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Abstract

In this paper, we introduce the notion of derivation on Krasner hyperrings as follows: the function d:R—>R
is a derivation on a Krasner hyperring R if for all X,y e R, d(Xx+y)=d(X)+d(y) and

d(x-y) ed(x)-y+x-d(y). Then, we investigate some fundamental properties of derivation on Krasner
hyperings and prime Krasner hyperrings. Also, we introduce differential Krasner hyperingsand discuss some

related properties.
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1. Derivation of Krasner hyperrings

Let H be a non-empty set and let P"(H) be the

set of all non-empty subsets of H. A
hyperoperation on H is a map

o:HxH —>P*(H) and the couple (H,o0) is
called a hypergroupoid. If A and B are non-
empty subsets of H, then we denote
AoB= | ] ach, xoA={x}oA and
acAbeB
Aox=Ao{x}. A hypergroupoid (H,) is
called a semihypergroup if for all X,Y,Z of H
we have (XoY)oZ=Xo(Yyoz), which means

that Uuoz= UXOV. There are different
ueXey Veyoz
kinds of hyperrings. The most comprehensive
reference for hyperrings is Davvaz and Leoreanu-
Fotea's book (2007). Other references are (Davvaz,
2009; Davvaz and Salasi, 2006; Davvaz and
Vougiouklis, 2007; Mirvakili et al., 2008; Mirvakili
and Davvaz, 2010; Mirvakili and Davvaz, 2012;
Nakassis, 1988). A Krasner hyperring (Krasner,

1983) is an algebraic structure (R,+,") which
satisfies the following axioms: (1) (R,+) is a
canonical hypergroup, ie, (i) (R4) is a
semihypergroup, i.e.
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X+(Yy+2)=(X+y)+z,foral X,¥,2eR,
(i) X+y=Yy+X, for all X,yeR, (iii) There
exists 0€R such that O+x={x}, for all

XeR, (iv) For all XeR there exists a unique
element X' €R such that 0e X+ X', (we write
—X for X' and we call it the opposite of X), (v)
ZeX+Yy implies that Ye—X+Z and
Xez-y, for all x,¥,zeR; 2 (R)) is a
semigroup having zero as a bilaterally absorbing
element, ie, X-0=0-x=0:; @) The
multiplication is distributive with respect to the
hyperoperation +.

Throughout this paper, by a hyperring we mean a
Krasner hyperring.

A hyperring (R,+,") is called commutative, if (R,
is a commutative semigroup. The meaning of center of
R is Z(R)={xeR|x-y=y-x forallyeR}. A
hyperring  (R,+,) is called hyperfield, if
(R\{0},)is a group. 1f (R\{0};) is a monoid,
then the identity element of this monoid is called unit
element of hyperring (R,+,7) . A hyperring (R,+,")
is called hyperdomain, if R is a commutative
hyperring with unit element and XYy = O implies that
X=0ory=0,forall X,yeR.

A non-empty subset A of a hyperring (R,+,")
is called subhyperring of R if (A+,) is itself a
hyperring. The subhyperring A of R is normal in
R ifand only if X+ A—XC A, forall XeR. A
non-empty subset | of a hyperring R is called a
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left (respectively, right) hyperideal if and only if (1)
u,vel imply that u—vcl, forall u,vel,
2 uel and reR imply that r-uel
(respectively, U-rel). Also, | is called a
hyperideal if | is both a left and a right hyperideal.

A good homomorphism between two hyperrings
(R,+,y) and  (R+,,) is a map
f R, —R, suchthat for all X,y €R,, we have
f(x+y) =10+ T(y),
f(x,y)="1(x)-, f(y)and f(0)=0.

Let f:R —R, be a good homomorphism.
The  kernel  of f is  the  set

kerf ={x e R, | f(x) =0}. 1t is inconsequential
that kerf is a hyperideal of R;.

The concept of derivation on rings was
introduced by Posner (1957), also see (Khadjiev
and Callialp, 1998; Kolchin, 1973; Soytiirk, 1994;
Wang, 1994). Differential rings, differential fields,
and differential algebras are rings, fields, and
algebras equipped with a derivation, which is a
unary function that is linear and satisfies the
Leibniz product rule. In (2000), Chvalina and
Chvalinova gave a construction of hyperstructures
determined by quasi-orders defined by means of
derivation operators on differential rings. In (2012),
Davvaz et al. introduced the concept of (3,3)-ary
differential rings as a generalization of differential
rings. Then, they gave a construction of
hyperstructures determined by (3,3)-ary differential
rings. In (2013), Asokkumar presented the
definition of derivation in hyperrings.

