Some notes on differential hyperrings

L. Kamali Ardekani and B. Davvaz*

Department of Mathematics, Yazd University, Yazd, Iran E-mail: bdavvaz@yahoo.com & davvaz@yazd.ac.ir

Abstract

In this paper, we introduce the notion of derivation on Krasner hyperrings as follows: the function $d: R \to R$ is a derivation on a Krasner hyperring R if for all $x, y \in R$, d(x+y) = d(x) + d(y) and $d(x \cdot y) \in d(x) \cdot y + x \cdot d(y)$. Then, we investigate some fundamental properties of derivation on Krasner hyperings and prime Krasner hyperrings. Also, we introduce differential Krasner hyperingsand discuss some related properties.

Keywords: Krasner hyperring; prime Krasner hyperring; hyperideal; derivation; differential hyperring

1. Derivation of Krasner hyperrings

Let H be a non-empty set and let $P^*(H)$ be the set of all non-empty subsets of H. A hyperoperation on H is a map $\circ: H \times H \to P^*(H)$ and the couple (H, \circ) is called a hypergroupoid. If A and B are non-empty subsets of H, then we denote $A \circ B = \bigcup_{a \in A, b \in B} a \circ b$, $x \circ A = \{x\} \circ A$ and $A \circ x = A \circ \{x\}$. A hypergroupoid (H, \circ) is called a semihypergroup if for all x, y, z of H

called a semihypergroup if for all x, y, z of H we have $(x \circ y) \circ z = x \circ (y \circ z)$, which means that $\bigcup_{u \in x \circ y} u \circ z = \bigcup_{v \in y \circ z} x \circ v$. There are different

kinds of hyperrings. The most comprehensive reference for hyperrings is Davvaz and Leoreanu-Fotea's book (2007). Other references are (Davvaz, 2009; Davvaz and Salasi, 2006; Davvaz and Vougiouklis, 2007; Mirvakili et al., 2008; Mirvakili and Davvaz, 2010; Mirvakili and Davvaz, 2012; Nakassis, 1988). A Krasner hyperring (Krasner, 1983) is an algebraic structure $(R,+,\cdot)$ which satisfies the following axioms: (1) (R,+) is a canonical hypergroup, i.e., (i) (R,+) is a semihypergroup, i.e.

x+(y+z)=(x+y)+z, for all $x, y, z \in R$, (ii) x + y = y + x, for all $x, y \in R$, (iii) There exists $0 \in R$ such that $0+x=\{x\}$, for all $x \in R$, (iv) For all $x \in R$ there exists a unique element $x' \in R$ such that $0 \in x + x'$, (we write -x for x' and we call it the opposite of x), (v) $z \in x + y$ implies that $y \in -x + z$ $x \in z - y$, for all $x, y, z \in R$; (2) (R,\cdot) is a semigroup having zero as a bilaterally absorbing $x \cdot 0 = 0 \cdot x = 0; \quad (3)$ element, i.e., multiplication is distributive with respect to the hyperoperation +.

Throughout this paper, by a hyperring we mean a Krasner hyperring.

A hyperring $(R,+,\cdot)$ is called commutative, if (R,\cdot) is a commutative semigroup. The meaning of center of R is $Z(R) = \{x \in R \mid x \cdot y = y \cdot x, \text{ for all } y \in R\}$. A hyperring $(R,+,\cdot)$ is called hyperfield, if $(R \setminus \{0\},\cdot)$ is a group. If $(R \setminus \{0\},\cdot)$ is a monoid, then the identity element of this monoid is called unit element of hyperring $(R,+,\cdot)$. A hyperring $(R,+,\cdot)$ is called hyperdomain, if R is a commutative hyperring with unit element and xy = 0 implies that x = 0 or y = 0, for all $x, y \in R$.

A non-empty subset A of a hyperring $(R,+,\cdot)$ is called subhyperring of R if $(A,+,\cdot)$ is itself a hyperring. The subhyperring A of R is normal in R if and only if $x+A-x\subseteq A$, for all $x\in R$. A non-empty subset I of a hyperring R is called a

Received: 8 June 2013 / Accepted: 25 November 2014

left (respectively, right) hyperideal if and only if (1) $u,v\in I$ imply that $u-v\subseteq I$, for all $u,v\in I$, (2) $u\in I$ and $r\in R$ imply that $r\cdot u\in I$ (respectively, $u\cdot r\in I$). Also, I is called a hyperideal if I is both a left and a right hyperideal.

A good homomorphism between two hyperrings $(R_1, +_1, \cdot_1)$ and $(R_2, +_2, \cdot_2)$ is a map $f: R_1 \to R_2$ such that for all $x, y \in R_1$, we have $f(x+_1 y) = f(x) +_2 f(y)$,

$$f(x_1, y) = f(x)_2 f(y)$$
 and $f(0) = 0$.

Let $f: R_1 \to R_2$ be a good homomorphism. The kernel of f is the set $kerf = \{x \in R_1 \mid f(x) = 0\}$. It is inconsequential that kerf is a hyperideal of R_1 .

The concept of derivation on rings was introduced by Posner (1957), also see (Khadjiev and Callialp, 1998; Kolchin, 1973; Soytürk, 1994; Wang, 1994). Differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with a derivation, which is a unary function that is linear and satisfies the Leibniz product rule. In (2000), Chvalina and Chvalinova gave a construction of hyperstructures determined by quasi-orders defined by means of derivation operators on differential rings. In (2012), Davvaz et al. introduced the concept of (3,3)-ary differential rings as a generalization of differential rings. Then, they gave a construction of hyperstructures determined by (3,3)-ary differential rings. In (2013), Asokkumar presented the definition of derivation in hyperrings.

We recall the definition of derivation in hyperrings (Asokkumar, 2013).

Definition 1.1. Let $(R,+,\cdot)$ be a hyperring. The function $d: R \to R$ is called a derivation if for all $x, y \in R$,

(1)
$$d(x+y) = d(x)+d(y)$$
,

$$(2) d(x \cdot y) \in d(x) \cdot y + x \cdot d(y).$$

By the above definition for every derivation d on hyperring R, we have d(0) = 0 and d(-x) = -d(x), for all $x \in R$.

