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Abstract 

Chaotic systems are nonlinear dynamic systems, the main feature of which is high sensitivity to initial conditions. 

To initiate a design process in fuzzy model, chaotic systems must first be represented by T-S fuzzy models. In this 

paper, a new fuzzy modeling method based on sector nonlinearity approach has been recommended for chaotic 

systems relating to initial condition variations using the interval type-2 Takagi–Sugeno (IT2 T-S) fuzzy model. 

Examining many famous chaotic systems, it can be seen that nonlinear terms in chaotic systems are composed of 

just one variable or more. In the process of constructing an IT2 T-S fuzzy model which represents the chaotic 

systems, authors will focus on nonlinear terms of the chaotic systems. The proposed interval type-2 Takagi-

Sugeno fuzzy modeling method is employed for two kinds of nonlinear terms; at first, a uni-variable nonlinear 

term is presented and then a multi-variable one will be introduced. So, it will be shown how many famous chaotic 

systems are represented by IT2 T-S fuzzy model. Then the proposed approach is applied to Genesio-Tesi and 

Rossler systems. Numerical simulations are given to demonstrate the efficiency of the proposed method in 

MATLAB environment. 
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1. Introduction 

Examining chaotic processes and their applications, 

we can see that chaotic modeling is a very attractive 

topic because they are naturally observed in many 

physical, chemical, electrical, and mechanical 

systems. However chaotic modeling encounters the 

serious challenge of analyzing complicated 

dynamics. A chaotic system is a highly complicated 

dynamic nonlinear system and its response exhibits 

an excessive sensitivity to the initial conditions. 

The sensitive matter of chaotic systems is generally 

called butterfly effect. Chaotic phenomena and its 

theories have been applied to many fields of science 

such as physical systems (Vincent et al., 2006;Wu 

et al., 2012; Li et al., 2013), ecological systems 

(Wackernagel and Rees, 2013; Yu et al., 2011), 

chemical process (Srivastava et al., 2013), secure 

communications (Yang, 2004; Hamiche et al., 

2013; Yang and Zhu 2014), etc.  

Chaotic theory has received increasing 

consideration over the past decades, but general 

modeling tools have always encountered 

considerable analytical and numerical difficulties in  
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observing the nature of chaotic systems. So, as we 

know, the fuzzy systems are appropriate for 

processes in which qualitative criteria are 

considered. Moreover, fuzzy systems are 

appropriate methods for modeling complex 

nonlinear systems such as chaotic systems. Because 

of mathematical analysis simplicity, the T–S fuzzy 

systems as a powerful tool for modeling and 

designing fuzzy controller are preferred among 

several kinds of fuzzy system methods (Takagi and 

Sugeno 1985; Lian et al., 2001; Zhang et al., 2007). 

Science the membership functions of type-1 fuzzy 

sets are varied because of uncertain information, the 

control problem consists of limited ability. Zhang et 

al., (2005), Dong (2007), Pourkargar and Shahrokhi 

(2011), Lam and Leung (2006), Lian et al. (2002), 

etc. have used the type-1 fuzzy model for modeling 

chaotic systems. Some of these papers are based on 

fuzzy modeling for just one type of chaotic 

systems, for example Pourkargar and Shahrokhi 

(2011) considered fuzzy modeling for Lorenz 

system. As type-1 fuzzy systems (T1 FSs) are 

certain (because the fact that its membership grades 

are crisp values), there are restrictions in T1 FSs for 

modeling uncertain systems (Wu and Wan 2006; 
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Hagras 2004; Hagras 2007; Tan and Chua 2007; 

Coupland and John 2007). 

In recent years, type-2 fuzzy logic systems have 

received much attention as a powerful tool for 

nonlinear control. Jammeh (2004), Mendel et al. 

(2006), Roopaei (2011), and Leal-Ramírez (2011) 

have proposed a type-2 fuzzy logic system (FLS) to 

deal with uncertain grades of membership using 

type-2 fuzzy sets. Melin et al (2013) have designed 

optimal controllers for autonomous mobile robots. 

Castillo and Melin (2012) have reviewed the design 

and optimization of IT2 fuzzy controllers. Denisse 

et al. (2009) have combined type-2 fuzzy system 

and optimization methods. The superiority of IT2 

fuzzy sets over type-1 in dealing with uncertain 

grades of membership have been shown in various 

applications (Wu, 2006; Castillo et al., 2007; Du et 

al., 2012). Many reported results for various 

applications have shown that IT2 FLSs are better 

than type-1 fuzzy subject with ability to handle 

uncertainties (Wu 2012; Castillo and Melin 2008). 

