1. Material properties, variable bounds and frequency constraints for the 10-bar truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 6.895× 1010 

ρ (Material density)/ kg/m3 2767.99 

Added mass/ kg 453.6 

Allowable range for cross section/ m2 6.45×10-5 ≤A≤ 0.005 

Constraints on first three frequencies/ Hz ω1  ≥ 7 , ω2 ≥ 15 , ω3 ≥ 20 

This problem has been investigated by many authors using different optimization methods. Wang et 

al. [13] have employed an evolutionary node shift method and Lingyun et al. [14] have used a niche 

hybrid genetic algorithm to optimize this structure. Gomes [2] has studied this problem using the particle 

swarm algorithm. Miguel and Fadel Miguel [3] have utilized harmony search (HS) and Firefly Algorithm 

(FA) to optimize this example. 

The optimum design, natural frequencies and statistical results are shown in Tables 2–4, respectively. 

As it can be observed in Table 2, the best answer is achieved using IRO, and all of the constraints are 

satisfied, as may be seen in Table 3. The statistical results of twenty independent runs presented in Table 4 

demonstrates slight standard deviation from the mean value and shows that the algorithm is effective to 

solve the sizing optimization of this structure with multiple frequency constraints. Figure 3 illustrates the 

best and average convergence history for the results of the IRO algorithm. The best weights are obtained 

after 13,700 analyses and the average number of analysis for independent runs is 16,000 analyses. 
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Table 2. Optimal design cross sections (cm
2
) for the ten bar planar truss 

Element 
number 

Wang 
et al. [13] 

Lingyun 
et al. [14] 

Gomes [2] 
Miguel & Fadel Miguel [3] Present work 

HS FA 

1 32.456 42.23 37.712 34.282 36.198 35.0472 

2 16.577 18.555 9.959 15.653 14.030 15.1375 
3 32.456 38.851 40.265 37.641 34.754 35.8134 

4 16.577 11.222 16.788 16.058 14.900 15.0711 

5 2.115 4.783 11.576 1.069 0.654 0.6450 
6 4.467 4.451 3.955 4.740 4.672 4.6301 

7 22.810 21.049 25.308 22.505 23.467 23.9399 
8 22.810 20.949 21.613 24.603 25.508 23.8225 

9 17.490 10.257 11.576 12.867 12.707 12.5297 

10 17.490 14.342 11.186 12.099 12.351 12.9266 
Weight (kg) 553.8 542.75 537.98 534.99 531.28 531.24 

 

Table 3. Optimum design of natural frequencies (Hz) for the 10-bar truss 

Frequency 
number 

Wang 
et al. [13] 

Lingyun 
et al. [14] 

Gomes [2] 
Miguel & Fadel Miguel [3] Present work 

HS FA 

1 7.011 7.008 7.000 7.0028 7.0002 7.0013 

2 17.302 18.148 17.786 16.7429 16.1640 16.1770 

3 20.001 20.000 20.000 20.0548 20.0029 20.0150 
4 20.100 20.508 20.063 20.3351 20.0221 20.0420 

5 30.869 27.797 27.776 28.5232 28.5428 28.5808 
6 32.666 31.281 30.939 29.2911 28.9220 29.1402 

7 48.282 48.304 47.297 49.0342 48.3538 48.6016 

8 52.306 53.306 52.286 51.7451 50.8004 51.1780 
 

Table 4. Statistical results for the 10-bar truss 

Mean Weight using IRO (kg) Standard deviation (kg) Number of searches 

532.00 1.43 16000 

 

 
Fig. 3. The convergence curves for the 10-bar truss 

 

b)  A simply supported 37-bar plane truss 

The simply supported 37-bar plane truss with initial configuration shown in Fig. 4 is considered as 

the second standard test problem. Non-structural mass of 10kg is attached at each of the free nodes on the 

lower chord which remain fixed during the design process as can be seen in Fig. 4. 

 
Fig. 4. A simply supported 37-bar planar truss 
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Nodal coordinates in the upper chord and member areas are regarded as design variables. All 

members on the lower chord (numbers 28–37) are modeled as bar elements with constant rectangular 

cross sectional areas of 4×10
-3

 m
2
 and the others are modeled as bar elements with initial cross-sectional 

areas of 1×10
-4

 m
2
. In the optimization process, nodes of the upper chord can be shifted vertically. In 

addition, nodal coordinates and member areas are linked to maintain the structural symmetry. Thus, only 

five layout variables and fourteen sizing variables will be redesigned for the optimization. Table 5 shows 

the material properties, frequency constraints and added masses for this example. 