Example 1. Let $R = \{0,1,2\}$. Consider the following tables:

+	0	1	2
0	0	1	2

1	1	1	R
2	2	R	2
•	0	1	2
0	0	0	0
1	0	1	2

So, $(R,+,\cdot)$ is a hyperring (Davvaz and Leoreanu-Fotea, 2007). It is easy to check that the function $d:R\to R$ defined by d(0)=0, d(1)=2 and d(2)=1 is a derivation.

Example 2. Let $Q^+ = \{x \in Q \mid x \ge 0\}$, where Q is the set of rational numbers. The binary hyperoperation + and the binary operation · are defined as follows:

$$x+x = \{y \in Q^+ \mid y \le x\}, \text{ for all } x \in Q^+,$$

 $x+y = \max\{x, y\}, \text{ for all } x, y \in Q^+, x \ne y,$
 $x \cdot y = xy, \text{ for all } x, y \in Q^+.$

Then, $(Q^+,+,\cdot)$ is a hyperring (Corsini, 1993). The function $d:Q^+\to Q^+$ defined by d(x)=x, for all $x\in Q^+$, is a derivation, since for all $x,y\in Q^+$,

$$d(x)+d(y) = d(x+y),$$

$$d(x \cdot y) = xy \in \{t \in Q^+ \mid t \le xy\} = xy + xy$$

$$= d(x) \cdot y + x \cdot d(y).$$

Example 3. Let (G, \cdot, e) be a finite group with m elements, m > 3, and define a hyperaddition and a multiplication on $H = G \cup \{0\}$, by

$$x+0=0+x=\{x\}, \forall x \in H,$$

 $x+x=\{x,0\}, \forall x \in G,$
 $x+y=y+x=H\setminus \{x,y\}, \forall x,y \in G, x \neq y,$

$$x + y = y + x = H \setminus \{x, y\}, \forall x, y \in G, x \neq y$$

$$x \otimes 0 = 0 \otimes x = 0, \forall x \in H,$$

$$x \otimes y = x \cdot y, \forall x, y \in G.$$

Then, $(H,+,\otimes)$ is a hyperring (Davvaz and Leoreanu-Fotea, 2007; Nakassis, 1988). The function $d: H \to H$ defined by d(x) = x, for all $x \in H$, is a derivation, since d(x) + d(y) = d(x + y), $\forall x, y \in H$,

$$d(x \otimes 0) = d(0) = 0 \in \{0\} = 0 + 0$$

= $d(x) \otimes 0 + x \otimes d(0), \forall x \in H$,

$$d(x \otimes y) = d(x \cdot y) = x \cdot y \in \{x \cdot y, 0\}$$

$$= x \cdot y + x \cdot y$$

= $d(x) \otimes y + x \otimes d(y), \forall x, y \in G$.

Example 4. Consider Example 3 and let (G,\cdot,e) be an abelian group, which has no elements of order 2. Then, the function $d_1: H \longrightarrow H$ defined by

$$d_1(x) = \begin{cases} 0 & x = 0 \\ x^{-1} & \text{for all } x \in G \end{cases}$$

is a derivation function, since

$$d_1(x+0) = d_1(0+x) = \{d_1(x)\} = \{x^{-1}\}\$$

$$=d_1(x)+d_1(0)$$

$$= d_1(0) + d_1(x), \forall x \in H;$$

$$d_1(x+x) = \{d_1(x), d_1(0)\} = \{x^{-1}, 0\}$$

$$= x^{-1} + x^{-1}$$

$$= d_1(x) + d_1(x), \forall x \in G;$$

$$d_1(x+y) = H \setminus \{x^{-1}, y^{-1}\} = x^{-1} + y^{-1}$$

$$= d_1(x) + d_1(y), \forall x, y \in G, x \neq y.$$

Hence, the first condition of the definition of derivation is valid. Also, we have

$$d_1(x \otimes 0) = d_1(0) = 0 \in \{0\}$$

$$= x^{-1} \otimes 0 + x \otimes 0$$

$$= d_1(x) \otimes 0 + x \otimes d_1(0), \forall x \in H;$$

$$d_1(x) \otimes y + x \otimes d_1(y) = x^{-1} \otimes y + x \otimes y^{-1}$$

$$= x^{-1} \cdot y + x \cdot y^{-1}, \, \forall x, y \in G.$$

By the above relations, in order to prove the second condition of the definition of derivation, it is enough to show that $d(xy) = x^{-1}y^{-1} \in x^{-1} \cdot y + x \cdot y^{-1}$, for all $x, y \in G$. We have

 $x^{-1} \cdot y + x \cdot y^{-1} = H \setminus \{x^{-1} \cdot y, x \cdot y^{-1}\}, \quad \text{since } G \quad \text{has no elements of order } 2 \,. \quad \text{If } x^{-1} \cdot y^{-1} = x^{-1} \cdot y \,, \quad \text{then } y = y^{-1} \quad \text{and if } x^{-1} \cdot y^{-1} = x \cdot y^{-1} \quad \text{then } x = x^{-1}. \quad \text{Hence, } x^{-1}y^{-1} \notin \{x^{-1} \cdot y, x \cdot y^{-1}\}, \quad \text{since } G \quad \text{has no elements of order } 2 \,. \quad \text{Therefore,}$

$$x^{-1}y^{-1} \in H \setminus \{x^{-1} \cdot y, x \cdot y^{-1}\} = x^{-1} \cdot y + x \cdot y^{-1}$$

The following example shows that the identity function is not always a derivation.

Example 5. Let (G,\cdot,e) be a group. Define a hyperaddition and a multiplication on $H = G \cup \{0\}$ as follows:

$$x+0=0+x=\{x\}, \forall x \in H,$$

$$x + x = H \setminus \{x\}, \forall x \in G$$

$$x + y = y + x = \{x, y\}, \forall x, y \in G, x \neq y,$$

$$x \otimes 0 = 0 \otimes x = 0, \forall x \in H,$$

 $x \otimes y = x \cdot y, \forall x \notin y + x \otimes d(y), \forall x, y \in G.$
Then, $(H, +, \otimes)$ is a hyperring (Corsini, 1993).
The function $d: H \to H$ defined by $d(x) = x$,
for all $x \in H$, is not a derivation, since
 $d(x) \otimes y + x \otimes d(y) = x \cdot y + x \cdot y = H - \{x \cdot y\},$
for all $x, y \in G$. So,
 $d(x \otimes y) = x \cdot y \notin d(x) \otimes y + x \otimes d(y).$

In a hyperring, we may use xy instead of $x \cdot y$. **Lemma 1.2.** Let d be a derivation on a hyperring

 $d^{0}(x) = x$. Then, for all $n \in N$ and $x, y \in R$, (1) If R is commutative, then $d(x^{n}) \in n(x^{n-1}.d(x))$.