In this paper, to deal with some problems still 

existing in control of chaotic systems via type-1 T-

S fuzzy models, we propose an IT2 T-S fuzzy 

model based on sector nonlinearity to represent 

many well-known chaotic systems relating to 

variability in initial conditions covered by the lower 

and upper membership functions of the interval 

type-2 fuzzy sets. This model can be used to control 

and synchronize chaotic systems using type-2 fuzzy 

system. The features of the proposed method can be 

explained as follow: 

Motivated by potential applications in modeling 

chaotic phenomena such as chaos synchronization, 

communication, physical theory and system, 

control of chaotic dynamic have received increased 

interest. Since chaotic systems are inherently 

complicated systems, fuzzy modeling provides an 

appropriate representation for such systems. Among 

several types of fuzzy methods, we use T-S fuzzy 

model because of the simplicity of the 

mathematical analysis and the fact that it provides 

an exact representation. Generally, the type-2 FLS 

can be considered as an infinite set of type-1 FLSs. 

So, extra information, including initial condition 

variations, can be captured by the type-2 FLS. For 

chaotic systems that evolve within a bounded 

region of the state space and initial condition 

variations, the type-2 T–S fuzzy model can 

represent the nonlinear dynamics by lower and 

upper membership functions of interval type-2 

fuzzy sets. Also, because of computational burden 

of defuzzification and type reduction for general 

type-2 FLS, we employ the IT2 sets to decrease 

computational complexity. So, IT2 T-S modeling is 

used because type-2 fuzzy systems are able to 

model structured uncertainties such as perturbations 

in initial conditions such as FOU in fuzzy rules by 

choosing an appropriate membership function. In 

the procedure of constructing an IT2 T-S fuzzy 

model which represents the chaotic system, we 

focus on nonlinear terms of the chaotic system. The 

proposed IT2 T-S fuzzy modeling method is 

employed for two kinds of nonlinear terms; at first, 

a uni-variable nonlinear term is presented and then 

a multi-variable one will be introduced. In this 

paper a fuzzy modeling method is introduced for 

chaotic systems with several initial conditions using 

the IT-2 T-S fuzzy model. So, the main advantage 

of proposed method is simplicity in mathematical 

computations and parametric uncertainties 

modeling. 

The rest of this paper is organized as follows. In 

section 2, the IT2 T–S fuzzy model for different 

famous chaotic systems will be presented. 

Numerical examples are given in section 3. Finally, 

Conclusions are presented in section 4. 

2. Fuzzy modeling of chaotic systems using IT2 

T-S 

Chaotic systems are nonlinear dynamical systems 

the main feature of which is high sensitivity to 

initial conditions. For this purpose, we consider 

variability in initial conditions to model some 

classical chaotic systems based on sector 

nonlinearity approach (Ohtake et al., 2003) via IT2 

T-S fuzzy model. This approach is one of the 

approaches that makes T-S models for fuzzy 

control design, as it can obtain an exact 

representation of a nonlinear system. To initiate a 

design process based on fuzzy model, chaotic 

systems must first be represented by T-S fuzzy 

models. In this section we show IT2 T-S fuzzy 

modeling of chaotic systems since it seems to be 

appropriate for chaotic systems modeling with 

structural variations of system. Examining many 

famous chaotic systems such as Henon (Hénon 

1978), Genesio-Tesi (Genesio and Tesi 1992), 

Rossler system (Rössler 1976), Lorenz system 

(Lorenz, 1963), etc, we found that nonlinearities in 

chaotic systems are composed of just one variable 

or have the same single variable. This variable can 

be used as output of chaotic system in many 

applications such as secure communication. If it is 

taken as the premise variable of type 2 fuzzy rules 

and the initial condition is varied in a certain bound 

then a fuzzy dynamical model with lower and upper 

membership functions can be obtained to represent 

chaotic systems. Now, we will illustrate how to 

represent many famous chaotic systems by the IT2 

T–S fuzzy model. 

We consider some classical chaotic dynamic 

systems as follows: 
 
�̇� = 𝑓(𝐱(t)) + 𝐶                                                   (1) 
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where 𝐱 = (x1, x2, … , xn)
T ∈ 𝑅𝑛 is the state vector, 

𝑓(𝐱(t)) is a smooth nonlinear matrix function with 

appropriate dimension and C is a constant vector. 