We recall the definition of derivation in
hyperrings (Asokkumar, 2013).

Definition 1.1. Let(R,+,") be a hyperring. The
functiond : R — R is called a derivation if for all
X, yeR,

O d(x+y)=d(x)+d(y).
@d(x-y)ed(x)- y+x-d(y).

By the above definition for every derivation d
on hyperring R, we have d(0)=0 and

d(—x) =—d(x), forall XeR.

Example 1. LetR={0,1,2}. Consider the
following tables:

102
1111 |R
2| R |2
012
01010
11012
012

So, (R,+,) is a hyperring (Davvaz and
Leoreanu-Fotea, 2007). It is easy to check that the
function d:R—R defined by d(0)=0,d(1)=2

and d(2) =1 is a derivation.

Example 2. Let Q" ={X e Q| x>0}, where Q

is the set of rational numbers. The binary
hyperoperation+and the binary operation-are
defined as follows:

x+x={yeQ"|y<x}, forall xeQ’,
X+y=maxx,y} forall x,yeQ",x=y,
x-y=xy, forall x,yeQ".

Then, (Q",+,) is a hyperring (Corsini, 1993).
The function d : Q" — Q" defined by d(X) = X,
for all XeQ", is a derivation, since for all
X,yeQ",
d(x)+d(y) =d(x+y),
d(x-y)=xye{teQ" [t <xy}=Xxy+Xxy
=d(x)-y+x-d(y).

Example 3. Let (G,-,€) be a finite group with M
elements, M >3, and define a hyperaddition and a
multiplication on H = G {0}, by
X+0=0+x={x}, Vx e H,
X+ X ={x,0},vx € G,
X+y=y+X=H\{X,y}, ¥X,yeG,x =Y,
X®0=0®x=0,vxeH,
X®Yy=x-y,VXYyeG.

Then, (H,+,®)is a hyperring (Davvaz and

Leoreanu-Fotea, 2007; Nakassis, 1988). The
function d:H —H defined by d(x) =X, for

all Xe H , is a derivation, since
d(x)+d(y) =d(x+Yy), vx,y e H,
d(x®0)=d(0)=0e{0}=0+0

=d(X) ®0+x®d(0), vx e H,
d(x®y)=d(x-y) =x-ye{x-y,0}
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:X.y+x.y
=d(X)®y+x®d(y), vx,y €G.

Example 4. Consider Example 3 and let (G,-,€) be
an abelian group, which has no elements of order 2.
Then, the function d, : H — H defined by

0 x=0
dl(X) = -1

x— forallxeG
is a derivation function, since
d, (x+0) =d,(0+x) ={d, ()} ={x"}
=d;(X)+d,(0)
=d,(0)+d,(x), Vx e H;

d, (x-+X) ={d, (x),d, (0)}={x*,0}
=xt+x*

=d,(x)+d,(x),vx €G;
d,(x+y)=H\{x*,y}I=xt+y?
=d,(X)+d,(y), ¥, yeG,x= V.

Hence, the first condition of the definition of
derivation is valid. Also, we have

d,(x®0)=d,(0)=0e{0}
=Xx1®0+x®0

=d,(X) ®0+x®d,(0), vx € H;
d,(X)®Yy+x®d,(Y)=x"®y+x®y™"
=x1-y+x-y*vxyeG.

By the above relations, in order to prove the second
condition of the definition of derivation, it is enough

to show that d(xy)=x"'y*text-y+x-y*, for
all X,y €G. We have
Xtoy+x-yt=H\{X? y,x-y*},  since
G has no elements of order 2. If
xtoyt=xty, then y=y' and if
X .y‘l =X- y‘l then X=X7'. Hence,
Xty te{xt-y,x-y '}, since G has no
elements of order 2. Therefore,
xtyteH\{x  y,x-yF=xty+x-y*
The following example shows that the identity
function is not always a derivation.

-1

Example 5. Let(G,,€) be a group. Define a

hyperaddition ~and a  multiplication  on
H =G U{0}as follows:

X+0=0+x={x},VxeH,
X+x=H\{X},VxeG,
X+yYy=y+X={X, YL VX, yeG,x=Y,

X®0=0®x=0,VxeH,

Xy = x-y, FAFESY +Xx®@d(y), VX, y €G.
Then, (H,+,®) is a hyperring (Corsini, 1993).

The function d : H — H defined by d(X) =X,

for all XeH, is not a derivation, since
dX)®@y+x®d(y) =x-y+x-y=H-{x-vy},
forall X,y €G. So,
d(x®y)=x-y¢ed(X)®y+x®d(y).