R. For all $x, y \in R$, define $x^0y = y$ and

(2)
$$d^{n}(xy) \in \sum_{i=0}^{n} {n \choose i} d^{n-i}(x) d^{i}(y)$$
,

where d^n denotes the derivation of order n.

Proof: (1) The proof follows easily by induction. (2) It is inconsequential that the statement is valid for n = 1. Now, let the statement be valid for n = k - 1 (induction hypothesis). We have $d^k(xy) = d(d^{k-1}(xy))$

$$\in d\left(\sum_{i=0}^{k-1} \binom{k-1}{i} d^{k-i-1}(x) d^{i}(y)\right)
\subseteq \sum_{i=0}^{k-1} \binom{k-1}{i} d^{k-i}(x) d^{i}(y)
+ \sum_{i=0}^{k-1} \binom{k-1}{i} d^{k-i-1}(x) d^{i+1}(y)
= \sum_{i=0}^{k} \binom{k}{i} d^{k-i}(x) d^{i}(y).$$

Lemma 1.3. Let R be a hyperring and [x, y] denotes the set xy - yx, for all $x, y \in R$. Then, for all $x, y, z \in R$, we have,

- (1) [x+y,z] = [x,z] + [y,z],
- $(2) [xy,z] \subseteq x[y,z] + [x,z]y,$
- (3) If $x \in Z(R)$, then [xy, z] = x[y, z],
- (4) If d is a derivation of R, then $d[x, y] \subseteq [d(x), y] + [x, d(y)]$.

Proof: For
$$x, y, z \in R$$
,

$$(1)[x+y,z] = (x+y)z - z(x+y)$$

$$= xz - zx + yz - zy$$

$$= [x,z] + [y,z].$$

$$(2)[xy,z] = xyz - zxy$$

$$\subseteq xyz - xzy + xzy - zxy$$

$$= x(yz - zy) + (xz - zx)y$$

$$= x[y,z] + [x,z]y.$$

$$(3) \text{ If } x \in Z(R) \text{, then we have}$$

$$[xy,z] = xyz - zxy = xyz - xzy$$

$$= x(yz - zy) = x[y,z].$$

$$(4) \text{ Suppose that } d \text{ is a derivation of } R.$$
Then,

$$d[x,y] = d(xy - yx) = d(xy) - d(yx)$$

$$\subseteq d(x)y + xd(y) - d(y)x - yd(x)$$

Theorem 1.4. Let d be a derivation on a hyperring R and n be the smallest natural number such that $d^n(R) = 0$. Then, for all $y \in R$, d(y) = 0 or there is 0 < k < n such that $0 \in n(d^{n-1}(x_0)d^k(y))$, where $0 \ne x_0 \in R$ is a fixed element.

= d(x)y - yd(x) + xd(y) - d(y)x

= [d(x), y] + [x, d(y)].

Proof: Suppose that n is the smallest natural number such that $d^n(R) = 0$. Then, $d^{n-1}(R) \neq 0$. So, there is $0 \neq x_0 \in R$ such that $d^{n-1}(x_0) \neq 0$. Let $d(y) \neq 0$, where $y \in R$. Then, there is 0 < k < n such that $d^k(y) \neq 0$ and $d^{k+1}(y) = 0$. By Lemma 1.2, we have $0 = d^n(x_0d^{k-1}(y))$ $\in \sum_{i=0}^n \binom{n}{i} d^{n-i}(x_0) d^{k+i-1}(y)$ $= d^n(x_0) d^{k-1}(y) + n(d^{n-1}(x_0) d^k(y))$ $+ \sum_{i=0}^{n-2} \binom{n}{i+2} (d^{n-i-2}(x_0) d^{k+i+1}(y))$ $= n(d^{n-1}(x_0) d^k(y)).$

Theorem 1.5. Let d be a good homomorphism and derivation on a hyperring R. Then, for all $x,y\in R$,

$$d(x)yd(x) \in (d(x)yx + xd(yx) - xd(yx))$$
$$\cap (xyd(x) + d(xy)x - d(xy)x).$$

We have, $x, y \in R$, $d(x)d(y) = d(xy) \in d(x)y + xd(y).$ (1) Replace y by yx, in (1), d(xy)d(x) = d(x)d(y)d(x) = d(x)d(yx) $= d(xyx) \in d(x)yx + xd(yx).$ On the other hand, $d(xy)d(x) \in d(x)yd(x) + xd(y)d(x)$ = d(x)yd(x) + xd(yx). So, $d(x)yd(x) \in d(x)yx + xd(yx) - xd(yx)$. Now, we replace x by yx in (1), d(y)d(xy) = d(y)d(x)d(y) = d(yx)d(y) $= d(yxy) \in d(yx)y + yxd(y).$ On the other hand, $d(y)d(xy) \in d(y)d(x)y + d(y)xd(y)$ = d(yx)y + d(y)xd(y).So, $d(y)xd(y) \in yxd(y) + d(yx)y - d(yx)y$. By changing the role of x and y, we have $d(x)yd(x) \in xyd(x) + d(xy)x - d(xy)x$. This completes the proof.

2. Derivation of prime Krasner hyperrings

In this section, we study the concept of derivation on prime hyperrings.

Definition 2.1. A hyperring R is called prime if xRy = 0 implies that either x = 0 or y = 0. Also, R is called semiprime if xRx = 0 implies that x = 0. Obviously, every prime hyperring is a semiprime hyperring but the converse is not always true.

Example 6. Every hyperdomain is prime.

Example 7. All of the hyperrings in Examples 1, 2, 3 and 5 are prime and semiprime hyperrings.

