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Abstract 

In this paper, we introduce the notion of derivation on Krasner hyperrings as follows: the function RRd :  

is a derivation on a Krasner hyperring R  if for all ,, Ryx   )()(=)( ydxdyxd   and 

.)()()( ydxyxdyxd   Then, we investigate some fundamental properties of derivation on Krasner 

hyperings and prime Krasner hyperrings. Also, we introduce differential Krasner hyperingsand discuss some 

related properties. 
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1. Derivation of Krasner hyperrings 

Let H  be a non-empty set and let )(* HP  be the 

set of all non-empty subsets of H . A 

hyperoperation on H  is a map 

)(: * HPHH   and the couple ),( H  is 

called a hypergroupoid. If A  and B  are non-

empty subsets of H , then we denote 

baBA
BbAa

 
 ,

= , AxAx  }{=  and 

}.{= xAxA   A hypergroupoid ),( H  is 

called a  semihypergroup if for all zyx ,,  of H  

we have )(=)( zyxzyx  , which means 

that .= vxzu
zyvyxu

 
 

 There are different 

kinds of hyperrings. The most comprehensive 

reference for hyperrings is Davvaz and Leoreanu-

Fotea's book (2007). Other references are (Davvaz, 

2009; Davvaz and Salasi, 2006; Davvaz and 

Vougiouklis, 2007; Mirvakili et al., 2008; Mirvakili 

and Davvaz, 2010; Mirvakili and Davvaz, 2012; 

Nakassis, 1988). A Krasner hyperring (Krasner, 

1983) is an algebraic structure ),,( R  which 

satisfies the following axioms: (1) ),( R  is a 

canonical hypergroup, i.e., (i) ),( R  is a 

semihypergroup, i.e. 
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zyxzyx  )(=)( , for all Rzyx ,, , 

(ii) xyyx  = , for all Ryx , , (iii) There 

exists R0  such that }{=0 xx , for all 

Rx , (iv) For all Rx  there exists a unique 

element Rx   such that xx 0 , (we write 

x  for x  and we call it the opposite of x ), (v) 

yxz   implies that zxy   and 

yzx  , for all Rzyx ,, ; (2) ),( R  is a 

semigroup having zero as a bilaterally absorbing 

element, i.e., 0=0=0 xx  ; (3) The 

multiplication is distributive with respect to the 

hyperoperation  .  

Throughout this paper, by a hyperring we mean a 

Krasner hyperring.  

A hyperring ),,( R  is called commutative, if ),( R  

is a commutative semigroup. The meaning of center of 

R  is }f,=|{=)( RyallorxyyxRxRZ  . A 

hyperring ),,( R  is called hyperfield, if 

){0},\( R is a group. If ){0},\( R  is a monoid, 

then the identity element of this monoid is called unit 

element of hyperring ),,( R . A hyperring ),,( R  

is called hyperdomain, if R  is a commutative 

hyperring with unit element and 0=xy  implies that 

0=x  or 0=y , for all Ryx , .  

A non-empty subset A  of a hyperring ),,( R  

is called subhyperring of R  if ),,( A  is itself a 

hyperring. The subhyperring A  of R  is normal in 

R  if and only if AxAx  , for all Rx . A 

non-empty subset I of a hyperring R  is called a 
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left (respectively, right) hyperideal if and only if (1) 

Ivu ,  imply that Ivu  , for all Ivu , , 

(2) Iu  and Rr  imply that Iur   

(respectively, Iru  ). Also, I  is called a 

hyperideal if I  is both a left and a right hyperideal.  

A good homomorphism between two hyperrings 

),,( 111 R  and ),,( 222 R  is a map 

21: RRf   such that for all 1, Ryx  , we have 

)()(=)( 21 yfxfyxf  ,  

)()(=)( 21 yfxfyxf   and 0=(0)f . 

Let 21: RRf   be a good homomorphism. 

The kernel of f  is the set 

0}=)(|{= 1 xfRxkerf  . It is inconsequential 

that kerf  is a hyperideal of 1R .  

The concept of derivation on rings was 

introduced by Posner (1957), also see (Khadjiev 

and Çallialp, 1998; Kolchin, 1973; Soytürk, 1994; 

Wang, 1994). Differential rings, differential fields, 

and differential algebras are rings, fields, and 

algebras equipped with a derivation, which is a 

unary function that is linear and satisfies the 

Leibniz product rule. In (2000), Chvalina and 

Chvalinova gave a construction of hyperstructures 

determined by quasi-orders defined by means of 

derivation operators on differential rings. In (2012), 

Davvaz et al. introduced the concept of (3,3)-ary 

differential rings as a generalization of differential 

rings. Then, they gave a construction of 

hyperstructures determined by (3,3)-ary differential 

rings. In (2013), Asokkumar presented the 

definition of derivation in hyperrings.  