The elements of matrix function 𝑓(𝐱(t)) are 

assumed to be bounded. The scheduling variables 

are chosen as 𝑍𝛼(. ) ∈ [𝑍𝛼 , 𝑍𝛼], 𝛼 = 1,2, … , 𝑞 

where 𝑍𝛼 denote the non-constant terms in 𝑓(𝐱(t)) 

and 𝑍𝛼 and 𝑍𝛼 are the minimum and maximum of 

𝑍𝛼 respectively. The following describe the IT2 TS 

fuzzy model with p rules (Lam and Leung 2011): 

Rule i:  

If 

𝑍1(𝐱(𝑡))  𝑖𝑠   �̃�1
𝑖     𝐴𝑁𝐷…   𝐴𝑁𝐷  𝑍𝑞(𝐱(𝑡)) 𝑖𝑠  �̃�𝑞

𝑖  

Then: 
 
�̇� = 𝐴𝑖𝐱(𝑡) + 𝑏𝑖  
 

Here �̃�𝛼
𝑖  is an interval type-2 fuzzy set of rules i 

subject to the function 𝑍𝛼(𝐱(𝑡)), 
𝛼 = 1, 2, … , q ;  𝑖 = 1, 2, … , 𝑝; q is a positive 

number; 𝐱(𝑡) ∈ 𝑅𝑛 is the state vector; 𝐴𝑖 ∈ 𝑅
𝑛×𝑛 

and 𝑏𝑖 ∈ 𝑅
𝑛×1 are the known system matrices. The 

firing strength of the i-th rule resides in the 

following interval sets:  
 

�̃�𝑖(𝐱(𝑡)) = [𝜔𝑖
𝐿(𝐱(𝑡))  , 𝜔𝑖

𝑈(𝐱(𝑡))]  , 𝑖 =

1 , 2 , … , 𝑝                                                              (2) 
 
where 
 

𝜔𝑖
𝐿(𝐱(𝑡)) = ∏ 𝜇�̃�𝛼𝑖 (𝑍𝛼(𝐱(𝑡)))

𝑞
𝛼=1 ≥ 0                 (3) 

 

𝜔𝑖
𝑈(𝐱(𝑡)) = ∏ 𝜇�̃�𝛼𝑖

(𝑍𝛼(𝐱(𝑡)))
𝑞
𝛼=1 ≥ 0                 (4) 

 

In which 𝜔𝑖
𝐿(𝐱(𝑡)) and 𝜔𝑖

𝑈(𝐱(𝑡)) are the lower 

and upper grades of membership, respectively. The 

functions 𝜇�̃�𝛼𝑖 (𝑍𝛼(𝐱(𝑡))) and 𝜇�̃�𝛼𝑖
(𝑍𝛼(𝐱(𝑡))) are 

the lower and upper membership functions, 

respectively. So, the IT2 T-S fuzzy model can be 

shown as follows: 
 

�̇�(𝑡) =∑𝜔𝑖
𝐿(𝐱(𝑡))𝑣𝑖(𝐱(𝑡))(𝐴𝑖𝐱(𝑡) + 𝑏𝑖)

𝑝

𝑖=1

+∑𝜔𝑖
𝑈(𝐱(𝑡))𝑣𝑖(𝐱(𝑡))(𝐴𝑖𝐱(𝑡)

𝑝

𝑖=1

+ 𝑏𝑖) 

= ∑ 𝜔𝑖(𝐱(𝑡))(𝐴𝑖𝐱(𝑡) + 𝑏𝑖)
𝑝
𝑖=1                                (5) 

 
where  
 

{
 

 
𝜔𝑖(𝐱(𝑡)) = 𝜔𝑖

𝐿(𝐱(𝑡))𝑣𝑖(𝐱(𝑡)) + 𝜔𝑖
𝑈(𝐱(𝑡))𝑣𝑖(𝐱(𝑡)) ≥ 0

∀𝑖,∑𝜔𝑖(𝐱(𝑡)) = 1

𝑝

𝑖=1

                                                       (6)
 

 

Here 𝑣𝑖(𝐱(𝑡)) ≥ 0  and 𝑣𝑖(𝐱(𝑡)) ≥ 0 are 

nonlinear functions and in which ∀𝑖 ,   𝑣𝑖(𝐱(𝑡)) +

𝑣𝑖(𝐱(𝑡)) = 1. For simplicity, 𝑣𝑖(𝐱(𝑡)) and 

𝑣𝑖(𝐱(𝑡)) can be define equal to 0.5 (Liang and 

Mendel 2000). 

We assume that the premise variables are 

independent of input. This assumption is used to 

avoid an extra computation subject to 

defuzzification procedure. Additionally, we 

consider another assumption as follows:  

 

Assumption 1. Considering the boundedness of 

chaotic systems, it is supposed that the fuzzy set is 

chosen in the state space as the following set: 
 
Ω = {𝐱(𝑡) ∈ ℝ𝑛: ‖𝐱(𝑡)‖ ≤ 𝛽}                                (7) 
 

For chaotic systems, the existence of the 

parameter 𝛽 is normal. 