In a hyperring, we may use XY instead of X-Y.

Lemma 1.2. Let d be a derivation on a hyperring
R. For all X,yeR, define X°y=y and
d®(x) = X. Then, forall NeN and X,y € R,

P If R is
d(x") en(x"*.d(x)).

@ d"(xy) e Zn(;(?jd " (x)d(y),

commutative, then

where d" denotes the derivation of order N.

Proof: (1) The proof follows easily by induction.
(2) It is inconsequential that the statement is valid

for N=1. Now, let the statement be valid for
n =k —1 (induction hypothesis). We have

d*(xy) =d(d**(xy))

eﬁéif_jd“lum%w}
k-1 k — ) _
g;(i 1}1 < (xd (y)

ik -1) ., .

+ 2 I 1]d k—|—l(X)d |+l(y)
k k . .

=2 jd “0d'(y).

i=0

Lemma 1.3. Let R be a hyperring and [X, Y]
denotes the set Xy —YX, for all X,y €R. Then,
forall X,Y,Z e R, we have,

@ [x+y,z]=[x z]+[y. 2],

@ [xy,zZl=y, z]+[x, z]y

@) If xeZ(R), then[xy, z] = X[y, ],

@ 1f d is a derivation of R, then
d[x, yl<[d(x), yI+[x,d(y)].
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Proof: For X,Y,Z€eR,
D) [x+y,z] = (X+y)z—z(x+Y)
=XZ—-IX+YZ—-1y
=[x, z]+[y, z].

(2)[xy, z] = xyz—zxy
C XYZ— XZY + XZY — ZXy
=X(yz—zy)+ (xz—zx)y
=Xy, z]+[x, z]y.

(3) If xe Z(R), then we have
[xy, z] = xyz— zxy = xyz— xzy
= x(yz—zy) = x[y, z].

(4) Suppose that d is a derivation of R.
Then,

d[x, y] =d(xy —yx) = d(xy) —d(yx)
cd(X)y+xd(y)—d(y)x—yd(x)

=d(X)y — yd(x) +xd(y) —d(y)x
=[d(x), y]+[x,d(y)]-

Theorem 1.4. Let d be a derivation on a hyperring
R and N be the smallest natural number such that

d"(R)=0. Then, for all yeR, d(y)=0 or
there is 0<k<n such that
Oen(d™™(x,)d*(y)), where 0#X, R is a

fixed element.

Proof: Suppose that N is the smallest natural
d"(R)=0. Then,
d"*(R)#0. So, there is 0# X, €R such that
d"(%,) #0. Let d(y)=0, where yeR.
Then, there is 0<k <n such that d*(y)=0
and d**(y) =0. By Lemma 1.2, we have

0=d"(x,d"“*(y))

Z@d " () ()

=d"(%)d" " (y) +n(d"" (%,)d"“ (¥))

AN n—i-2 k+i+1
+§(i+2](d ()" (y))

=n(d" (x)d" (y)).

number such that

Theorem 1.5. Let d be a good homomorphism
and derivation on a hyperring R. Then, for all
X,yeR,

d(x)yd(x) € [d(X)yx+ xd(yx) - xd(yx))
A(xyd(x) +d (xy)x—d(xy)x).

Proof: ~We have, for all X YyeR,
d(x)d(y) = d(xy) ed(x)y +xd(y). (1)
Replace Y by yX,in (1),

d(xy)d(x) = d(x)d(y)d(x) =d(x)d(yx)
=d(xyx) e d(xX)yx+ xd(yx).

On the other hand,

d(xy)d(x) € d(x)yd(x) +xd(y)d(x)
=d(x)yd(x)+xd(yx) .

So, d(X)yd(x) € d(x)yx+ xd(yx) —xd(yx).
Now, we replace X by yX in (1),

d(y)d(xy) =d(y)d(x)d(y) = d(yx)d(y)

= d(yxy) ed(yx)y + yxd(y).

On the other hand,

d(y)d(xy) ed(y)d(x)y+d(y)xd(y)

=d(yx)y +d(y)xd(y).

So, d(y)xd(y) € yxd(y)+d(yx)y—d(yx)y.
By changing the role of X and Y, we have

d(x)yd(x) e xyd(x) +d(xy)x—d(xy)x.

This completes the proof.

2. Derivation of prime Krasner hyperrings

In this section, we study the concept of derivation
on prime hyperrings.

Definition 2.1. A hyperring Ris called prime if
XRy = Qimplies that either X=0o0ry = 0. Also,
R is called semiprime if XRX=0implies that
X =0. Obviously, every prime hyperring is a
semiprime hyperring but the converse is not always
true.