Example 8. Let $(R,+,\cdot)$ be a hyperring. Set $M = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} | x, y \in R \right\}$ and define the hyperoperation \bigoplus and operation \bigotimes on M as $\begin{pmatrix} x_1 & y_1 \\ 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} x_2 & y_2 \\ 0 & 0 \end{pmatrix}$

$$= \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a \in x_1 + x_2, b \in y_1 + y_2 \right\}, \quad \text{and} \quad \left(\begin{matrix} x_1 & y_1 \\ 0 & 0 \end{matrix} \right) \otimes \left(\begin{matrix} x_2 & y_2 \\ 0 & 0 \end{matrix} \right) = \left(\begin{matrix} x_1 \cdot x_2 & x_1 \cdot y_2 \\ 0 & 0 \end{matrix} \right),$$

where $x_1, x_2, y_1, y_2 \in R$. Then, (M, \oplus, \otimes) is a hyperring. The hyperring (M, \oplus, \otimes) is not semiprime hyperring, since for all $x, y \in R$ and $0 \neq b \in R$, we have

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = \bar{0}, \quad \text{but}$$

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \neq \bar{0}.$$

Put
$$M' = \left\{ \begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix} | a \in R \right\}$$
. Then,

 (M', \oplus, \otimes) is a prime (respectively, semiprime) hyperring if and only if R is a prime (respectively, semiprime) hyperring.

The following example shows that a semiprime hyperring is not a prime hyperring, in general.

Example 9. Let $R = \{e, a, b, c, d, f\}$. Consider the following tables:

+	e	а	b	С	d	f
e	e	а	b	С	d	f
а	а	а	{ <i>e</i> , <i>a</i> , <i>b</i> }	d	d	$\{c,d,f\}$
b	b	$\{e,a,b\}$	b	f	$\{c,d,f\}$	f
С	С	d	f	e	а	b
d	d	d	$\{c,d,f\}$	а	а	$\{e,a,b\}$
f	f	$\{c,d,f\}$	f	b	$\{e,a,b\}$	b

•	e	а	b	С	d	f
e	e	e	e	e	e	e
a	e	а	b	e	a	b
b	e	а	b	e	a	b
С	e	e	e	С	С	С
d	e	а	b	C	d	f
f	e	а	b	С	d	\overline{f}

It is easy to check that $(R,+,\cdot)$ is a semiprime

hyperring. But $(R,+,\cdot)$ is not a prime hyperring, since aRc = e and $a, c \neq e$.

Example 10. Let $R = \{e, a, b, c\}$. Consider the following tables:

+	e	а	b	c
e	e	а	b	c
а	а	{ <i>e</i> , <i>a</i> }	С	{ <i>b</i> , <i>c</i> }
b	b	С	{ <i>e</i> , <i>b</i> }	<i>{a,c}</i>
С	С	{ <i>b</i> , <i>c</i> }	<i>{a,c}</i>	R

•	e	а	b	С
e	e	e	e	e
a	e	e	e	e
b	e	а	b	С
С	e	а	b	С

It is easy to check that $(R,+,\cdot)$ is a hyperring. R is not semiprime, since aRa = e but $a \neq e$.

Lemma 2.2. Let I be a non-zero hyperideal on a prime hyperring R. Then, for all $x, y \in R$,

- (1) If Ix = 0 or xI = 0, then x = 0,
- (2) If xIy = 0, then x = 0 or y = 0,
- (3) If $x \in Z(R)$ and xy = 0, then x = 0 or y = 0,
- (4) If $x \in R$ such that [I, x] = 0, then $x \in Z(R)$,
- (5) If $x \in Z(R)$ and $xy \in Z(R)$, then x = 0 or $y \in Z(R)$.

Proof: (1) Suppose that Ix = 0. Then, $uRx \subseteq Ix = \{0\}$, for all $u \in I$. So x = 0, since R is prime and $I \neq 0$. In the case xI = 0, the proof is similar.

- (2) Suppose that xIy = 0, then $xIRy \subseteq xIy = \{0\}$. Thus, xIRy = 0. Hence, xI = 0 or y = 0, since R is prime. So by (1), x = 0 or y = 0.
- (3) Suppose that $x \in Z(R)$ and xy = 0. Then for all $r \in R$,
- 0 = r0 = rxy = xry. Therefore, xRy = 0 and this implies that x = 0 or y = 0, since R is prime.
- (4) By Lemma 1.3 (2), we have $0 = [utr, x] \subseteq ut[r, x] + [ut, x]r = ut[r, x]$, for

all $u \in I$ and $t, r \in R$. Therefore, for all $s \in [r, x]$, we have uts = 0, which means that uRs = 0. Hence, s = 0, since R is prime and $I \neq 0$. This shows that $x \in Z(R)$.

(5) Suppose that $xy \in Z(R)$. Then, $0 \in [xy, r]$, for all $r \in R$. Therefore, $0 \in [xy, r] = xyr - rxy = xyr - xry = x[y, r]$. So, $0 = t0 \in tx[y, r] = xt[y, r]$, for all $t \in R$. This implies that $0 \in xR[y, r]$. Hence, x = 0 or $0 \in [y, r]$, for all $r \in R$, since R is prime. Then, x = 0 or $y \in Z(R)$.

Lemma 2.3. Let d be a derivation on a prime hyperring R and I be a non-zero hyperideal on R. Then, for all $x \in R$,

- (1) If d(I) = 0, then d = 0,
- (2) If d(I)x = 0 or xd(I) = 0, then x = 0 or d = 0.
- (3) If d(R)x = 0 or xd(R) = 0, then x = 0 or d = 0.

Proof: (1) For all $u \in I$ and $x \in R$, we have $0 = d(ux) \in d(u)x + ud(x) = ud(x)$.

Therefore, Id(x) = 0, which implies that d = 0, by Lemma 2.2 (1).

(2) Suppose that d(I)x = 0. Then, $0 = d(yu)x \in d(y)ux + yd(u)x = d(y)ux$, for all $u \in I$ and $y \in R$. Therefore, d(y)Ix = 0, which implies that d = 0 or x = 0, by Lemma 2.2 (2). In the case xd(I) = 0, the proof is similar.

(3) In (2), substitute R with I.

Definition 2.4. Let R be a hyperring and d be a derivation on R. Then, $x \in R$ is called aconstant element associated to d if d(x) = 0. We denote by $C_d(R)$, the set of all of constant elements of R associated to derivation d. It is insignificant that $C_d(R)$ is a subhyperring of R.

Theorem 2.5. Let d be a derivation on a prime hyperring R such that $d(R) \subseteq Z(R)$. Also, let there be a constant element $c \in R$ associated to d such that $c \notin Z(R)$. Then, d = 0.