3. Numerical simulations 

In the process of structuring an IT2 T-S fuzzy 

model which represents the nonlinear system (1), 

we will focus on nonlinear terms of the nonlinear 

system. The IT2 T-S fuzzy modeling method is 

employed for two kinds of nonlinear terms; at first 

we consider a uni-variable nonlinear term and then 

a multi-variable one will be introduced. 

 

Case 1. There is just one variable in a nonlinear 

term (The Genesio-Tesi map) 

This system is given by: 
 

{

�̇�1 = 𝑥2                                         
�̇�2 = 𝑥3                                         

�̇�3 = −𝑐𝑥1 − 𝑏𝑥2 − 𝑎𝑥3 + 𝑥1
2

𝑦 = 𝑥1                                          

                           (8) 

 
where 𝑎, 𝑏, 𝑐 > 0 and 𝑎𝑏 < 𝑐. Selecting the 

parameters of system as (𝑎, 𝑏, 𝑐) = (1,2.8,5), the 

chaotic attractors are shown in Fig. 1. 
 

 
 

Fig. 1. chaotic attractors of Genesio-Tesi system 
 

This system can be rewritten in the form (1), as: 
 

�̇� = [
0 1 0
0 0 1

−𝑐 + 𝑥1 −𝑏 −𝑎
] 𝐱                                 (9) 
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If we consider 𝑓(𝐱(t)) = 𝑥1
2 as a single scalar 

nonlinear function then nonlinear term depends just 

on one state variable 𝑥1(𝑡). So, the scheduling 

variable i.e., the non-constant element in the matrix 

function can be defined as 𝑍1(𝐱(𝑡)) = 𝑥1.  

As mentioned, many researchers have used type-1 

TS fuzzy model via the sector nonlinearity 

technique for chaotic system, but type-1 TS fuzzy 

sets have limited ability of considering the 

uncertainty information. Now, we describe type one 

fuzzy model again and show this inability. When 

initial conditions are constant, we have, 𝑍1(𝐱(𝑡)) =
𝑥1 ∈ (𝑥1𝑚𝑖𝑛 , 𝑥1𝑚𝑎𝑥), i.e., lower and upper bound of 

𝑥1(𝑡) are constant. So, the membership functions 

are defined as follows: 
 

𝜇𝑀11 (𝑍1(𝑥(𝑡))) =
𝑥1𝑚𝑎𝑥 − 𝑥1

𝑥1𝑚𝑎𝑥 − 𝑥1𝑚𝑖𝑛
 

𝜇𝑀12 (𝑍1(𝑥(𝑡))) = 1 − 𝜇𝑀11 (𝑍1(𝑥(𝑡)))

=
𝑥1−𝑥1𝑚𝑖𝑛

𝑥1𝑚𝑎𝑥 − 𝑥1𝑚𝑖𝑛
 

 
The following type-1 fuzzy rule is used to describe 

the Genesio-Tesi system: 

Rule i:  

if 𝑍1(𝐱(𝑡))  𝑖𝑠  𝑀1
𝑖     

 
Then: �̇� = 𝐴𝑖𝐱(𝑡)            ;    𝑖 = 1,2                     (10) 
 
where 𝑀1

1 and 𝑀1
2 are type-1 fuzzy set and: 

 

𝐴1 = [
0 1 0
0 0 1

−𝑐1 + 𝑥1𝑚𝑖𝑛 −𝑏 −𝑎
] 

𝐴2 = [
0 1 0
0 0 1

−𝑐1 + 𝑥1𝑚𝑎𝑥 −𝑏 −𝑎
]                             (11) 

 
The type-1 TS fuzzy model can be defined as 

follows: 
 

�̇� = ∑ �̂�𝑖(𝐱(𝑡))(𝐴𝑖𝐱(t))
2
𝑖=1                                 (12) 

 
where the normalized grades of membership are 

defined as:  
 

�̂�𝑖(𝐱(𝑡)) =
𝜇
𝑀1
𝑖 (𝑍1(𝐱(𝑡)))

𝜇
𝑀1
1(𝑍1(𝐱(𝑡)))+𝜇𝑀1

2(𝑍1(𝐱(𝑡)))
 , 𝑖 = 1,2.        (13) 

 
It should be noted that the initial conditions are 

assumed to be a constant. So, type-1 fuzzy model 

cannot consider initial conditions as uncertain. 

Instead, an IT2 T-S fuzzy model is proposed as 

follows. 

By choosing initial condition for 𝑥1(𝑡) in the 

interval [0  1] with step 0.1, the lower and upper 

bounds of 𝑥1(𝑡) can be obtained from simulation as 

Table (1). Other initial conditions of state variables 

are considered as constant.  Note that this interval 

can be chosen wider. 