Table 5. Material properties, frequency constrains and added masses for 37-bar truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m
2 2.1 × 10

11 

ρ (Material density)/ kg/m
3 7800 

Added mass/ kg 10 

Constraints on first three frequencies/ Hz ω1  ≥ 20 , ω2 ≥ 40 , ω3 ≥ 60 
 

This example has been studied by Wang et al. [13], Lingyun et al. [14], Gomes [2], Kaveh and 

Zolghadr [4], Miguel and Fadel Miguel [3]. Table 6 summarizes the optimal results obtained by different 

researchers. The proposed algorithm has obtained a structure which is slightly lighter than the structure 

obtained by other methods. Natural frequencies and statistical results are shown in Tables 7-8, 

respectively. None of the frequency constraints were violated. Figure 5 shows the 37-bar truss optimized 

by the IRO. 

Table 6. Final cross-sectional areas and node coordinates for the 37-bar simply supported planar truss 

Variables 
Wang 

et al. [13] 
Lingyun 
et al. [14] 

Gomes 
[2] 

Kaveh & Zolghadr [4] Miguel & Fadel Miguel [3] 

Present work 
CSS 

Enhanced 

CSS 
HS FA 

Y3 , Y19 (m) 1.2086 1.1998 0.9637 0.8726 1.0289 0.8415 0.9392 0.9641 

Y5 , Y17 (m) 1.5788 1.6553 1.3978 1.2129 1.3868 1.2409 1.3270 1.3490 

Y7 , Y15 (m) 1.6719 1.9652 1.5929 1.3826 1.5893 1.4464 1.5063 1.5422 
Y9 , Y13 (m) 1.7703 2.0737 1.8812 1.4706 1.6405 1.5334 1.6086 1.6719 

Y11 (m) 1.8502 2.3050 2.0856 1.5683 1.6835 1.5971 1.6679 1.7466 
A1 , A27 (cm2) 3.2508 2.8932 2.6797 2.9082 3.4484 3.2031 2.9838 2.9082 

A2 , A26 (cm2) 1.2364 1.1201 1.1568 1.0212 1.5045 1.1107 1.1098 1.0494 

A3 , A24 (cm2) 1.0000 1.0000 2.3476 1.0363 1.0039 1.1871 1.0091 1.0020 
A4 , A25 (cm2) 2.5386 1.8655 1.7182 3.9147 2.5533 3.3281 2.5955 2.6153 

A5 , A23 (cm2) 1.3714 1.5962 1.2751 1.0025 1.0868 1.4057 1.2610 1.0915 
A6 , A21 (cm2) 1.3681 1.2642 1.4819 1.2167 1.3382 1.0883 1.1975 1.2766 

A7 , A22 (cm2) 2.4290 1.8254 4.6850 2.7146 3.1626 2.1881 2.4264 2.7346 

A8 , A20 (cm2) 1.6522 2.0009 1.1246 1.2663 2.2664 1.2223 1.3588 1.4154 
A9 , A18 (cm2) 1.8257 1.9526 2.1214 1.8006 1.2668 1.7033 1.4771 1.5225 

A10 , A19 (cm2) 2.3022 1.9705 3.8600 4.0274 1.7518 3.1885 2.5648 2.2575 
A11 , A17 (cm2) 1.3103 1.8294 2.9817 1.3364 2.7789 1.0100 1.1295 1.3206 

A12 , A15 (cm2) 1.4067 1.2358 1.2021 1.0548 1.4209 1.4074 1.3199 1.2462 

A13 , A16 (cm2) 2.1896 1.4049 1.2563 2.8116 1.0100 2.8499 2.9217 2.3298 

A14  (cm2) 1.0000 1.0000 3.3276 1.1702 2.2919 1.0269 1.0004 1.0000 

Weight (kg) 366.5 368.84 377.20 362.84 362.38 361.50 360.05 359.97 

 

Table 7. Natural frequencies (Hz) obtained by various methods for the 37-bar simply supported planar truss 

Frequency 

number 

Wang 

et al. [13] 

Lingyun 

et al. [14] 

Gomes 

[2] 