Proof: There is $x_0 \in R$ such that $cx_0 \neq x_0c$, since $c \notin Z(R)$. We have

 $d(xc) \in d(x)c + xd(c) = d(x)c$, for all $x \in R$. $d(x)c = d(xc) \in Z(R)$. So. Therefore, $d(x)cx_0 = x_0d(x)c = d(x)x_0c$. This means that $0 \in d(x)[c,x_0]$. Then, there is $t \in [c,x_0]$ such that d(x)t = 0. So, d(x) = 0 or t = 0, by If t=0. Lemma 2.2 (3). $0 \in [c, x_0] = cx_0 - x_0c$ and this is contradiction. So, d(x) = 0, for all $x \in R$.

Lemma 2.6. Let H and K be canonical subhypergroups of canonical hypergroup (G,+,0). Then, $H \cup K$ is a canonical subhypergroup of G if and only if $H \subseteq K$ or $K \subseteq H$.

Proof: If $H \subseteq K$ or $K \subseteq H$, then it is clear that $H \cup K$ is a canonical subhypergroup of G. Now, suppose that $H \cup K$ is a canonical subhypergroup of G and $H \not\subset K$ and $K \not\subset H$. Then, there are $a,b \in H \cup K$ such that $a \in H \setminus K$ and $b \in K \setminus H$. Also, we have $a+b \subseteq H \cup K$, since $H \cup K$ is a canonical subhypergroup. Now, one of two following cases happens: Case 1: $(a+b) \cap H \neq \emptyset$, then there exists $x \in (a+b) \cap H$. So, $b \in x-a \subseteq H$ and this is a contradiction. Case 2: $(a+b) \cap K \neq \emptyset$, in this case there exists $y \in (a+b) \cap K$. So, $a \in y-b \subseteq K$ and this is a contradiction.

Theorem 2.7. Let d be a non-zero derivation on a prime hyperring R and I be a non-zero hyperideal on R. Then,

- (1) If $I \subseteq Z(R)$, then R is commutative,
- (2) If $0 \in [u, R]Id(u)$, for all $u \in I$, then R is commutative.

Proof: (1) We have

rsu = rus = (ru)s = s(ru) = sru, for all $r, s \in R$ and $u \in I$. So,

 $0 \in rsu - sru = [r, s]u$. Therefore, $0 \in [r, s]$, for all $r, s \in R$, by Lemma 2.2 (1).

(2) Since $0 \in [u, r]Id(u)$, for $u \in I$ and $r \in R$, hence $0 \in [u, r]$ or d(u) = 0, by Lemma 2.2 (2). Put $A = \{u \in I \mid d(u) = 0\}$ and

 $B = \{u \in I \mid u \in Z(R)\}$. It is clear that A and B are canonical subhypergroups of I and $I = A \cup B$. So, I = A or I = B, by Lemma 2.6. If I = A that is d(I) = 0, then d = 0, by Lemma 2.3 (1) and this is a contradiction. Therefore, I = B that is $I \subseteq Z(R)$. This implies that R is commutative, by (1).

Definition 2.8. A hyperring R is called n—torsion free, where $n \in N$, if $0 \in nx = \underline{x + x + \dots + x}$, where $x \in R$, implies that x = 0.

Example 11. In Example 1, R is a 2-torsion free hyperring. In Example 9, R is a 3-torsion free hyperring but R is not a 2-torsion free hyperring, since $e \in 2c$ but $c \neq e$.

Theorem 2.9. Let I be a non-zero hyperideal of 2—torsion free hyperring R. Then,

- (1) If d is a derivation of R such that $d^2(I) = 0$, then d = 0.
- (2) If d_1 and d_2 are derivations of R such that $d_1d_2(I) = 0$, then $d_1 = 0$ or $d_2 = 0$.

Proof: (1) By Lemma 1.2, we have for all $u, v \in I$, $0 = d^2(uv) \in d^2(u)v + 2d(u)d(v) + ud^2(v)$ =2d(u)d(v).

So, d(u)d(v) = 0, since R is a 2-torsion free hyperring. Therefore, d = 0, by Lemma 2.3 (1) and (2).

We have $u, v \in I$, (2) for all $0 = d_1 d_2(uv) \in d_1(d_2(u)v + ud_2(v))$ $\subseteq d_1d_2(u)v + d_2(u)d_1(v)$

$$+d_1(u)d_2(v)+ud_1d_2(v)$$

= $d_1(u)d_1(v)+d_1(u)d_2(v)$

 $= d_2(u)d_1(v) + d_1(u)d_2(v).$

By replacing u by $d_2(u)$ in the above equation, we get

 $0 \in d_2^2(u)d_1(v) + d_1d_2(u)d_2(v) = d_2^2(u)d_1(v),$ that is $d_2^2(u)d_1(v) = 0$. So, $d_1 = 0$ or $d_2^2(I) = 0$, by Lemma 2.3 (1) and (2). Therefore, $d_1 = 0$ or $d_2 = 0$, by (1).

In the next lemma and theorem, R will be a hyperring such that the center of it, i. e. Z(R) is a ring.

Example 12. In Examples 1 and 10, the center of hyperring R is a ring, since in both $Z(R) = \{0\}$. It is clear that in Example 8, the center of M' is a ring if and only if the center of R is a ring. In Example 9, $Z(R) = \{e, c\} \cong Z_2$. So, Z(R) is a

Lemma 2.10. Let R be a hyperring such that the center of it i. e. Z(R), is a ring. Also, let d be a derivation on R. Then, $d(x) \in Z(R)$, for all $x \in Z(R)$.

Proof: Suppose that $x \in Z(R)$. Then, d(xr) = d(rx), $r \in R$. for all So, $0 \in d(xr) - d(rx) \subset d(x)r + xd(r)$ -d(r)x-rd(x)= d(x)r + xd(r) - xd(r) - rd(x)= d(x)r + (x-x)d(r) - rd(x)=d(x)r-rd(x).Therefore, d(x)r = rd(x), for all $r \in R$.