The lower and upper membership functions 

should satisfy the following inequality: 
 

 𝜇�̃�1𝑖
(𝑍1(𝐱(𝑡))) ≤ 𝜇𝑀1𝑖

(𝑍1(𝐱(𝑡))) ≤

𝜇�̃�1𝑖
(𝑍1(𝐱(𝑡))) ; 

𝑖 = 1,2                                                                 (14) 
 

Table 1. Initial conditions and lower and upper  

bound of 𝑥1 for Genesio-Tesi system 
 

Lower and Upper bound of 𝑥1 Initial Conditions (𝑥1, 𝑥2, 𝑥3) 
[−2.65 5.8] [0.1 0.1 0.1] 
[−2.67 5.84] [0.2 0.1 0.1] 
[−2.66 5.8] [0.3 0.1 0.1] 
[−2.65 5.8] [0.4 0.1 0.1] 
[−2.67 5.83] [0.5 0.1 0.1] 
[−2.65 5.79] [0.6 0.1 0.1] 
[−2.66 5.78] [0.7 0.1 0.1] 
[−2.66 5.8] [0.8 0.1 0.1] 
[−2.65 5.8] [0.9 0.1 0.1] 
[−2.65 5.8] [1 0.1 0.1] 

 
It can be deduced from eq. (14) that the lower and 

upper membership functions make the footprint of 

uncertainty (FOU) region that captures the 

uncertainties in initial conditions. Any type-1 fuzzy 

can be reconstructed based on the FOU. So, the IT2 

T-S fuzzy model consists of infinite number of 

type-1 fuzzy models. By selecting values as 

assumption 1 and substituting numerical values, the 

lower and upper bounds of 𝜇�̃�1𝑖
(𝑍1(𝐱(𝑡))) can be 

determined and the lower and upper membership 

functions are depicted in Table 2 based on sector 

nonlinearity.  
 

Table 2. Lower and upper membership  

functions of Genesio-Tesi system 
 

Lower membership function Upper membership function 

𝜇�̃�11 (𝑍1(𝐱(𝑡)))

=
𝑚𝑖𝑛{𝑍1𝑚𝑎𝑥} − 𝑍1(𝐱(𝑡))

𝑚𝑎𝑥{𝑍1𝑚𝑎𝑥} − 𝑚𝑖𝑛{𝑍1𝑚𝑖𝑛}

=
5.78 − 𝑥1
5.84 + 2.67

 

𝜇�̃�11
(𝑍1(𝐱(𝑡)))

=
𝑚𝑎𝑥{𝑍1𝑚𝑎𝑥} − 𝑍1(𝐱(𝑡))

𝑚𝑖𝑛{𝑍1𝑚𝑎𝑥} − 𝑚𝑎𝑥{𝑍1𝑚𝑖𝑛}

=
5.84 − 𝑥1
5.78 + 2.65

 

𝜇�̃�12 (𝑍1(𝐱(𝑡)))

=
𝑍1(𝐱(𝑡)) − 𝑚𝑎𝑥{𝑍1𝑚𝑖𝑛}

𝑚𝑎𝑥{𝑍1𝑚𝑎𝑥} − 𝑚𝑖𝑛{𝑍1𝑚𝑖𝑛}

=
𝑥1 + 2.65

5.84 + 2.67
 

𝜇�̃�12
(𝑍1(𝐱(𝑡)))

=
𝑍1(𝐱(𝑡)) − 𝑚𝑖𝑛{𝑍1𝑚𝑖𝑛}

𝑚𝑖𝑛{𝑍1𝑚𝑎𝑥} − 𝑚𝑎𝑥{𝑍1𝑚𝑖𝑛}

=
𝑥1 + 2.67

5.78 + 2.65
 

 
Figures 2 and 3 show the lower and upper 

membership functions and FOU of the IT2 T-S 

fuzzy model for Genesio-Tesi system. 
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Fig. 2. Plot of 𝜇�̃�11 (𝑍1(x(𝑡))), Lower membership 

function 𝜇�̃�11 (𝑍1(x(𝑡))), Upper membership function 

𝜇
�̃�1
1 (𝑍1(x(𝑡))) and footprint of uncertainty (grey area) 

for Genesio-Tesi system 
 

 
 

Fig. 3. Plot of 𝜇�̃�12 (𝑍1(x(𝑡))), Lower membership 

function 𝜇�̃�12 (𝑍1(x(𝑡))), Upper membership function 

𝜇�̃�12
(𝑍1(x(𝑡))) and footprint of uncertainty (grey area) 

for Genesio-Tesi system 
 

Then an IT2 T-S fuzzy model with 2 rules of the 

following format is used to describe the Genesio-

Tesi system: 