Kaveh & Zolghadr [4] Miguel & Fadel Miguel [3] 
Present 

work CSS 
Enhanced 

CSS 
HS FA 

1 20.0850 20.0013 20.0001 20.0000 20.0028 20.0037 20.0024 20.0004 

2 42.0743 40.0305 40.0003 40.0693 40.0155 40.0050 40.0019 40.0351 

3 62.9383 60.0000 60.0000 60.6982 61.2798 60.0082 60.0043 60.0013 

4 74.4539 73.0444 73.0440 75.7339 78.1100 77.9753 77.2153 76.3818 

5 90.0576 89.8244 89.8240 97.6137 98.4100 99.2564 96.9900 96.7195 

 

Table 8. Statistical results for the 37-bar space truss 

Mean Weight using IRO (kg) Standard deviation (kg) Number of searches 

360.85 0.78 18000 
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Fig. 5. Final configuration design optimized by the present paper using IRO 

c)  A 52-bar dome-like truss 

The third benchmark problem is the 52-bar dome-like truss with initial configuration depicted in Figs. 

6 and 7. Non-structural masses of 50kg are attached to all the free nodes. Material properties, frequency 

constraints and variable bounds for this example are summarized in Table 9. All the elements of the 

structure are categorized in eight groups according to Table 10 and the section area of each bar is initially 

equal to 2×10
-4

 m
2
. All free nodes are permitted to move in a symmetrical manner, by the amount  ±2m in 

each allowable direction from their initial position. Thus there are 13 independent design variables, being 

five layout and eight sizing variables. 

 
Fig. 6. Initial configuration design for the dome structure (top view) 

 
Fig. 7. Initial configuration design for the dome structure (lateral view) 
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Table 9. Material properties, frequency constraints and variable bounds for the 52-bar space truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 2.1 × 1011 

ρ (Material density)/ kg/m3 7800 

Added mass/ kg 50 

Allowable range for cross section/ m2 0.0001≤A≤0.001 

Constraints on frequencies/ Hz ω1  ≤15.9155 , ω2 ≥ 28.6479  

 
Table 10. Element grouping for the 52-bar space truss 

Group number Elements 

1 1-4 

2 5-8 

3 9-16 

4 17-20 

5 21-28 

6 29-36 

7 37-44 

8 45-52 

This problem has also been studied by Lingyun et al. [14] using niche hybrid genetic algorithm 

(NHGA), and Gomes [2] using particle swarm optimization algorithm (PSO). Kaveh and Zolghadr [15] 

have analyzed the problem using the hybridized CSS–BBBC with a trap recognition capability. Miguel 

and Fadel Miguel [3] have used HS and FA to optimize this example.  

Table 11 shows that IRO yields the least weight for this problem, which is 195.38kg; furthermore, all 

of the constraints are satisfied according to Table 12. Statistical results are reported in Table 13. Figure 8 

represents the optimized layout of the 52 bar dome-like truss obtained by IRO. 

Table 11. Cross-sectional areas and node coordinates obtained by different researchers (the 52-bar space truss) 

Variables 
Lingyun 
et al. [14] 

Gomes [2] 
Kaveh & Zolghadr [15] Miguel & Fadel Miguel [3] 

Present work 
CSS CSS-BBBC HS FA 

Z1 (m) 5.8851 5.5344 4.000 5.331 4.7374 6.4332 5.7600 

X2 (m) 1.7623 2.0885 1.955 2.134 1.5643 2.2208 2.1959 

Z2 (m) 4.4091 3.9283 3.742 3.719 3.7413 3.9202 3.7150 
X6 (m) 3.4406 4.0255 3.841 3.935 3.4882 4.0296 3.9269 

Z6 (m) 3.1874 2.4575 2.500 2.500 2.6274 2.5200 2.5000 
A1 (cm2) 1.0004 0.3696 1.0000 1.0000 1.0085 1.0050 1.0000 

A2 (cm2) 2.1417 4.1912 1.0000 1.3056 1.4999 1.3823 1.1889 

A3 (cm2) 1.4858 1.5123 2.3858 1.4230 1.3948 1.2295 1.2411 
A4 (cm2) 1.4018 1.5620 1.0000 1.3851 1.3462 1.2662 1.4422 

A5 (cm2) 1.9116 1.9154 1.4659 1.4226 1.6776 1.4478 1.3932 
A6 (cm2) 1.0109 1.1315 1.0000 1.0000 1.3704 1.0000 1.0000 

A7 (cm2) 1.4693 1.8233 2.9158 1.5562 1.4137 1.5728 1.6929 

A8 (cm2) 2.1411 1.0904 1.0000 1.4485 1.9378 1.4153 1.3569 

Weight (kg) 236.05 228.38 235.931 197.309 214.94 197.53 195.38 

 
Table 12. Natural frequencies (Hz) obtained by various methods (the 52-bar space truss) 