Example 6. Every hyperdomain is prime.

Example 7. All of the hyperrings in Examples 1, 2,
3 and 5 are prime and semiprime hyperrings.

Example 8. Let (R,+,) be a hyperring. Set

M = {(g z)/]| X,y € R} and  define the

hyperoperation @and operation ®on M as

X Yi)pf% Yo
(o s)els %)
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ab
=10 o laex +X,,bey +y, and
X Y ® X Y, _ XXy XY,
0O O 0O O 0 0 )

where X, %,,Y;, Y, €R. Then, (M,®,®) is a
hyperring. The hyperring (M,®,®) is not

semiprime hyperring, since for all X,y € R and
0=beR, wehave

0 b Xy 0 b) -

(o oj®(o oj@{o oj"o’ but
0 b) -

(0 Oj;to.

Put M':{(g gjlaeR}. Then,

(M",®,®) is a prime (respectively, semiprime)

hyperring if and only if R is a prime (respectively,
semiprime) hyperring.

The following example shows that a semiprime
hyperring is not a prime hyperring, in general.

Example 9. LetR={e,a,b,c,d, f}. Consider
the following tables:

¥T€l a [ p 1] d | f

elel a | p || d | f

b | b |@abl b | f|{d f} f
c|C d f e a b
d{d| d |{df}a a {e,a,b}
flfl{cdf}y f |b|{eab}| b
elalp|c|d|f
e e|leje|ej|e|e
a e|alpl|e|alp
b lelalplelalp
C e|leje|jc|C|C
d|€jajp|Cc|d|f
f e|lalp|C|d f

It is easy to check that (R,+,") is a semiprime

hyperring. But (R,+,") is not a prime hyperring,
since aRC=¢ and a,C #¢€.

Example 10. LetR ={e,a,b,c}.Consider the
following tables:

+]efa b C
a b C
a|a|{ea}|C {b,c}
b |b|C {e,b} | {a,c}
ClC|{ct | {act R
. Jefafp|cC
e (e|lelele
ajle|lele|e
b [€la|p|C
Clelalp|C

It is easy to check that (R,+,) is a hyperring.
R is not semiprime, since aRa=¢ but a#e.

Lemma 2.2. Let | be a non-zero hyperideal on a
prime hyperring R. Then, forall X,y € R,

() 1f IX=0 or XI =0, then x=0,

) 1f xly=0,then X=0or y=0,

@3) If xeZ(R) and xy=0, then X=0 or
y=0,

@) 1f Xe R suchthat [I,X] =0, then xe Z(R),
) If XeZ(R) and xyeZ(R), then X=0 or
yeZ(R).

Proof: (1) Suppose that IX=0. Then,
URXc Ix={0}, forall Uel.So X=0, since

R is prime and | #0. In the case XI =0, the
proof is similar.
2) Suppose that xly=0, then

XIRyc xly={0}. Thus, XIRy=0. Hence,
XI =0 or y=0, since R is prime. So by (1),
X=0or y=0.

(3) Suppose that X € Z(R) and Xy =0. Then for
all reR,

0=rO=rxy=xry. Therefore, XRy=0 and
this implies that X=0 or y=0, since R is

prime.
4 By Lemma 13 (2, we have
0 =[utr,x] cut[r, x]+[ut, X]r = ut[r,x], for
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all uel and t,reR. Therefore, for all
se[r,x], we have UtS=0, which means that
URS=0. Hence, S=0, since R is prime and
| #0. This shows that X € Z(R).

(5) Suppose that Xy € Z(R) . Then, 0 €[xy,r],
for all reR. Therefore,
0 e[xy,r]=xyr—rxy = xyr—xry = x[y,r]
So, 0=t0etxXy,r]=xt[y,r], for all teR.
This implies that 0 € XR[y, r]. Hence, X=0 or
Oely,r], for all reR, since R is prime.
Then, X=0 or yeZ(R).

Lemma 2.3. Let d be a derivation on a prime
hyperring R and | be a non-zero hyperideal on
R.Then, forall XeR,

@1 d(1)=0,then d =0,

@ 1f d(1)x=0 or xd(I)=0, then X=0 or
d=0,

@3) If d(R)x=0 or xd(R)=0, then X=0 or
d=0.

Proof: (1) For all Ul and Xe€R, we have
0=d(ux) ed(u)x+ud(x) =ud(x).
Therefore, 1d(X) =0, which implies that d =0,
by Lemma 2.2 (1).