Rule i: 

if 𝑍1(𝐱(𝑡))  𝑖𝑠  �̃�1
𝑖    

Then: �̇� = 𝐴𝑖𝐱(𝑡) for 𝑖 = 1,2 

So, IT2 T-S fuzzy model can be defined as follows: 
 
�̇�(𝑡) =

∑ (𝜔𝑖
𝐿(𝐱(𝑡))𝑣𝑖(𝐱(𝑡)) +

2
𝑖=1

𝜔𝑖
𝑈(𝐱(𝑡))𝑣𝑖(𝐱(𝑡))) (𝐴𝑖𝐱(𝑡)) =

∑ �̃�𝑖(𝐱(𝑡))(𝐴𝑖𝐱(𝑡))
2
𝑖=1                                           (15) 

 
where 
 

�̃�𝑖(𝐱(𝑡)) =

𝜔𝑖
𝐿(𝐱(𝑡))𝑣𝑖(𝐱(𝑡)) + 𝜔𝑖

𝑈(𝐱(𝑡))𝑣𝑖(𝐱(𝑡))            (16) 
 

Based on this IT2 T-S fuzzy model, considering 

variability in initial conditions, an IT2 fuzzy 

controller with two rules can be employed to chaos 

synchronization and other applications. Figure 4 

shows the difference between fuzzy model and 

original system with any value in the interval set of 

initial condition. 

 

 
 

Fig. 4. Modeling error for Genesio-Tesi system 
 

Based on defined FOU in Figs. 2 and 3, the IT2 

T-S fuzzy model can be considered as a collection 

of type-1 T-S fuzzy models. In other words, a type-

1 fuzzy model can be defined for every initial 

condition within the mentioned interval. For 

example, we have simulated fuzzy model of 

Genesio-Tesi system in the form of eq. (8) for one 

value of initial condition. As it is evident in Fig. 4, 

the difference between fuzzy model and original 

system becomes less than 0.5 × 10−4after about 1.5 

sec., i.e. the fuzzy model can represent the original 

system. It should be noted that the IT2 TS fuzzy 

model serves as a mathematical tool to facilitate the 

design of the IT2 fuzzy controller. In this system, 

based on IT2 T-S fuzzy model, an IT2 fuzzy 

controller with two rules can be employed for chaos 

synchronization and other applications. 

 

Case 2. There is multi-variable in a nonlinear term 

(The Rossler system) 

Consider the following Rossler system: 
 

{

�̇�1 = −𝑥2 − 𝑥3                          
�̇�2 = 𝑥1 + 0.2𝑥2                      

�̇�3 = 0.2 + 𝑥3(𝑥1 − 5)           
𝑦 = 𝑥1                                                 

                          (17) 

 
This system can be rewritten in the form (1), as: 

 

�̇� = [
0 −1 −1
1 0.2 0
0 0 𝑥1 − 5

] 𝐱 + [
0
0
0.2
]                        (18) 

 
The chaotic attractor of the fuzzy Rossler system 

is shown in Fig. 5. 
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Fig. 5. The chaotic attractor of the fuzzy Rossler system 
 

If we consider 𝑓(𝐱(t)) = 𝑥1𝑥3 as a single scalar 

nonlinear function then nonlinear term depends on 

multi state variable 𝑥1(𝑡) and 𝑥3(𝑡). Here, we 

choose 𝑍1(𝐱(𝑡)) = 𝑥1 as premise variable of fuzzy 

rules, which satisfies 𝑥1 ∈ (𝑥1𝑚𝑖𝑛 , 𝑥1𝑚𝑎𝑥). The 

scheduling variable in the matrix function is 

𝑍1(𝐱(𝑡)) = 𝑥1.  

When initial conditions are constant, then 

𝑍1(𝐱(𝑡)) = 𝑥1 ∈ (𝑥1𝑚𝑖𝑛 , 𝑥1𝑚𝑎𝑥), i.e., lower and 

upper bound of 𝑥1(𝑡) are constant. So, the 

membership functions are defined as follows: 
 

𝜇𝑀11 (𝑍1(𝑥(𝑡))) =
𝑥1𝑚𝑎𝑥 − 𝑥1

𝑥1𝑚𝑎𝑥 − 𝑥1𝑚𝑖𝑛
 

𝜇𝑀12 (𝑍1(𝑥(𝑡))) = 1 − 𝜇𝑀11 (𝑍1(𝑥(𝑡))) =
𝑥1−𝑥1𝑚𝑖𝑛

𝑥1𝑚𝑎𝑥−𝑥1𝑚𝑖𝑛
         (19) 

 
The following type-1 fuzzy rule is used to 

describe the Rossler system: 