We recall the definition of derivation in 

hyperrings (Asokkumar, 2013).  

 

Definition 1.1. Let ),,( R  be a hyperring. The 

function RRd :  is called a derivation if for all

Ryx , ,   

(1) )()(=)( ydxdyxd  ,  

(2) )()()( ydxyxdyxd  .  

 

By the above definition for every derivation d  

on hyperring R , we have 0=(0)d  and 

)(=)( xdxd  , for all Rx .  

 

Example 1. Let {0,1,2}=R . Consider the 

following tables:  
 

  0  1  2  

0  0  1  2  

1  1  1  R  

2  2  R  2  

 
  0  1  2  

0  0  0  0  

1  0  1  2  

2  0  1  2  

 

So, ),,( R  is a hyperring (Davvaz and 

Leoreanu-Fotea, 2007). It is easy to check that the 

function RRd :  defined by 2=(1)0,=(0) dd  

and 1=(2)d  is a derivation.  

 

Example 2. Let 0}|{=  xQxQ , where Q  

is the set of rational numbers. The binary 

hyperoperation and the binary operation  are 

defined as follows: 

,f},|{=   QxallorxyQyxx

,,,f},,{max= yxQyxalloryxyx  

.,f,=  Qyxallorxyyx  

Then, ),,( Q  is a hyperring (Corsini, 1993). 

The function 
 QQd :  defined by xxd =)( , 

for all 
Qx , is a derivation, since for all 

Qyx, ,  

),(=)()( yxdydxd   

xyxyxytQtxyyxd   =}|{=)(

).()(= ydxyxd   

 

Example 3. Let ),,( eG  be a finite group with m

elements, 3>m , and define a hyperaddition and a 

multiplication on {0}= GH , by  

,},{=0=0 Hxxxx 

,,0},{= Gxxxx 

,,,},,{\== yxGyxyxHxyyx 

,0,=0=0 Hxxx 

.,,= Gyxyxyx   

Then, ),,( H is a hyperring (Davvaz and 

Leoreanu-Fotea, 2007; Nakassis, 1988). The 

function HHd :  defined by xxd =)( , for 

all Hx , is a derivation, since   

,,),(=)()( Hyxyxdydxd   

00={0}0=(0)=0)(  dxd  

,(0),0)(= Hxdxxd 

,0}{=)(=)( yxyxyxdyxd   
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yxyx =   
.,),()(= Gyxydxyxd   .,),()(= Gyxydxyxd   

 

Example 4. Consider Example 3 and let ),,( eG  be 

an abelian group, which has no elements of order 2 . 

Then, the function HHd :1 defined by 





 Gxallorx

x
xd

f

0=0
=)(

11  

is a derivation function, since   

}{=)}({=)(0=0)( 1
111

 xxdxdxd  

(0))(= 11 dxd   

;),((0)= 11 Hxxdd 

,0}{=(0)}),({=)( 1
111

 xdxdxxd  

11=   xx  

;),()(= 11 Gxxdxd 
1111

1 =},{\=)(   yxyxHyxd    

.,,),()(= 11 yxGyxydxd    

Hence, the first condition of the definition of 

derivation is valid. Also, we have 

{0}0=(0)=0)( 11  dxd  

00= 1  xx  

;(0),0)(= 11 Hxdxxd 
11

11 =)()(   yxyxydxyxd  

.,,= 11 Gyxyxyx  
  

By the above relations, in order to prove the second 

condition of the definition of derivation, it is enough 

to show that 1111=)(   yxyxyxxyd , for 

all Gyx , . We have  

},{\= 1111   yxyxHyxyx , since 

G  has no elements of order 2 . If 

yxyx   111 = , then 
1= yy  and if 

111 =   yxyx  then 
1= xx . Hence, 

},{ 1111   yxyxyx , since G  has no 

elements of order 2 . Therefore, 
111111 =},{\   yxyxyxyxHyx   

The following example shows that the identity 

function is not always a derivation.  

 

Example 5. Let ),,( eG   be a group. Define a 

hyperaddition and a multiplication on

{0}= GH as follows: 

,},{=0=0 Hxxxx 

,},{\= GxxHxx 

,,,},,{== yxGyxyxxyyx   

,0,=0=0 Hxxx   
.,,= Gyxyxyx   

Then, ),,( H  is a hyperring (Corsini, 1993). 

The function HHd :  defined by xxd =)( , 

for all Hx , is not a derivation, since 

}{==)()( yxHyxyxydxyxd  , 

for all Gyx , . So,  

)()(=)( ydxyxdyxyxd  .  

In a hyperring, we may use xy  instead of yx .  