(2) Suppose that  d(I)x=0.  Then,

0=d(yu)x ed(y)ux+yd(u)x =d(y)ux,

for all Uel and yeR. Therefore,
d(y)Ix =0, which implies that d =0 or x=0,
by Lemma 2.2 (2). In the case xd(l)=0, the

proof is similar.
(3) In (2), substitute R with | .

Definition 2.4. Let R be a hyperring and d bea
derivation on R. Then, X € R is called aconstant
element associated to d ifd(X) =0. We denote
by C, (R), the set of all of constant elements of R
associated to derivationd . It is insignificant that
C, (R) is a subhyperring of R .

Theorem 2.5. Let d be a derivation on a prime
hyperring R such that d(R) = Z(R). Also, let

there be a constant element C € R associated to d

such that ¢ ¢ Z(R). Then, d =0.

Proof: There is X, € R such that CX, # X,C, since
c¢Z(R). We have

d(xc) ed(x)c+xd(c) = d(x)c, forall XeR.
So, d(x)c=d(xc) eZ(R).  Therefore,
d(X)cx, = x,d(X)c =d(X)x,C. This means
that 0 ed(X)[C,X,]. Then, there is t€[C,X,]
such that d(X)t =0. So, d(x) =0 or t =0, by
Lemma 22 @3). If t=0, then
Oelc,X]=Cx%—%C and this is a
contradiction. So, d(X) =0, forall X€R.

Lemma 2.6. Let H and K be canonical
subhypergroups of canonical hypergroup (G,+,0).

Then, H UK is a canonical subhypergroup of G
ifandonlyif Hc K or K H.

Proof: If H K or K < H, then it is clear that
HWUK is a canonical subhypergroup of G.
Now, suppose that HWUK is a canonical
subhypergroup of G and H #z K and K z H .
Then, there are a,beH UK such that
aeH\K and beK\H. Also, we have

a+bcHUK, since HUK is a canonical
subhypergroup. Now, one of two following cases
happens: Case 1: (a+b)H =, then there

exists Xe(@+b)mH . So, bex—acH and
this is a contradiction. Case 2: (a+b)"K =,
in this case there exists Y e(a+b)NK. So,
ae y—bc K and this is a contradiction.

Theorem 2.7. Let d be a non-zero derivation on a
prime hyperring R and | be a non-zero
hyperideal on R. Then,

@) If 1 cZ(R), then R is commutative,

2 1f Oe[u,R]Id(u), forall uel, then R is
commutative.

Proof: (1) We have

rsu=rus=(ru)s=s(ru) =sru, for all
r,seRand uel. so,
Oersu—sru=[r,sju. Therefore, O€lr,s],
forall r,Se R, by Lemma 2.2 (1).

(2) Since 0€[u,r]ld(u), for el and reR,
hence O e[u,r] or d(u) =0, by Lemma 2.2 (2).
Put A={uel|d(u)=0} and
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B={uel|ueZ(R)}. It is clear that A and

B are canonical subhypergroups of | and
I=AUB. So, | =A or | =B, by Lemma
26.1f | = A thatis d(1)=0, then d =0, by
Lemma 2.3 (1) and this is a contradiction.
Therefore, | =B thatis | < Z(R). This implies

that R is commutative, by (1).

Definition 2.8. A hyperring R is called N—torsion
free, whereNe N, if Qenx=X+X+---+X,

n

where X € R, implies that X =0.

Example 11. In Example 1, Ris a 2—torsion free
hyperring. In Example 9, Ris a 3—torsion free
hyperring but Ris not a 2—torsion free hyperring,
since@ €2ChutC #e€.

Theorem 2.9. Let | be a non-zero hyperideal of
2 —torsion free hyperring R. Then,

(1) If d is aderivation of R suchthat d*(1)=0,
then d =0.

(2) If d; and d, are derivations of R such that
d,d,(1)=0,then d,=00r d, =0.

Proof: (1) By Lemma 1.2, we have forall u,vel,
0=d?*(uv) ed?(u)v+2d(u)d(v) +ud?(v)

=2d(u)d(v).

So, d(u)d(v) =0, since R isa 2—torsion free

hyperring. Therefore, d=0, by Lemma 2.3 (1)
and (2).
2 We have for all

0=d,d,(uv) ed,(d, (u)v+ud,(v))
< d,d, (u)v+d,(u)d, (V)
+d,(u)d, (V) +ud,d, (v)
=d, (u)d, (v)+d, (u)d,(v).

By replacing U by d,(U) in the above equation,
we get
0 ed; (u)d,(v) +d,d,(u)d, (v) = d; (u)d, (v),
that is d7(u)d,(v)=0. so, d,=0 or
dZ(1)=0, by Lemma 2.3 (1) and (2). Therefore,
d,=0ord,=0,by(@).