- **Theorem 2.11.** Let R be a prime hyperring such that the center of it i. e. Z(R), is a ring. Also, let I be a non-zero hyperideal of R. Then, in every following cases R is commutative.
- (1) If d is a derivation such that $d^2 \neq 0$ and $d(R) \subset Z(R)$,
- (2) If R is a 2-torsion free hyperring and d is a non-zero derivation such that $d(I) \subseteq Z(R)$,
- (3) If for all subset A of R, $0 \in 3!$ implies that $0 \in A$ and d is a non-zero derivation such that $d(I) \subseteq I$ and $d^2(I) \subseteq Z(R)$,
- (4) If for all subset A of R, $0 \in 3!$ implies that $0 \in A$ and d_1, d_2 are non-zero derivations such $d_2(I) \subseteq I$, $d_1d_2(I) \subseteq Z(R)$ $d_1d_2^2(I) = 0.$

Proof: (1) Suppose that $d(R) \subseteq Z(R)$. Then, [d(x), y] = 0, for all $x, y \in R$. Replace x by XZ., where $z \in R$. Hence, $0 = [d(xz), y] \subseteq [d(x)z, y] + [xd(z), y]$ = d(x)[z, y] + d(z)[x, y], by Lemma 1.3 (3). d(z), replacing Z, by $0 \in d(x)[d(z), y] + d^{2}(z)[x, y] = d^{2}(z)[x, y].$

So, $d^2(z) = 0$ or $0 \in [x, y]$, by Lemma 2.2 (3). Hence, R is commutative, since $d^2 \neq 0$. (2) If for all $x \in Z(R)$, we have d(x) = 0. Then, d(Z(R)) = 0 and so $d^2(I) = 0$. So, d = 0, by Theorem 2.9 (1) and this is a contradiction. Hence, there is $x_0 \in Z(R)$ such that $d(x_0) \neq 0$. By Lemmas 1.3 (3) and 2.10, we have for all $u \in I$ and

$$0 = [d(ux_0), y] \subseteq [d(u)x_0 + ud(x_0), y]$$

= $d(u)[x_0, y] + d(x_0)[u, y]$
= $d(x_0)[u, y]$.

that is $0 \in d(x_0)[u, y]$. So, there is $t \in [u, y]$ such that $0 = d(x_0)t$. Therefore, by Lemmas 2.2 (3) and 2.10, we get t = 0, since $d(x_0) \neq 0$. This means that $I \subseteq Z(R)$. So, R is commutative, by Theorem 2.7 (1).

(3) Suppose that $u \in I$, then by Lemmas 1.3 (3) and 2.10, we have for all $y \in R$,

$$0 \in [d^2(d(u)d(u)), y]$$

$$\subseteq [d(d^2(u)d(u)+d(u)d^2(u)), y]$$

$$=2[d(d^2(u)d(u)),y]$$

$$\subseteq 2[d^3(u)d(u)+d^2(u)d^2(u),y]$$

$$= 2d^{3}(u)[d(u), y] + d^{2}(u)[d^{2}(u), y]$$

$$=2d^{3}(u)[d(u), y].$$

Hence, $0 \in d^3(u)[d(u), y]$, by hypothesis. So, $d^3(u) = 0$ or $0 \in [d(u), y]$, by Lemmas 2.2 (3) and 2.10. Therefore, $d^3(u) = 0$ or $d(u) \in Z(R)$. Suppose that $d^3(u) = 0$. Then, by Lemmas 1.2 and 1.3 (3), we have for all $y \in R$, $0 = [d^2(ud(u)), y]$

$$\subseteq [d^2(u)d(u) + 2d(u)d^2(u) + ud^3(u), y]$$

= $3[d(u)d^2(u), y] = 3d^2(u)[d(u), y].$

Hence, $0 \in d^2(u)[d(u), y]$, by hypothesis. So, $d^2(u) = 0$ or $0 \in [d(u), y]$, by Lemma 2.2 (3). Therefore, $d^2(u) = 0$ or $d(u) \in Z(R)$, for all $u \in I$.

Put $A = \{u \in I \mid d(u) \in Z(R)\}$ and $B = \{u \in I \mid d^2(u) = 0\}$. It is clear that A and B are canonical subhypergroups of I and

 $I=A\cup B$. So, I=A or I=B, by Lemma 2.6. If I=B that is $d^2(I)=0$, then d=0, by Theorem 2.9 (1) and this is a contradiction. So, I=A that is $d(I)\subseteq Z(R)$. Now (2) completes the proof.

(4) By Lemma 1.3 (3), for all $u \in I$ and $x \in R$, $0 = [d_1d_2(d_2(u)d_2(u)), x]$

$$\subseteq [d_1(d_2^2(u)d_2(u)+d_2(u)d_2^2(u)),x]$$

$$\subseteq 2[d_2^2(u)d_1d_2(u),x]$$

$$= 2d_1d_2(u)[d_2^2(u), x].$$

Hence, $0 \in d_1 d_2(u)[d_2^2(u), x]$, by hypothesis. So, $d_1 d_2(u) = 0$ or $d_2^2(u) \in Z(R)$, by Lemma 2.2 (3), for all $u \in I$. Put

 $A = \{u \in I \mid d_2^2(u) \in Z(R)\}$ and $B = \{u \in I \mid d_1d_2(u) = 0\}$. It is clear that A and B are canonical subhypergroups of I and $I = A \cup B$. So, I = A or I = B, by Lemma 2.6. If I = B that is $d_1d_2(I) = 0$, then $d_1 = 0$ or $d_2 = 0$, by Theorem 2.9 (2), this is a contradiction. So, I = A that is $d_2^2(I) \subseteq Z(R)$. Now (3) completes the proof.

3. Differential Krasner hyperring

Definition 3.1. A hyperring R is called differentiable if there is at least a derivation on R. A hyperring R with all derivations is called differential hyperring. A hyperfield R is called differential hyperring R is differential hyperring. A subhyperring R of differential hyperring R is called differential subhyperring if for all derivation R of R, we have R of differential hyperring R is called a differential hyperring R is called a differential hyperrideal R is differential subhyperring R is called a differential hyperring R is differential subhyperring of R.

Example 13. For every differential hyperring R, $<0>_R$ is a differential hyperideal.

A differential hyperideal $I(\neq R)$ of a differential hyperring R is called prime, if for all $x,y\in R$, $xy\in I$ implies that $x\in I$ or $y\in I$. The intersection of all differential prime hyperideals of R that contains differential hyperideal I is called radical I and denoted by Rad(I). If the differential hyperring R does not have any differential prime hyperideal containing

I, we define Rad(I) = R. A differential hyperideal I is called differential radical hyperideal if Rad(I) = I.