 

Lemma 1.2. Let d  be a derivation on a hyperring 

R . For all Ryx , , define yyx =0
 and 

xxd =)(0
. Then, for all Nn  and Ryx , ,   

(1) If R  is commutative, then 

))(.()( 1 xdxnxd nn  .  

(2) )()()(
0=

ydxd
i

n
xyd iin

n

i

n 









 , 

where 
nd  denotes the derivation of order .n   

 

Proof: (1) The proof follows easily by induction. 

(2) It is inconsequential that the statement is valid 

for 1=n . Now, let the statement be valid for 

1= kn  (induction hypothesis). We have  

 )(=)( 1 xyddxyd kk 
 


















 
 



 )()(
1

1
1

0=

ydxd
i

k
d iik

k

i

 

)()(
11

0=

ydxd
i

k
iik

k

i











 
  

)()(
1

11
1

0=

ydxd
i

k
iik

k

i











 


 

).()(=
0=

ydxd
i

k
iik

k

i











  

 

Lemma 1.3. Let R  be a hyperring and ],[ yx  

denotes the set yxxy , for all Ryx , . Then, 

for all Rzyx ,, , we have,   

(1) ],[],[=],[ zyzxzyx  ,  

(2) yzxzyxzxy ],[],[],[  ,  

(3) If )(RZx , then ],[=],[ zyxzxy ,  

(4) If d  is a derivation of R , then 

)](,[]),([],[ ydxyxdyxd  . 
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Proof: For Rzyx ,, ,  

)()(=],[(1) yxzzyxzyx   

zyyzzxxz =  

].,[],[= zyzx   

      zxyxyzzxy =],[(2)  

zxyxzyxzyxyz   

yzxxzzyyzx )()(=   

.],[],[= yzxzyx 
     

 

      (3) If )(RZx , then we have  

xzyxyzzxyxyzzxy  ==],[  

].,[=)(= zyxzyyzx   

       (4) Suppose that d  is a derivation of R . 

Then,  

)()(=)(=],[ yxdxydyxxydyxd   

)()()()( xydxydyxdyxd   

xydyxdxydyxd )()()()(=   

)].(,[]),([= ydxyxd   

 

Theorem 1.4. Let d  be a derivation on a hyperring 

R  and n  be the smallest natural number such that 

0=)(Rd n
. Then, for all Ry , 0=)(yd  or 

there is nk <<0  such that 

))()((0 0
1 ydxdn kn , where Rx  00  is a 

fixed element.  

 

Proof: Suppose that n  is the smallest natural 

number such that .0=)(Rd n
 Then, 

0)(1  Rd n
. So, there is Rx  00  such that 

0)( 0
1  xdn

. Let 0)( yd , where Ry . 

Then, there is nk <<0  such that 0)( yd k
 

and 0=)(1 yd k
. By Lemma 1.2, we have  

 )(=0 1
0 ydxd kn 

)()( 1
0

0=

ydxd
i

n
ikin

n

i











  

))()(()()(= 0
11

0 ydxdnydxd knkn    

))()((
2

1
0

2
2

0=

ydxd
i

n
ikin

n

i














  

)).()((= 0
1 ydxdn kn

   

 

Theorem 1.5. Let d  be a good homomorphism 

and derivation on a hyperring R . Then, for all 

Ryx , , 

 )()()()()( yxxdyxxdyxxdxydxd   

 .)()()( xxydxxydxxyd   

 

Proof: We have, for all Ryx , , 

(1)).()()(=)()( yxdyxdxydydxd 

Replace y  by yx , in (1) ,               

)()()(=)()( xdydxdxdxyd )()(= yxdxd  

).()()(= yxxdyxxdxyxd   

On the other hand,  

)()()()()()( xdyxdxydxdxdxyd    

)()()(= yxxdxydxd  . 

So, .)()()()()( yxxdyxxdyxxdxydxd   

Now, we replace x  by yx  in (1) ,  

)()(=)()()(=)()( ydyxdydxdydxydyd  

).()()(= yyxdyyxdyxyd   

On the other hand,  

)()()()()()( yxdydyxdydxydyd   
.)()()(= yxdydyyxd   

So, yyxdyyxdyyxdyxdyd )()()()()(  .  

By changing the role of x  and y , we have 

xxydxxydxxydxydxd )()()()()(  . 

This completes the proof.  

2. Derivation of prime Krasner hyperrings 

In this section, we study the concept of derivation 

on prime hyperrings.  

 

Definition 2.1. A hyperring R is called  prime if

0=xRy implies that either 0=x or .0=y  Also, 

R  is called semiprime if 0=xRx implies that

.0=x  Obviously, every prime hyperring is a 

semiprime hyperring but the converse is not always 

true.  

 

Example 6. Every hyperdomain is prime.  

 

Example 7. All of the hyperrings in Examples 1, 2, 

3 and 5 are prime and semiprime hyperrings.  