Frequency 

number 

Lingyun 

et al. [14] 
Gomes [2] 

Kaveh & Zolghadr [15] Miguel & Fadel Miguel [3] 
Present work 

CSS CSS-BBBC HS FA 

1 12.8051 12.751 14.984 12.987 12.2222 11.3119 11.4437 

2 28.6489 28.649 28.649 28.648 28.657 28.6529 28.6529 

3 28.6489 28.649 28.672 28.679 28.65 28.6529 28.7014 
4 29.5398 28.803 28.7228 28.713 28.661 28.8030 28.7179 

5 30.2443 29.230 29.3432 30.262 30.0997 28.8030 29.1276 

 
Table 13. Statistical results for the 52-bar space truss 

Mean Weight using IRO (kg) Standard deviation (kg) Number of searches 

196.43 1.81 17000 
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Fig. 8. The optimized layout of the 52-bar dome-like space truss using IRO 

d)  A 72-bar space truss 

The 72-bar space truss shown in Fig. 9 is the third benchmark example. The pre-defined layout of the 

structure remains unchanged during the optimization process, thus the design variables are the member 

cross sectional areas, treated as continuous design variables. These variables are classified in 16 design 

groups according to Table 14. Four non-structural masses of 2268 kg are attached to the nodes 1 through 

4. Material properties, variable bounds, frequency constraints and added masses are listed in Table 15. In 

the optimization process two cases are considered. In the first case, the upper bound of the cross section is 

taken as 2×10
-3

 m
2
 and in the second case it is 5×10

-3
 m

2
. 

 
Fig. 9. A 72-bar space truss 

This problem has also been studied by Gomes [2], Kaveh and Zolghadr [4], Miguel and Fadel Miguel 

[3]. The optimum design, natural frequencies and statistical results are shown in Tables 16-18, 

respectively. The IRO algorithm can find the best design among the other methods which is 327.597kg 

and none of the frequency constraints are violated. While the search space is expanded in case 2, the 

proposed method can achieve the structure which is approximately equal to the best one found. Figure 10 

represents the convergence curves of the best results obtained by the proposed algorithm. 
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Table 14. Element grouping the 72-bar space truss 

Group number Elements 

1 1-4 

2 5-12 

3 13-16 

4 17-18 

5 19-22 

6 23-30 

7 31-34 

8 35-36 

9 37-40 

10 41-48 

11 49-52 

12 53-54 

13 55-58 

14 59-66 

15 67-70 

16 71-72 

Table 15. Material properties, frequency constrains and added mass for the 72-bar space truss 

Property/unit Value 

E (modulus of elasticity)/ N/m
2 6.895 × 10

10 

ρ (Material density)/ kg/m
3 2767.99 

Added mass/ kg 2268 

Design variable lower bound/ m
2 0.645 × 10

-4 

Constraints on frequencies/ Hz ω1 = 4 , ω3 ≥ 6 

Table 16. Optimal design cross sections (cm
2
) for the 72-bar space truss from various methods 

Design 

variable 
Gomes [2] 

Kaveh & Zolghadr [4] Miguel & Fadel Miguel [3] Present work 

CSS 
Enhanced 

CSS 
HS FA Case 1 Case 2 

1 2.987 2.528 2.252 3.6803 3.3411 3.5414 3.5659 

2 7.849 8.704 9.109 7.6808 7.7587 7.9305 7.9281 

3 0.645 0.465 0.648 0.6450 0.6450 0.6450 0.6450 

4 0.645 0.645 0.645 0.6450 0.6450 0.6450 0.6450 

5 8.765 8.283 7.946 9.4955 9.0202 7.9751 8.0244 

6 8.153 7.888 7.703 8.2870 8.2567 8.0034 8.0081 

7 0.645 0.645 0.647 0.6450 0.6450 0.6450 0.6450 

8 0.645 0.645 0.646 0.6461 0.6450 0.6450 0.6450 

9 13.450 14.666 13.465 11.4510 12.0450 12.9353 12.7370 

10 8.073 6.793 8.250 7.8990 8.0401 8.0249 8.0637 

11 0.645 0.645 0.645 0.6473 0.6450 0.6450 0.6450 

12 0.645 0.645 0.646 0.6450 0.6450 0.6450 0.6450 

13 16.684 16.464 18.368 17.4060 17.3800 17.2134 17.3488 

14 8.159 8.809 7.053 8.2736 8.0561 8.1675 8.1273 

15 0.645 0.645 0.645 0.6450 0.6450 0.6450 0.6450 

16 0.645 0.645 0.646 0.6450 0.6450 0.6450 0.6450 

Weight (kg) 328.823 328.814 328.393 328.334 327.691 327.597 327.622 

Table 17. Natural frequencies (Hz) obtained by various methods for the 72-bar space truss 