Let R be a differential hyperring, I is a differential hyperideal of R and Δ is the set of all derivations on R. Then, briefly we say that R is a Δ -hyperring and I is a Δ -hyperideal of R.

Let R and S be Δ_1 and Δ_2 -hyperrings, respectively. By a differential good homomorphism of R into S, we mean a good homomorphism φ such that $d_2\varphi(x)=\varphi d_1(x)$, for all $x\in R$, $d_1\in\Delta_1$ and $d_2\in\Delta_2$.

Theorem 3.2. Let R and S be Δ_1 and Δ_2 -hyperrings, respectively. Also, let $\varphi: R \to S$ be a differential good homomorphism. Then,

- (1) $ker\varphi$ is a Δ_1 -hyperideal,
- (2) If I is a Δ_2 -hyperideal of S , then $\varphi^{-1}(I)$ is a Δ_1 -hyperideal of R .

Proof: It is inconsequential that $ker\varphi$ is a hyperideal of R. For all $d_1\in\Delta_1,\ d_2\in\Delta_2$ and $x\in ker\varphi$, we have

 $\varphi d_1(x) = d_2 \varphi(x) = d_2(0) = 0$. So, $d_1(x) \in ker\varphi$. The proof of the part (2) is similar.

Theorem 3.3. Let $(R,+,\cdot)$ be a Δ -hyperring and I and J be Δ -hyperideals of R. Then,

$$IJ = \{x \mid x \in \sum_{i=1}^{n} a_i b_i, a_i \in I, b_i \in J, n \in N\}$$
 is also a Δ -hyperideal of R .

Proof: It is proved that IJ is a hyperideal (Davvaz and Leoreanu-Fotea, 2007; p. 78). If $x \in IJ$, then

$$x \in \sum_{i=1}^{n} a_i b_i$$
, for some $a_i \in I$, $b_i \in J$ and $n \in N$.

So, for all $d \in \Delta$, we have

$$d(x) \in d(\sum_{i=1}^{n} a_i b_i) = \sum_{i=1}^{n} d(a_i b_i)$$

$$=\sum_{i=1}^n (d(a_i)b_i+a_id(b_i))\subseteq IJ.$$

Theorem 3.4. Let R be a Δ -hyperring and P is a Δ -hyperideal of R. Then, $J = \{a \in R \mid ra \in P, \text{ for all } r \in R\}$ is a Δ -

hyperideal of R.

Proof: It is easy to check that $P \subseteq J$ and J is a hyperideal of R. We prove that J is differential. Suppose that $a \in J$. Then $ra \in P$, for all $r \in R$. So, $d(ra) \in d(P) \subseteq P$. On the other hand, $d(ra) \in d(r)a + rd(a)$. Therefore, $rd(a) \in -d(r)a + d(ra) \subseteq P$, for all $r \in R$. Hence, $rd(a) \in P$, for all $r \in R$, and this implies that $d(a) \in J$. So, J is a Δ -hyperideal.

Let $(R_1,+_1,\cdot_1)$ and $(R_2,+_2,\cdot_2)$ be Δ_1 and Δ_2 -hyperrings, respectively. Then, $(R_1\times R_2,+,\cdot)$ is a hyperring, where for all $(a,b),(c,d)\in R_1\times R_2$ hyeroperation + and operation \cdot are defined as $(a,b)+(c,d)=\{(x,y)\,|\,x\in a+_1c,y\in b+_2d\}$ and $(a,b)\cdot(c,d)=(a\cdot_1c,b\cdot_2d)$. For all $d_1\in\Delta_1$ and $d_2\in\Delta_2$, we define the function $d_1\times d_2:R_1\times R_2\to R_1\times R_2$ as $(d_1\times d_2)(x,y)=(d_1(x),d_2(y)),$ for all $(x,y)\in R_1\times R_2$. Then, $d_1\times d_2$ is a derivation on $R_1\times R_2$.

Theorem 3.5. Let I be a Δ -radical hyperideal of commutative Δ -hyperring R. Then, $(I:r) = \{x \in R \mid xr \in I\}$, for all $r \in R$, is also a Δ -radical hyperideal.

 $x, y \in (I:r)$. Proof: Let Then, $(x-y)r = xr - yr \subseteq I$. So, $x-y \subseteq (I:r)$. Now, suppose that $x \in (I:r)$ and $t \in R$. Then, $xtr = xrt \in It = I$. So, $xt \in (I:r)$. It shows that (I:r) is a hyperideal. Let $x \in (I:r)$ and dderivation of R, $d(x)rd(xr) \in d(x)rd(x)r + d(x)rxd(r)$. So, $(d(x)r)^2 \in d(x)rd(xr) - d(x)rxd(r) \subseteq I.$ Therefore, $d(x)r \in Rad(I) = I$, which means that $d(x) \in (I:r)$. So, I is a Δ -hyperideal. $(I:r)\subseteq Rad((I:r))$. $x \in Rad((I:r))$. Then, there is $n \in N$ such that $x^n \in (I:r)$. Therefore, $x^n r \in I$. So, we have $(xr)^n = x^n r^n = r^{n-1}(x^n r) \in r^{n-1}I = I$, since R is commutative. Hence, $xr \in Rad(I) = I$,

which means $x \in (I:r)$. So, (I:r) is a Δ -radical hyperideal.

If A is a normal hyperideal of hyperring R, then we define the relation

 $x \equiv y \pmod{A}$ if and only if $(x-y) \cap A \neq \emptyset$. This relation is an equivalent relation and denoted by xA^*y (Davvaz and Leoreanu-Fotea, 2007).

Theorem 3.6. (Davvaz and Leoreanu-Fotea, 2007) Let R be a hyperring and A be a normal hyperideal of R. We define the hyperoperation \oplus and the multiplication \otimes on the set of classes $[R:A^*] = \{A^*(x) \mid x \in R\}$, as follows:

$$A^*(x) \oplus A^*(y) = \{A^*(z) \mid z \in A^*(x) + A^*(y)\};$$

$$A^*(x) \otimes A^*(y) = A^*(xy).$$

Then, $[R:A^*]$ is a hyperring.