In the next lemma and theorem, R will be a

hyperring such that the center of it, i. e. Z(R) is a
ring.

uvel,

Example 12. In Examples 1 and 10, the center of
hyperring Riis a ring, since in both Z(R) ={0}.
It is clear that in Example 8, the center of M’ is a
ring if and only if the center of Ris a ring. In

Example 9, Z(R) ={e,c}=Z,. so, Z(R) is a

ring.

Lemma 2.10. Let R be a hyperring such that the
center of it i. e. Z(R), is a ring. Also, let d be a

derivation on R. Then, d(x)€Z(R), for all
xeZ(R).

Proof:  Suppose that XeZ(R). Then,
d(xr)=d(rx), for al reR. So,
Oed(xr)—d(rx) cd(xX)r+xd(r)
—d(r)x—rd(x)

=d(X)r+xd(r) —xd(r) —rd(x)

=d()r+ (x—x)d(r) —rd(x)

=d(X)r —rd(x).

Therefore, d(X)r = rd(x), forall r eR.

Theorem 2.11. Let R be a prime hyperring such
that the center of it i. e. Z(R), is a ring. Also, let

| be a non-zero hyperideal of R. Then, in every
following cases R is commutative.

(1) 1f d is a derivation such that d? =0 and
d(R)cZ(R),

(2) If R isa 2—torsion free hyperring and disa
non-zero derivation such that d(1) = Z(R),

(3) If for all subset A of R, 0&3! implies that
Oe A and d is a non-zero derivation such that

d(Dc ! and d*(1)cZ(R),

(4) If for all subset A of R, 0€3! implies that
Oe A and d;,d, are non-zero derivations such
tat  d,(D)c<l, dd,(I)cZ(R) and
d,d?(1)=0.

Proof: (1) Suppose that d(R) = Z(R). Then,
[d(x),y]=0, for all X,yeR. Replace X by
Xz, where zeR. Hence,
0=[d(x2), yl=[d(X)z, y]+[xd(2).Y]
=d(X)[z, y]+d(2)[X, y], by Lemma 1.3 (3).
By replacing z by d(z), we get

0ed(x)[d(2),yl+d*@)Ix y]1=d*@)[x y].
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so, d?(z) =0 or 0&[X,y], by Lemma 2.2 (3).

Hence, R is commutative, since d? = 0.
(2) If for all Xe Z(R), we have d(X) =0. Then,

d(Z(R))=0 andso d*(1)=0.s0, d =0, by
Theorem 2.9 (1) and this is a contradiction. Hence,

there is X, € Z(R) such that d(x,)#0. By

Lemmas 1.3 (3) and 2.10, we have for all U €l
and yeR,

0=[d(ux,),y] <[d(u)x, +ud(x,),Y]
= d(U)[Xo, y1+d(xo)[u, Y]
= d(%)[u, yl.
that is 0ed(X,)[U,Y]. So, there is te[u,y]
such that O =d(X,)t. Therefore, by Lemmas 2.2
(3) and 2.10, we get t =0, since d(X,) #0. This

means that | < Z(R). So, R is commutative, by
Theorem 2.7 (1).

(3) Suppose that U €|, then by Lemmas 1.3 (3)
and 210, we have for all YyeR,

0 e[d*(d(u)d(u)).y]
c[d(d*(u)d(u)+d(u)d*(u)),yl]
= 2[d(d*(u)d(u)).y]
c 2[d*(u)d(u) +d*(u)d*(u), Y]
= 2d°(u)[d(u), y]+d*(u)[d*(u). ]
= 2d°(u)[d(u), y].
Hence, 0 d®(u)[d(u), Y], by hypothesis. So,
d*(u) =0 or 0€[d(u),y], by Lemmas 2.2 (3)
and 2.10. Therefore, d*(U) =0 or d(u) € Z(R).

Suppose that d*(U)=0. Then, by Lemmas 1.2
and 1.3 (3), we have for all YyeR,

0 =[d*(ud(u)),y]
< [d*(u)d (u)+2d (u)d*(u) +ud*(u), y]
=3[d(u)d*(u), y]=3d*(u)[d(u), Y]
Hence, 0 e d?(u)[d(u), Y], by hypothesis. So,
d?(u)=0 or 0e[d(u),y], by Lemma 2.2 (3).
Therefore, d?(U)=0 or d(u)eZ(R), for all

uel.
Put A={uel|d(u)eZ(R)} and

B={uel|d?(u)=0} Itis clear that A and

B are canonical subhypergroups of | and

|=AUB. So, | =A or | =B, by Lemma
26.1f | =B thatis d?(1)=0, then d =0, by
Theorem 2.9 (1) and this is a contradiction. So,
| =Athatis d(I) < Z(R). Now (2) completes
the proof.