 

Example 8. Let ),,( R  be a hyperring. Set

















Ryx

yx
M ,|

00
= and define the 

hyperoperation  and operation  on M  as 


















0000

2211 yxyx
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,,|
00

2121

















 yybxxa

ba
 and 

,
000000

21212211








 
















 yxxxyxyx

where Ryyxx 2121 ,,, . Then, ),,( M  is a 

hyperring. The hyperring ),,( M  is not 

semiprime hyperring, since for all Ryx ,  and 

Rb0 , we have 

,0=
00

0

0000

0























 byxb
 but 

0
00

0








 b
. 

Put .|
00

=
















 Ra

aa
M  Then, 

),,( M  is a prime (respectively, semiprime) 

hyperring if and only if R  is a prime (respectively, 

semiprime) hyperring. 

The following example shows that a semiprime 

hyperring is not a prime hyperring, in general. 

 

Example 9. Let },,,,,{= fdcbaeR . Consider 

the following tables: 
 


 

e  a  b  c  d  f  

e  e  a  b  c  d  f  

a  a  a  },,{ bae
 

d
 

d  
},,{ fdc

 

b  b  },,{ bae
 

b  f
 

},,{ fdc
 

f  

c  c  d  f  e  a  b  

d
 

d
 

d  },,{ fdc
 

a  a  },,{ bae
 

f
 

f
 

},,{ fdc
 

f  b  },,{ bae  b  

 

  e  a  b  c  d  f  

e  e  e  e  e  e  e  

a  e  a  b  e  a  b  

b  e  a  b  e  a  b  

c  e  e  e  c  c  c  

d  e  a  b  c  d  f  

f  e  a  b  c  d  f  

 

It is easy to check that ),,( R  is a semiprime 

hyperring. But ),,( R  is not a prime hyperring, 

since eaRc=  and ., eca   

 

Example 10. Let .},,,{= cbaeR Consider the 

following tables: 
 

  e  a  b  c  

e  e  a  b  c  

a  a  },{ ae  c  },{ cb  

b  b  c  },{ be  },{ ca  

c  c  },{ cb  },{ ca  R  

 

  
e  a  b  c  

e  e  e  e  e  

a  e  e  e  e  

b  e  a  b  c  

c  e  a  b  c  

 

It is easy to check that ),,( R  is a hyperring. 

R  is not semiprime, since eaRa =  but ea  .  

 

Lemma 2.2. Let I  be a non-zero hyperideal on a 

prime hyperring R . Then, for all Ryx , ,   

(1) If 0=Ix  or 0=xI , then 0=x ,  

(2) If 0=xIy , then 0=x  or 0=y ,  

(3) If )(RZx  and 0=xy , then 0=x  or 

0=y ,  

(4) If Rx  such that 0=],[ xI , then )(RZx ,  

(5) If )(RZx  and )(RZxy , then 0=x  or 

)(RZy .  

 

Proof: (1) Suppose that 0=Ix . Then, 

{0}=IxuRx , for all Iu . So 0=x , since 

R  is prime and 0I . In the case 0=xI , the 

proof is similar. 

(2) Suppose that 0=xIy , then 

{0}=xIyxIRy . Thus, 0=xIRy . Hence, 

0=xI  or 0=y , since R  is prime. So by (1), 

0=x  or 0=y . 

(3) Suppose that )(RZx  and 0=xy . Then for 

all Rr , 

xryrxyr ==0=0 . Therefore, 0=xRy  and 

this implies that 0=x  or 0=y , since R  is 

prime. 

(4) By Lemma 1.3 (2), we have 

],[=],[],[],[=0 xrutrxutxrutxutr  , for 
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all Iu  and Rrt , . Therefore, for all 

],[ xrs , we have 0=uts , which means that 

0=uRs . Hence, 0=s , since R  is prime and 

0I . This shows that )(RZx . 

(5) Suppose that )(RZxy . Then, ,],[0 rxy  

for all .Rr  Therefore, 

.],[===],[0 ryxxryxyrrxyxyrrxy   

So, ],[=],[0=0 ryxtrytxt  , for all Rt . 

This implies that ],[0 ryxR . Hence, 0=x  or 

],[0 ry , for all Rr , since R  is prime. 

Then, 0=x  or )(RZy . 

 

Lemma 2.3. Let d  be a derivation on a prime 

hyperring R  and I  be a non-zero hyperideal on 

R . Then, for all Rx ,   

(1) If 0=)(Id , then 0=d ,  

(2) If 0=)( xId  or 0=)(Ixd , then 0=x  or 

0=d ,  

(3) If 0=)( xRd  or 0=)(Rxd , then 0=x  or 

0=d .  

 

Proof: (1) For all Iu  and Rx , we have 

)(=)()()(=0 xudxudxuduxd  . 