Theorem 3.7. Let R, A and $[R:A^*]$ be as Theorem 3.6. Also, let R and A be differential and d be a derivation on R such that $A^*(d(x)) \subseteq d(A^*(x))$. Then, $\overline{d}:[R:A^*] \to [R:A^*]$ defined by $\overline{d}(A^*(x)) = A^*(d(x))$ is a derivation on $[R:A^*]$.

Proof: At first, we prove that $d(A^*(x)) \subseteq A^*(d(x))$.

Suppose that $d(s) \in d(A^*(x))$. Then,

$$s \in A^*(x) \Longrightarrow (s-x) \cap A \neq \emptyset$$

$$\Rightarrow (d(s)-d(x)) \cap A \neq \emptyset$$

$$\Rightarrow d(s) \in A^*(d(x)).$$

So,
$$A^*(d(x)) = d(A^*(x))$$
, by hypothesis.

Now, it is clear that \overline{d} is well defined. We have $\overline{d}(A^*(x)) \oplus \overline{d}(A^*(y)) = A^*(d(x)) \oplus A^*(d(y))$

$$= \{A^*(z) \mid z \in A^*(d(x)) + A^*(d(y))\}\$$

$$= A^*(d(x)) + A^*(d(y)).$$

On the other hand,

$$\overline{d}(A^*(x) \oplus A^*(y))$$

$$= \overline{d}(\{A^*(z) \mid z \in A^*(x) + A^*(y)\})$$

$$= \{A^*(d(z)) \mid z \in A^*(x) + A^*(y)\}\$$

$$= A^*(d(A^*(x)) + d(A^*(y)))$$

$$= A^*(A^*(d(x)) + A^*(d(y)))$$

$$= A^*(d(x)) + A^*(d(y)).$$

So,

$$\overline{d}(A^*(x) \oplus A^*(y)) = \overline{d}(A^*(x)) \oplus \overline{d}(A^*(y)),$$
for all $A^*(x), A^*(y) \in [R:A^*]$. Also, we have
$$\overline{d}(A^*(x) \otimes A^*(y)) = \overline{d}(A^*(xy)) = A^*(d(xy))$$

$$\in A^*(d(x)y + xd(y))$$

$$= A^*(d(x)y) + A^*(xd(y))$$

$$= A^*(A^*(d(x)y) + A^*(xd(y)))$$

$$= A^*(d(x)y) \oplus A^*(xd(y))$$

$$= (A^*(d(x)) \otimes A^*(y))$$

$$\oplus (A^*(x) \otimes A^*(d(y)))$$

$$= (\overline{d}(A^*(x)) \otimes A^*(y))$$

$$\oplus (A^*(x) \otimes \overline{d}(A^*(y))).$$

Theorem 3.8. Let d be a derivation on Δ -hyperfield R such that d(1)=0, where 1 is the unite element of R. Then, $C_d(R)$ is also a Δ -hyperfield.

So, d is a derivation on $[R:A^*]$.

Proof: Let $x, y \in C_d(R)$, then d(x+y) = d(x) + d(y) = 0.

So, $x+y\subseteq C_d(R)$. Also, we have $d(xy)\in d(x)y+xd(y)=0$, which means that $xy\in C_d(R)$. Now, suppose that $0\neq x\in C_d(R)$, then d(x)=0. Since R is a hyperfield, there is $y\in R$ such that xy=1.

We have $0 = d(1) = d(xy) \in d(x)y + xd(y) = xd(y)$, that is xd(y) = 0. So, d(y) = 0, since R is Δ -hyperfield and $x \neq 0$. This shows that $y \in C_d(R)$.

References

Asokkumar, A. (2013). Derivation in hyperrings and prime hyperrings. *Iranian Journal of Mathematical Sciences and Informatics*, 8(1), 1–13.

Chvalina, J., & Chvalinova, L. (2000). Multistructures determined by differential rings. *Archivum Mathematicum*, 36(5), 429–434.

Corsini, P. (1993). *Prolegomena of Hypergroup Theory*. Second edition, Aviani Editor.

Davvaz, B., & Salasi, A. (2006). A realization of hyperrings. *Communications in Algebra*, 34(12), 4389– 4400.

Davvaz, B., & Leoreanu-Fotea, V. (2007). *Hyperring Theory and Applications*. USA: International Academic Press.

Davvaz, B., & Vougiouklis, T. (2007). Commutative

rings obtained from hyperrings (H_v -rings) with α^* -relations. *Communications in Algebra*, 35, 3307-3320.

- Davvaz, B. (2009). Approximations in hyperrings. *Journal of Multiple-Valued Logic and Soft Computing*, 15(5-6), 471–488.
- Davvaz, B., Zareyan, L., & Leoreanu-Fotea, V. (2012). (3,3)-ary differential rings. *Mediterranean Journal of Mathematics*, 9, 357–378.
- Khadjiev, D., & Çallialp, F. (1998). On the differential prime radical of a differential ring. *Turkish Journal of Mathematics*, 22, 355–368.
- Kolchin, E. (1973). *Differential algebra and algebraic groups*. New York: Academic Press.
- Krasner, M. (1983). A class of hyperrings and hyperfields. *International Journal of Mathematics and Mathematical Sciences*, 6, 307–311.
- Mirvakili, S., Anvariyeh, S. M., & Davvaz, B. (2008). On α -relation and transitivity conditions of α -communications in Algebra, 36(5), 1695–1703.
- Mirvakili, S., & Davvaz, B. (2010). Relations on Krasner (*m*, *n*)-hyperrings. *European Journal of Combinatorics*, 31(3), 790–802.
- Mirvakili, S., & Davvaz, B. (2012). Applications of the α^* -relation to Krasner hyperrings. *Journal of Algebra*, 362, 145–156.
- Nakassis, A. (1988). Recent results in hyperring and hyperfield theory. *International Journal of Mathematics and Mathematical Sciences*, 11(2), 209–220.
- Posner, E. (1957). Derivations in prime rings. *Proceedings of the American Mathematical Society*, 8, 1093–1100.
- Soytürk, M. (1994). The commutativity in prime gamma rings with derivation. *Turkish Journal of Mathematics*, 18, 149–155.
- Wang, X. K. (1994). Derivations in prime near-rings. Proceedings of the American Mathematical Society, 121(2), 361–366.