(4) By Lemma 1.3 (3), forall Uel and Xe€R,

0=[d,d,(d, (u)d,(u)),x]
€ [0, (02 (U)d, (u) + d, (W2 (W),
c 2[d; (u)d,d, (u),X]
= 2d,d, (u)[d; (u), X].

Hence, 0ed,d,(u)[d?(u),X], by hypothesis.
so, d,d,(u)=0 or dZ(u) e Z(R), by Lemma
2.23), forall Uel . Put

A={uel|diu)eZ(R)} and
B={uel|dd,(u) =0} itisclear that A and
B are canonical subhypergroups of | and

I=AUB. So, | =A or | =B, by Lemma
26.1f 1 =B thatis d,d,(1)=0, then d, =0

or d,=0, by Theorem 29 (2), this is a

contradiction. So, 1 = A thatis d; (1)< Z(R).
Now (3) completes the proof.

3. Differential Krasner hyperring

Definition 3.1. A hyperring R is called
differentiable if there is at least a derivation on R.
A hyperring Rwith all derivations is called
differential hyperring. A hyperfield Ris called
differential hyperfield if R is differential hyperring.
A subhyperring H of differential hyperring R is
called differential subhyperring if for all derivation

dof R, we haved(h)eH, for atheH . A
hyperideal | of differential hyperring Ris called a
differential hyperideal if | is differential
subhyperring of R .

Example 13. For every differential hyperring R,
< 0>;is a differential hyperideal.

A differential hyperideal 1(=R) of a
differential hyperring R is called prime, if for all
X, yeR, xyel implies that Xel or yel .
The intersection of all differential prime
hyperideals of R that contains differential
hyperideal | is called radical | and denoted by
Rad(l) . If the differential hyperring R does not
have any differential prime hyperideal containing



109

IJST (2015) 39A1: 101-111

I, we define Rad(l)=R. A differential

hyperideal | is called differential radical
hyperideal if Rad(l) =1.
Let R be a differential hyperring, | is a

differential hyperideal of Rand A is the set of all
derivations on R. Then, briefly we say that R is a
A-hyperringand | isa A-hyperideal of R.

Let R and S be A, and A, -hyperrings,
respectively. By a differential good homomorphism
of R into S, we mean a good homomorphism ¢

such that d,@(X) =¢d,(X), for all XeR,
d, €A and d, €A,.

Theorem 3.2. Let R and S be A, and A,-

hyperrings, respectively. Also, let @:R—S bea
differential good homomorphism. Then,
(1) kerg isa A, -hyperideal,

@) If | isa A,-hyperideal of S, then ¢ *(l) is
a A;-hyperideal of R.

Proof: It is inconsequential that Kerg is a

hyperideal of R. For all d, €A;, d, €A, and
X e kerg , we have

¢d, (x) = d,p(x) =d,(0)=0. So, d,(x) ekerep.
The proof of the part (2) is similar.

Theorem 3.3. Let (R,+,7) be a A-hyperring and
| and J be A-hyperideals of R. Then,

1J={x|xedab,aelbelneN} is
i=1
also a A-hyperideal of R.

Proof: It is proved that |1J is a hyperideal (Davvaz
and Leoreanu-Fotea, 2007; p. 78). If X 1J, then

n
XeZaibi,forsome ael,bedandneN.
=

So, forall d € A, we have

d() ed(Yan) = Yd(ap)
=Y (d(@)b +ad) < 1.

Theorem 3.4. Let R bea A-hyperringand P isa
A-hyperideal of R. Then,
J={aeR|raeP,forallreR} is a A-

hyperideal of R.

Proof: It is easy to check that P J and J isa
hyperideal of R. We prove that J is differential.
Suppose that a€ J . Then rae P, for all reR.
So, d(ra)ed(P)cP. On the other hand,

d(ra) ed(r)a+rd(a). Therefore,
rd(a)e—d(r)a+d(ra)c P, for all reR.
Hence, rd(a)eP, for all reR, and this
implies that d(@) € J . So, J isa A-hyperideal.

Let (R,+;) and (R,,+,,,) be A, and A,-
hyperrings, respectively. Then, (R1><R2 ,+,-) is a
hyperring, where for all (a,b),(c,d) eR xR,
hyeroperation + and operation - are defined as
(ab)+(c,d)={(x,y)|xea+c,yeb+,d}
and (a,b)-(c,d)=(a-c,b-,d). For all
d, €A, and d, €A,, we define the function
d, xd, :R xR, >R xR, as

(d; xdy)(%, ) = (dy(x),d,(y)),  for il
(X,y) e R xR,. Then, d, xd, is a derivation on

R xR,.