Frequency 

number 
Gomes [2] 

Kaveh & Zolghadr [4] Miguel & Fadel Miguel [3] Present work 

CSS 
Enhanced 

CSS 
HS FA Case 1 Case 2 

1 4.000 4.000 4.000 4.0000 4.0000 4.000 4.000 

2 4.000 4.000 4.000 4.0000 4.0000 4.000 4.000 

3 6.000 6.006 6.004 6.0000 6.0000 6.000 6.000 

4 6.219 6.210 6.155 6.2723 6.2468 6.245 6.246 

5 8.976 8.684 8.390 9.0749 9.0380 9.075 9.078 

Table 18. Statistical results for the 72-bar space truss 

Case Mean Weight using IRO (kg) Standard deviation (kg) Number of searches 

1 328.19 2.07 16000 

2 329.80 2.24 17000 
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Fig. 10. The convergence curves for the 72-bar space truss 

e)  A 120-bar dome truss 

The 120-bar dom*e truss is shown in Fig. 11 and it is addressed as a size optimization problem with 

frequency constraints [15]. Non-structural masses are attached to all free nodes as follows: 3000 kg at 

node one, 500kg at nodes 2–13 and 100kg at the remaining nodes. Material properties, frequency 

constraints and variable bounds for this example are summarized in Table 19. The 120 members are 

categorized into seven groups, because of symmetry.  

 
Fig. 11. The 120-bar dome truss 
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Table 19. Material properties, frequency constraints and variable bounds for the 120-bar dome truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m
2 2.1 × 10

11 

ρ (Material density)/ kg/m
3 7971.810 

Allowable range for cross section/ m
2 0.0001≤A≤0.01293 

Constraints on frequencies/ Hz ω1  ≥9 , ω2 ≥ 11  

Table 20 demonstrates the design variables results and the final weight for the optimized truss. It should 

be noted that good results were obtained with the IRO algorithm. Table 21 shows the optimized structural 

frequencies (Hz) for various methods. None of the frequency constraints were violated. The statistical 

results for twenty independent runs are listed in Table 22. Figure 12 shows the best and average of twenty 

runs convergence history for the proposed algorithm. 

Table 20. Optimal design cross sections (cm
2
) for the 120-bar dome truss 

Design variable 
Kaveh & Zolghadr [15] 

Present work 
CSS CSS-BBBC 

1 21.710 17.478 19.7332 

2 40.862 49.076 40.5101 

3 9.048 12.365 11.5088 

4 19.673 21.979 21.8446 

5 8.336 11.190 9.9880 

6 16.120 12.590 12.6098 

7 18.976 13.585 14.6800 

Weight (kg) 9204.51 9046.34 8895.42 

 

Table 21. Natural frequencies (Hz) obtained by various methods for the 120-bar dome truss 

Frequency 

 number 

Kaveh & Zolghadr [15] 
Present work 

CSS CSS-BBBC 

1 9.002 9.000 9.000 

2 11.002 11.007 11.001 

3 11.006 11.018 11.002 

4 11.015 11.026 11.011 

5 11.045 11.048 11.051 

 
Table 22. Statistical results for the 120-bar dome truss 

Mean Weight using IRO (kg) Standard deviation (kg) Number of searches 

8905.21 4.92 16300 

 

 
Fig. 12. The convergence curves for the 120-bar dome truss 
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5.  CONCLUDING REMARKS 

In this paper, layout and size optimization of truss structures with frequency constraints is investigated. 

This is a highly non-linear and non-convex optimization problem with several local optima because of the 

different nature of the variables involved, their different order and the sensitivity of the natural frequencies 

to layout modifications.  

To verify the performance of the IRO, five well-known benchmark problems are studied and their 

results are compared to those of some other methods. Comparisons show that the proposed algorithm has 

obtained the best results for all of the numerical examples. It performed well in terms of accuracy and the 

number of objective function evaluations. Therefore, the IRO algorithm can be considered as an 

acceptable stochastic search technique for layout and sizing optimization of trusses with multiple natural 

frequency constraints.   
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