Therefore, 0=)(xId , which implies that 0=d , 

by Lemma 2.2 (1). 

(2) Suppose that 0=)( xId . Then, 

uxydxuyduxydxyud )(=)()()(=0  , 

for all Iu  and .Ry  Therefore, 

,0=)( Ixyd  which implies that 0=d  or 0=x , 

by Lemma 2.2 (2). In the case 0=)(Ixd , the 

proof is similar. 

(3) In (2), substitute R  with I . 

 

Definition 2.4. Let R be a hyperring and d  be a 

derivation on R . Then, Rx  is called aconstant 

element associated to d if 0=)(xd . We denote 

by )(RCd , the set of all of constant elements of R

associated to derivation d . It is insignificant that

)(RCd is a subhyperring of R .  

 

Theorem 2.5. Let d  be a derivation on a prime 

hyperring R  such that )()( RZRd  . Also, let 

there be a constant element Rc  associated to d  

such that )(RZc . Then, 0=d .  

 

Proof: There is Rx 0  such that cxcx 00  , since 

)(RZc . We have 

 ,)(=)()()( cxdcxdcxdxcd   for all Rx . 

So, )()(=)( RZxcdcxd  . Therefore, 

cxxdcxdxcxxd 000 )(=)(=)( . This means 

that ],)[(0 0xcxd . Then, there is ],[ 0xct  

such that 0=)( txd . So, 0=)(xd  or 0=t , by 

Lemma 2.2 (3). If 0=t , then 

cxcxxc 000 =],[0   and this is a 

contradiction. So, 0=)(xd , for all Rx .  

 

Lemma 2.6. Let H  and K  be canonical 

subhypergroups of canonical hypergroup ,0),( G . 

Then, KH  is a canonical subhypergroup of G  

if and only if KH   or HK  . 

 

Proof: If KH   or HK  , then it is clear that 

KH  is a canonical subhypergroup of G . 

Now, suppose that KH  is a canonical 

subhypergroup of G  and KH   and HK  . 

Then, there are KHba ,  such that 

KHa \  and HKb \ . Also, we have 

KHba  , since KH  is a canonical 

subhypergroup. Now, one of two following cases 

happens: Case 1:  Hba )( , then there 

exists Hbax  )( . So, Haxb   and 

this is a contradiction. Case 2:  Kba )( , 

in this case there exists Kbay  )( . So, 

Kbya   and this is a contradiction.  

 

Theorem 2.7. Let d  be a non-zero derivation on a 

prime hyperring R  and I  be a non-zero 

hyperideal on R . Then,   

(1) If )(RZI  , then R  is commutative,  

(2) If )(],[0 uIdRu , for all Iu , then R  is 

commutative.  

 

Proof: (1) We have 

,=)(=)(== srurussrurusrsu   for all 

Rsr ,  and .Iu  So, 

usrsrursu ],[=0  . Therefore, ],[0 sr , 

for all Rsr , , by Lemma 2.2 (1).  

(2) Since )(],[0 uIdru , for Iu  and Rr , 

hence ],[0 ru  or 0=)(ud , by Lemma 2.2 (2). 

Put 0}=)(|{= udIuA   and 
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)}(|{= RZuIuB  . It is clear that A  and 

B  are canonical subhypergroups of I  and 

BAI = . So, AI =  or BI = , by Lemma 

2.6. If AI =  that is 0=)(Id , then 0=d , by 

Lemma 2.3 (1) and this is a contradiction. 

Therefore, BI =  that is )(RZI  . This implies 

that R  is commutative, by (1).  

 

Definition 2.8. A hyperring R is called n torsion 

free, where Nn , if    
n

xxxnx  =0 , 

where Rx , implies that 0=x .  

 

Example 11. In Example 1, R is a 2 torsion free 

hyperring. In Example 9, R is a 3 torsion free 

hyperring but R is not a 2 torsion free hyperring, 

since ce 2 but ec  .  

 

Theorem 2.9. Let I  be a non-zero hyperideal of 

2 torsion free hyperring R . Then,   

(1) If d  is a derivation of R  such that 0=)(2 Id , 

then 0=d .  

(2) If 1d  and 2d  are derivations of R  such that 

0=)(21 Idd , then 0=1d  or 0=2d .  

 

Proof: (1) By Lemma 1.2, we have for all Ivu , , 

)()()(2)()(=0 222 vudvdudvuduvd   

).()(2= vdud  

So, 0=)()( vdud , since R  is a 2 torsion free 

hyperring. Therefore, 0=d , by Lemma 2.3 (1) 

and (2). 