Rule i:   

if 𝑍1(𝐱(𝑡))  𝑖𝑠  𝑀1
𝑖     

 
Then: �̇� = 𝐴𝑖𝐱(𝑡) + 𝑏𝑖     ;    𝑖 = 1,2                   (20) 
 
where 𝑀1

1 and 𝑀1
2 are type-1 fuzzy set; with 

 

𝐴1 = [
0 −1 −1
1 0.2 0
0 0 𝑥1𝑚𝑖𝑛 − 5

]    

𝐴2 = [
0 −1 −1
1 0.2 0
0 0 𝑥1𝑚𝑎𝑥 − 5

] 𝑏1 = 𝑏2 = [
0
0
0.2
]    (21) 

 
So, the type-1 TS fuzzy model can be defined as 

follows: 
 

�̇� = ∑ �̂�𝑖(𝐱(𝑡))(𝐴𝑖𝐱(t) + 𝑏𝑖)
2
𝑖=1                         (22) 

 
where the normalized grades of membership are 

defined as:  
 

�̂�𝑖(𝐱(𝑡)) =
𝜇
𝑀1
𝑖 (𝑍1(𝐱(𝑡)))

𝜇
𝑀1
1(𝑍1(𝐱(𝑡)))+𝜇𝑀1

2(𝑍1(𝐱(𝑡)))
 , 𝑖 = 1,2.        (23) 

 
Here we assumed that the initial conditions are 

constant. By varying the initial condition for 𝑥1(𝑡) 
in the interval [0  1] with step 0.1, the lower and 

upper bound of 𝑥1(𝑡) can be obtained from 

simulation as in Table 3 and an IT2 T-S fuzzy 

model is proposed as follows. It should be noted 

that other initial conditions of state variables are 

considered as constant.   
 

Table 3. Initial conditions and lower and  

upper bound of 𝑥1 for Rossler system 
 

Lower and Upper bound of 𝑥1 Initial Conditions (𝑥1, 𝑥2, 𝑥3 ) 
[−7.89 9.97] [0.1 1 1] 
[−7.73 9.84] [0.2 1 1] 
[−7.47 9.54] [0.3 1 1] 
[−8 10.09] [0.4 1 1] 
[−7.7 9.78] [0. 5 1 1] 
[−7.85 9.94] [0.6 1 1] 
[−7.94 10.05] [0.7 1 1] 
[−8 10.09] [0.8 1 1] 
[−7.93 10.02] [0.9 1 1] 
[−7.75 9.83] [1 1 1] 

 
The lower and upper membership functions 

should satisfy the inequality (14). By considering 

values as assumption 1 and substituting numerical 

values, the lower and upper membership functions 

are defined based on sector nonlinearity in Table 4.  
 

Table 4. Lower and upper membership  

functions of Rossler system 
 

Lower membership function Upper membership function 

𝜇�̃�11 (𝑍1(𝐱(𝑡)))

=
𝑚𝑖𝑛{𝑍1𝑚𝑎𝑥} − 𝑍1(𝐱(𝑡))

𝑚𝑎𝑥{𝑍1𝑚𝑎𝑥} − 𝑚𝑖𝑛{𝑍1𝑚𝑖𝑛}

=
9.54 − 𝑥1
10.09 + 8

 

𝜇�̃�11
(𝑍1(𝐱(𝑡)))

=
𝑚𝑎𝑥{𝑍1𝑚𝑎𝑥} − 𝑍1(𝐱(𝑡))

𝑚𝑖𝑛{𝑍1𝑚𝑎𝑥} − 𝑚𝑎𝑥{𝑍1𝑚𝑖𝑛}

=
10.09 − 𝑥1
9.54 + 7.47

 

𝜇�̃�12 (𝑍1(𝐱(𝑡)))

=
𝑍1(𝐱(𝑡)) −𝑚𝑎𝑥{𝑍1𝑚𝑖𝑛}

𝑚𝑎𝑥{𝑍1𝑚𝑎𝑥} − 𝑚𝑖𝑛{𝑍1𝑚𝑖𝑛}

=
𝑥1 + 7.47

10.09 + 8
 

𝜇�̃�12
(𝑍1(𝐱(𝑡)))

=
𝑍1(𝐱(𝑡)) −𝑚𝑖𝑛{𝑍1𝑚𝑖𝑛}

𝑚𝑖𝑛{𝑍1𝑚𝑎𝑥} − 𝑚𝑎𝑥{𝑍1𝑚𝑖𝑛}

=
𝑥1 + 8

9.54 + 7.47
 

 
Figures 6 and Fig. 7 depict the lower and upper 

membership functions of the IT2 T-S fuzzy model. 
 