Theorem 3.5. Let | be a A-radical hyperideal of
commutative A-hyperring R. Then,
(I:r)={xeR|xrel}, foral reR,is also

a A-radical hyperideal.

Proof: Let x,ye(l:r). Then,
(x=y)r=xr—yrcl. so, x—=yc(l:r).
Now, suppose that X € (1 :r) and t€R. Then,
xtr=xrtelt=1. So, xte(l:r). It shows
that (1:1) is a hyperideal. Let X (Il :r) and d
is a derivation of R, then
d(x)rd(xr) ed(x)rd(x)r +d(x)rxd(r). So,
(dX)r)? ed(x)rd(xr) —d(x)rxd(r) < I.
Therefore, d(X)r e Rad(l)=1, which means
that d(X) (1 :r).So, | isa A-hyperideal.
Obviously, (I:r)cRad((l:r)). Let
xeRad((l :r)). Then, there is N € N such that
X" e(l:r). Therefore, X"rel. So, we have
(xN" =x"r" =r"*(x"r)er"™l =1, since
R is commutative. Hence, Xr e Rad(l)=1,
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which means Xe(l:r). So, (I:r) is a A-
radical hyperideal.

If A is a normal hyperideal of hyperring R,
then we define the relation

X =Yy(modA) ifand only if(X—y) A= .
This relation is an equivalent relation and denoted
by xA*y (Davvaz and Leoreanu-Fotea, 2007).

Theorem 3.6. (Davvaz and Leoreanu-Fotea, 2007)
Let R be a hyperring and A be a normal
hyperideal of R. We define the hyperoperation @®
and the multiplication & on the set of classes

[R: A"]={A"(X)| x € R}, as follows:

AXSA(Y)={A (D] ze A (X)+A(Y)}

A (X)® A" (y) = A"(xy).
Then, [R: A"] is a hyperring.

Theorem 3.7. Let R, A and [R:A"] be as

Theorem 3.6. Also, let R and A be differential
and d be a derivation on R such that

A" (d(x) cd(A"(x)- Then, d:[R: A']>[R: A"]
defined by d(A"(X)) = A"(d(X)) is a derivation
on [R:A"].

Proof: At first, we prove that
d(A" (X)) = A"(d(x)).
Suppose that d(S) e d(A"(X)). Then,
SseAX)=>(—X)NAxI
= (d(s)—d(X) A= D
= d(s) € A" (d(X)).

So, A"(d(x))=d(A"(X)), by hypothesis.

Now, it is clear that a is well defined. We have

d(A" () @d(A" (y)) = A"(d(x)) D A" (d(y))

=A@ [ze M) +A (Y}

= A" (d(x)+ A" (d(y)).
On the other hand,

d(A"() @ A(Y))

=d{A' @) ze A +A (V)]
={Ad@)[ze AX)+A(V)}
= A"(d(A" () +d(A(Y))

= A (A" (d(x))+ A (d(Y))

= A (d(x))+ A" (d(y))-
So,

d(A" () @ A" (y)) = d(A"(x)) @d(A"(Y)),
for all A"(x),A’(y) €[R: A"]. Also, we have

d(A"() @ A"(Y)) = d(A"(xy)) = A"(d(xy))
e A"(d(X)y +xd(y))

= A (d(x)y)+ A" (xd(y))

= A(A(d(X¥)y)+ A" (xd(y))

= A (d(x)y)© A" (xd(y))

= (A (d())@A(Y))

DA (@A (d(y))

= (d(A" () @A (Y))
D (A" () @d(A"(Y))).
So, d isaderivation on [R: A'].

Theorem 3.8. Let d be a derivation on A-
hyperfield R such that d(1) =0, where 1 is the

unite element of R. Then, C,(R) is also a A-
hyperfield.

Proof: Let X,y eC,(R), then
d(x+y)=d(x)+d(y)=0.
So, X+ycCy(R). Also, we have
d(xy) ed(x)y+xd(y) =0, which means that
Xy € C, (R) . Now, suppose that 0= x€C,(R),
then d(X) =0. Since R is a hyperfield, there is
Yy € R suchthat xy =1.

We have 0= d(1) = d(xy) € d(x)y +xd(y) = xd(y),
that is Xd(y) =0. So, d(y) =0, since R is A-
hyperfield and X # 0. This shows that Y € C,(R).
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