(2) We have for all Ivu , , 

))()(()(=0 22121 vudvudduvdd   

)()()( 1221 vdudvudd   

)()()( 2121 vdudvdud   

).()()()(= 2112 vdudvdud         

By replacing u  by )(2 ud  in the above equation, 

we get 

),()(=)()()()(0 1
2
22211

2
2 vdudvduddvdud 

that is 0=)()( 1
2
2 vdud . So, 0=1d  or 

0=)(2
2 Id , by Lemma 2.3 (1) and (2). Therefore, 

0=1d  or 0=2d , by (1).  

In the next lemma and theorem, R  will be a 

hyperring such that the center of it, i. e. )(RZ  is a 

ring.  

 

Example 12. In Examples 1 and 10, the center of 

hyperring R is a ring, since in both {0}=)(RZ . 

It is clear that in Example 8, the center of M is a 

ring if and only if the center of R is a ring. In 

Example 9, 2},{=)( ZceRZ  . So, )(RZ  is a 

ring.  

 

Lemma 2.10. Let R  be a hyperring such that the 

center of it i. e. )(RZ , is a ring. Also, let d  be a 

derivation on R . Then, )()( RZxd  , for all 

)(RZx .  

 

Proof: Suppose that )(RZx . Then, 

)(=)( rxdxrd , for all Rr . So, 

)()()()(0 rxdrxdrxdxrd   

)()( xrdxrd   

)()()()(= xrdrxdrxdrxd   

)()()()(= xrdrdxxrxd   

).()(= xrdrxd    

Therefore, )(=)( xrdrxd , for all Rr .  

 

Theorem 2.11. Let R  be a prime hyperring such 

that the center of it i. e. )(RZ , is a ring. Also, let 

I  be a non-zero hyperideal of R . Then, in every 

following cases R  is commutative.   

(1) If d  is a derivation such that 02 d  and 

)()( RZRd  ,  

(2) If R  is a 2 torsion free hyperring and d  is a 

non-zero derivation such that )()( RZId  ,  

(3) If for all subset A  of R , 3!0  implies that 

A0  and d  is a non-zero derivation such that 

IId )(  and )()(2 RZId  ,  

(4) If for all subset A  of R , 3!0  implies that 

A0  and 21,dd  are non-zero derivations such 

that IId )(2 , )()(21 RZIdd   and 

0=)(2
21 Idd .  

 

Proof: (1) Suppose that )()( RZRd  . Then, 

0=]),([ yxd , for all Ryx , . Replace x  by 

xz , where Rz . Hence, 

]),([],)([]),([=0 yzxdyzxdyxzd 
  

,],)[(],)[(= yxzdyzxd   by Lemma 1.3 (3).  

By replacing z  by )(zd , we get 

],)[(=],)[(]),()[(0 22 yxzdyxzdyzdxd  . 
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So, 0=)(2 zd  or ],[0 yx , by Lemma 2.2 (3). 

Hence, R  is commutative, since 02 d . 

(2) If for all )(RZx , we have 0=)(xd . Then, 

0=))(( RZd  and so 0=)(2 Id . So, 0=d , by 

Theorem 2.9 (1) and this is a contradiction. Hence, 

there is )(0 RZx   such that 0)( 0 xd . By 

Lemmas 1.3 (3) and 2.10, we have for all Iu  

and ,Ry  

].,)[(=

],)[(],)[(=

]),()([]),([=0

0

00

000

yuxd

yuxdyxud

yxudxudyuxd





that is ],)[(0 0 yuxd . So, there is ],[ yut  

such that txd )(=0 0 . Therefore, by Lemmas 2.2 

(3) and 2.10, we get 0=t , since 0)( 0 xd . This 

means that )(RZI  . So, R  is commutative, by 

Theorem 2.7 (1).  

(3) Suppose that Iu , then by Lemmas 1.3 (3) 

and 2.10, we have for all ,Ry  

].),()[(2=

]),()[(]),()[(2=

]),()()()(2[

])),()((2[=

])),()()()(([

])),()(([0

3

223

223

2

22

2

yudud

yududyudud

yudududud

yududd

yududududd

yududd









 

Hence, ]),()[(0 3 yudud , by hypothesis. So, 

0=)(3 ud  or ]),([0 yud , by Lemmas 2.2 (3) 

and 2.10. Therefore, 0=)(3 ud  or )()( RZud  . 

Suppose that 0=)(3 ud . Then, by Lemmas 1.2 

and 1.3 (3), we have for all ,Ry  

].),()[(3=]),()(3[=

]),()()(2)()([

])),(([=0

22

322

2

yududyudud

yuududududud

yuudd

  

Hence, ]),()[(0 2 yudud , by hypothesis. So, 

0=)(2 ud  or ]),([0 yud , by Lemma 2.2 (3). 

Therefore, 0=)(2 ud  or )()( RZud  , for all 

Iu .  