 
 

Fig. 6. Plot of 𝜇�̃�11 (𝑍1(x(𝑡))), Lower membership 

function 𝜇�̃�11 (𝑍1(x(𝑡))) (dashed line), Upper 

membership function 𝜇�̃�11
(𝑍1(x(𝑡))) (filled line) and 

footprint of uncertainty (grey area) for Rossler system 
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Fig. 7. Plot of 𝜇�̃�12 (𝑍1(x(𝑡))), Lower membership 

function 𝜇�̃�12 (𝑍1(x(𝑡))) (dashed line), Upper 

membership function 𝜇�̃�1
2 (𝑍1(x(𝑡))) (filled line) and 

footprint of uncertainty (grey area) for Rossler system 
 

Then an IT2 T-S fuzzy model with 2 rules of the 

following format is used to describe the Rossler 

system: 

Rule i: 

if 𝑍1(𝐱(𝑡))  𝑖𝑠  �̃�1
𝑖      

Then: �̇� = 𝐴𝑖𝐱(𝑡) for 𝑖 = 1,2 

The IT2 T-S fuzzy model can be defined as 

follows: 
 
�̇�(𝑡) =

∑ (𝜔𝑖
𝐿(𝐱(𝑡))𝑣𝑖(𝐱(𝑡)) +

2
𝑖=1

𝜔𝑖
𝑈(𝐱(𝑡))𝑣𝑖(𝐱(𝑡))) (𝐴𝑖𝐱(𝑡)) =

∑ �̃�𝑖(𝐱(𝑡))(𝐴𝑖𝐱(𝑡))
2
𝑖=1                                        (24) 

 
where 
 

�̃�𝑖(𝐱(𝑡)) =

𝜔𝑖
𝐿(𝐱(𝑡))𝑣𝑖(𝐱(𝑡)) + 𝜔𝑖

𝑈(𝐱(𝑡))𝑣𝑖(𝐱(𝑡))            (25) 
 

Based on this IT2 T-S fuzzy model, an IT2 fuzzy 

controller with the above two rules can be 

employed for chaos synchronization and other 

applications. Figure 8 shows the difference of fuzzy 

model and original system with any value in the 

interval set of initial condition. 
 

 
 

Fig. 8. Modeling error for Rossler system 
 

When membership functions are determined or 

tuned based on numerical data, the uncertainties in 

the numerical data translates into uncertainties in 

the membership functions as FOU which has 

depicted in Figs. 6 and 7. In these Figs., infinite 

number of type-1 fuzzy model can be defined based 

on available FOU. So, the proposed IT2 T-S fuzzy 

model is a collection of type-1 T-S fuzzy models. 

For example, we simulated the difference between 

fuzzy model and original system of Rossler system 

for one value of initial condition. As it is evident in 

Fig. 8, the modeling error or difference between 

fuzzy model and original system becomes less than 

1 × 10−4 after about 1 second which means that 

fuzzy model tends toward the original system.  

The main advantage of this method of modeling 

is simplicity. In this method, if there are the lower 

and upper bounds of scheduling variable as an 

interval, an IT2 T-S fuzzy model can be defined. 

The lower and upper bounds of scheduling variable 

can be determined in chaos systems. So, this 

method can be extended for every chaotic and 

hyper chaotic system with any uncertain parameter 

and variation in initial conditions. 

As it is evident from the Figs., the fuzzy models 

can be used instead of original systems for several 

chaotic applications. However, there is no proof for 

robustness of proposed method; we have just 

surveyed the effect of variability in initial 

conditions in modeling. For more information about 

robustness and future works, the research work by 

Jianbin et al. (2010) and Zhang et al. (2012) can be 

cited to improve this work. 

4. Conclusion 

To realize a design procedure based on fuzzy 

model, chaotic systems must first be represented by 

T-S fuzzy models. Examining many famous chaotic 

systems, we saw that nonlinear terms in chaotic 

systems are composed of just one variable or more 

and we focused on nonlinear terms of the chaotic 

systems. In this paper, we introduced a new fuzzy 

modeling method based on sector nonlinearity 

approach for chaotic systems based on variations in 

initial condition using the interval type-2 Takagi–

Sugeno (IT2 T-S) fuzzy model. This model is 

covered by the lower and upper membership 

functions of the IT2 fuzzy sets. The proposed 

method was employed for the Genesio-Tesi and 

Rossler systems mentioned above. Result of 

numerical simulations on the famous Genesio-Tesi 

and Rossler system showed the validity of the 

approach. This modeling can be extended to a wider 

variety of chaotic systems and hyperchaotic systems. 

The main advantage of the proposed method is 

simplicity in mathematical computations and 

modeling. 
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