Put )}()(|{= RZudIuA   and 

0}=)(|{= 2 udIuB  . It is clear that A  and 

B  are canonical subhypergroups of I  and 

BAI = . So, AI =  or BI = , by Lemma 

2.6. If BI =  that is 0=)(2 Id , then 0=d , by 

Theorem 2.9 (1) and this is a contradiction. So, 

AI =  that is )()( RZId  . Now (2) completes 

the proof. 

(4) By Lemma 1.3 (3), for all Iu  and Rx , 

])),()(([=0 2221 xududdd  

])),()()()(([ 2
222

2
21 xududududd   

]),()(2[ 21
2
2 xuddud

 

].),()[(2= 2
221 xududd

 

Hence, ]),()[(0 2
221 xududd , by hypothesis. 

So, 0=)(21 udd  or )()(2
2 RZud  , by Lemma 

2.2 (3), for all Iu . Put 

)}()(|{= 2
2 RZudIuA   and 

0}=)(|{= 21 uddIuB  . It is clear that A  and 

B  are canonical subhypergroups of I  and 

BAI = . So, AI =  or BI = , by Lemma 

2.6. If BI =  that is 0=)(21 Idd , then 0=1d  

or 0=2d , by Theorem 2.9 (2), this is a 

contradiction. So, AI =  that is )()(2
2 RZId  . 

Now (3) completes the proof.  

3. Differential Krasner hyperring 

Definition 3.1. A hyperring R  is called 

differentiable if there is at least a derivation on R . 

A hyperring R with all derivations is called 

differential hyperring. A hyperfield R is called 

differential hyperfield if R is differential hyperring. 

A subhyperring H of differential hyperring R  is 

called differential subhyperring if for all derivation

d of R , we have Hhd )( , for all Hh . A 

hyperideal I of differential hyperring R is called a 

differential hyperideal if I  is differential 

subhyperring of R .  

 

Example 13. For every differential hyperring R , 

R>0< is a differential hyperideal. 

A differential hyperideal )( RI   of a 

differential hyperring R  is called prime, if for all 

Ryx , , Ixy  implies that Ix  or Iy . 

The intersection of all differential prime 

hyperideals of R  that contains differential 

hyperideal I  is called radical I  and denoted by 

)(IRad . If the differential hyperring R  does not 

have any differential prime hyperideal containing 
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I , we define RIRad =)( . A differential 

hyperideal I  is called differential radical 

hyperideal if IIRad =)( .  

Let R  be a differential hyperring, I  is a 

differential hyperideal of R and   is the set of all 

derivations on R . Then, briefly we say that R  is a 

-hyperring and I  is a -hyperideal of R . 

Let R  and S  be 1  and 2 -hyperrings, 

respectively. By a differential good homomorphism 

of R  into S , we mean a good homomorphism   

such that )(=)( 12 xdxd  , for all Rx , 

11 d  and 22 d .  

 

Theorem 3.2. Let R  and S  be 1  and 2 -

hyperrings, respectively. Also, let SR:  be a 

differential good homomorphism. Then,   

(1) ker  is a 1 -hyperideal,  

(2) If I  is a 2 -hyperideal of S , then )(1 I  is 

a 1 -hyperideal of R .  

 

Proof: It is inconsequential that ker  is a 

hyperideal of R . For all 11 d , 22 d  and 

kerx , we have  

.0=(0)=)(=)( 221 dxdxd   So, kerxd )(1
. 

The proof of the part (2) is similar. 

 

Theorem 3.3. Let ),,( R  be a -hyperring and 

I  and J  be -hyperideals of R . Then,  

},,,|{=
1=

NnJbIabaxxIJ iiii

n

i

  is 

also a -hyperideal of R .  

 

Proof: It is proved that IJ  is a hyperideal (Davvaz 

and Leoreanu-Fotea, 2007; p. 78). If IJx , then 

ii

n

i

bax 
1=

, for some Iai  , Jbi   and Nn . 

So, for all d , we have   

)(=)()(
1=1=

ii

n

i
ii

n

i

badbadxd   

.))()((=
1=

IJbdabad iiii

n

i

           

 

Theorem 3.4. Let R  be a -hyperring and P  is a 

-hyperideal of R . Then, 

}f,|{= RrallorPraRaJ   is a -

hyperideal of R .  

 

Proof: It is easy to check that JP  and J  is a 

hyperideal of R . We prove that J  is differential. 

Suppose that Ja . Then Pra , for all Rr . 

So, PPdrad  )()( . On the other hand, 

)()()( ardardrad  . Therefore, 

Pradardard  )()()( , for all Rr . 

Hence, Pard )( , for all Rr , and this 

implies that Jad )( . So, J  is a -hyperideal.  

 

Let ),,( 111 R  and ),,( 222 R  be 1  and 2 - 

hyperrings, respectively. Then, ),,( 21 RR  is a 

hyperring, where for all 21),(),,( RRdcba   

hyeroperation   and operation   are defined as 

},|),{(=),(),( 21 dbycaxyxdcba 

and ),(=),(),( 21 dbcadcba  . For all 

11 d  and 22 d , we define the function 

212121 : RRRRdd   as 

,))(),((=),)(( 2121 ydxdyxdd   for all 

21),( RRyx  . Then, 21 dd   is a derivation on 

21 RR  .  

 

Theorem 3.5. Let I  be a -radical hyperideal of 

commutative -hyperring R . Then, 

}|{=):( IxrRxrI  , for all Rr , is also 

a -radical hyperideal.  

 

Proof: Let ):(, rIyx  . Then, 

Iyrxrryx  =)( . So, ):( rIyx  . 

Now, suppose that ):( rIx  and Rt . Then, 

IItxrtxtr ==  . So, ):( rIxt . It shows 

that ):( rI  is a hyperideal. Let ):( rIx  and d  

is a derivation of R , then 

)()()()()()( rrxdxdrxrdxdxrrdxd  . So, 

.)()()()())(( 2 Irrxdxdxrrdxdrxd   

Therefore, IIRadrxd =)()(  , which means 

that ):()( rIxd  . So, I  is a -hyperideal.  

Obviously, )):(():( rIRadrI  . Let 

)):(( rIRadx . Then, there is Nn  such that 

):( rIxn  . Therefore, Irxn  . So, we have 

,=)(==)( 11 IIrrxrrxxr nnnnnn    since 

R  is commutative. Hence, IIRadxr =)( , 
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which means ):( rIx . So, ):( rI  is a -

radical hyperideal.  

If A  is a normal hyperideal of hyperring R , 

then we define the relation  

)(modAyx   if and only if  Ayx )( . 

This relation is an equivalent relation and denoted 

by yxA
 (Davvaz and Leoreanu-Fotea, 2007).  

 

Theorem 3.6. (Davvaz and Leoreanu-Fotea, 2007) 

Let R  be a hyperring and A  be a normal 

hyperideal of R . We define the hyperoperation   

and the multiplication   on the set of classes 

}|)({=]:[ RxxAAR 
, as follows: 

;)}()(|)({=)()( yAxAzzAyAxA  

)(=)()( xyAyAxA   .  

Then, ]:[ AR  is a hyperring.  

 

Theorem 3.7. Let R , A  and ]:[ AR  be as 

Theorem 3.6. Also, let R  and A  be differential 

and d  be a derivation on R  such that 

))(())(( xAdxdA   . Then, ]:[]:[:   ARARd  

defined by ))((=))(( xdAxAd 
 is a derivation 

on ]:[ AR .  

 

Proof: At first, we prove that 

))(())(( xdAxAd   .  

Suppose that ))(()( xAdsd  . Then,  

  AxsxAs )()(  

 Axdsd ))()((  

)).(()( xdAsd       
 

So, ))((=))(( xAdxdA 
, by hypothesis. 

Now, it is clear that d  is well defined. We have  

))(())((=))(())(( ydAxdAyAdxAd  

))}(())((|)({= ydAxdAzzA             

)).(())((= ydAxdA           

On the other hand, 

))()(( yAxAd    

)})()(|)(({= yAxAzzAd    

)}()(|))(({= yAxAzzdA    

)))(())(((= yAdxAdA    

)))(())(((= ydAxdAA    

)).(())((= ydAxdA     
            

 

So, 

,))(())((=))()(( yAdxAdyAxAd  

for all ]:[)(),(   ARyAxA . Also, we have  

))((=))((=))()(( xydAxyAdyAxAd  

))()(( yxdyxdA  
 

))(())((= yxdAyxdA    

)))(())(((= yxdAyxdAA    

))(())((= yxdAyxdA    

))())(((= yAxdA    

)))(()(( ydAxA    

))())(((= yAxAd    

))).(()(( yAdxA    

So, d  is a derivation on ]:[ AR . 

 

Theorem 3.8. Let d  be a derivation on -

hyperfield R  such that 0=(1)d , where 1  is the 

unite element of R . Then, )(RCd  is also a -

hyperfield.  

 

Proof: Let )(, RCyx d , then 

0=)()(=)( ydxdyxd  .  

So, )(RCyx d . Also, we have 

0=)()()( yxdyxdxyd  , which means that 

)(RCxy d . Now, suppose that )(0 RCx d , 

then 0=)(xd . Since R  is a hyperfield, there is 

Ry  such that 1=xy . 

We have ,)(=)()()(=(1)=0 yxdyxdyxdxydd   

that is 0=)(yxd . So, 0=)(yd , since R  is  -

hyperfield and 0x . This shows that )(RCy d . 
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