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Abstract 

The aim of present paper is to provide mathematical modelling for the two-dimensional MHD flow with induced 

magnetic field. The flaws in the already existing equations have been pointed out. The results of low magnetic 

Reynolds number approximation are recovered as a special case from the developed equations. As an example, the 

peristaltic flow for a couple stress fluid in a channel is considered. For the solution of the problem the governing 

equations are simplified under the realistic assumption of long wavelength. Exact solution of the problem is 

presented and some features of peristaltic motion have been discussed. It is observed that the applied magnetic 

field increases the pressure rise in the pumping region. However, the presence of applied electric field reduced it 

in that region. It is also found that the stream function is independent of applied electric field. 
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1. Introduction 

Flow of fluid due to propagation of transverse 

waves along the flexible walls of the channel/tube, 

commonly known as peristaltic flow, has promising 

applications in physiology and industry. In 

particular, peristaltic flows are involved in transport 

of urine from the kidney to the bladder, movement 

of chime in gastro-intestinal tract and transport of 

corrosive fluids. Due to their wide applications a 

great deal of literature is available on analysis of 

these flows. Some recent and interesting studies 

about these flows can be found in (Siddiqui et al., 

1994; El-Shehawey & Mekheimer, 1994; 

Mekheimer, 2002; Hayat et al., 2002; Hayat et al., 

2003; Haroun, 2007; Haroun, 2007). In these 

attempts researchers have performed analysis by 

considering both non-Newtonian and electrically 

conducting nature of fluid. Another important area 

which has received attention nowadays is heat 

transfer analysis of peristaltic flows. The works of 

Vajravelu et al. (2007), Kothandapani and Srinivas 

(2008), Mekheimer et al. (2008) and Hayat et al. 

(2009) are important contributions in this area. 
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A recent literature survey indicates that the 

peristaltic motion of magnetohydrodynamic (MHD) 

electrically conducting fluid is an active area of 

study nowadays for the researchers in the field. The 

effects of a constant applied magnetic field on the 

peristaltic flows of Newtonian and non-Newtonian 

fluids have been considered by many researchers 

(Mekheimer (2003); Mekheimer & Al-Arabi, 

(2003); Mekheimer, (2004); Elshahed & Haroun, 

(2005); Hayat et al. (2005); El Hakeem et al. 

(2006); Hayat and Ali, (2006); Hayat et al. (2007); 

Hayat and Ali, (2007); Hayat et al. (2007); Hayat et 

al. (2007); Ali et al. (2008); Wang et al. (2008)) and 

references therein. In the studies (Mekheimer 

(2003); Mekheimer & Al-Arabi, (2003); 

Mekheimer, (2004); Elshahed & Haroun, (2005); 

Hayat et al. (2005); El Hakeem et al. (2006); Hayat 

and Ali, (2006); Hayat et al. (2007); Hayat and Ali, 

(2007); Hayat et al. (2007); Hayat et al. (2007); Ali 

et al. (2008); Wang et al. (2008)), the flow 

equations are modelled under the assumption that 

magnetic Reynold number is small. Under this 

assumption it is assumed that the magnetic field 

associated with the induced currents is negligible as 

compared to the applied magnetic field (Davidson, 

(2001); Vishnyakov & Pavlov, (1972)). Moreover, 

under the assumption of small magnetic Reynold 

number the diffusion is dominant and advection is 
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neglected. Thus the equation of motion is simplified 

considerably under the low magnetic Reynolds 

number approximation and for a two-dimensional 

flow it has only one extra term. Some other related 

studies on MHD flows can be found in references 

(Parsa et al., (2013); Parsa et al., (2013); Rashidi & 

Keimanesh, (2010); Rashidi et al. (2013)). 

In some recent studies (Eldabe et al., (2007); 

Mekheimer, (2008); Mekheimer, (2008)) on the 

peristaltic flows the effects of the induced magnetic 

field are also incorporated. The aim of 

incorporating the induced magnetic field is to get 

rid of the low magnetic Reynolds number 

approximation and thus look for a MHD flow when 

magnetic Reynolds number is moderate or high. For 

this one needs to incorporate not only the induced 

magnetic field but also the effects of advection of 

the magnetic field. Moreover, it is also necessary 

that the reduced form of the Maxwell equations in 

MHD are also satisfied. The induced magnetic field 

is caused due to the induced currents in accordance 

with the Ampere’s law. These induced currents 

come into play because of the relative motion of 

conducting fluid and a magnetic field that causes an 

electromotive force. This induced magnetic results 

the original constant applied magnetic field and 

interacts with the current density to give a Lorentz 

force per unit volume. This Lorentz force appears 

in the equation of motion and thus the effects of 

various features of magnetic field on the fluid 

motion can be discussed. However, if the effects of 

induced magnetic field at any stage are neglected 

the results for the case of constant applied magnetic 

field should be recovered. This is not the case with 

the governing equations provided in refs. (Eldabe et 

al., (2007); Mekheimer, (2008); Mekheimer, 

(2008)). This fact shows that there is some flaw in 

the mathematical modeling of the two-dimensional 

equations presented in (Eldabe et al., (2007); 

Mekheimer, (2008); Mekheimer, (2008)). Keeping 

this fact in mind the purpose of the present study is 

to provide correct mathematical modeling for two-

dimensional flow which is equally valid for small 

magnetic Reynolds number and beyond. The 

equations resulting from the presented 

mathematical modelling are used to discuss the 

problem analyzed in ref. (Mekheimer, (2008)) for a 

couple stress non-Newtonian fluid.  

2. Governing Equations 

The flow of a unsteady, incompressible couple 

stress fluid in the presence of a magnetic field is 

governed by the following equations 
 

div 0,V                                                             (1) 

2 4 ,
d

p
dt

         
V

V V J B           (2) 

 

where V  is the fluid velocity,   the fluid density, 

  the dynamic viscosity, p  the hydrostatic 

pressure,   is the couple stress parameter, 

0  1J J J  is the current density in which 1J  is 

the induced current density, 0  1B B B  is the 

magnetic field ( 0B  is the constant applied 

magnetic field and 1B  is the induced magnetic 

field). When 1Rm , we take 

 1 11   J E V B  negligible in comparison to 

 0 00   J E V B , and therefore, 

1 1 1 0  E B J  and thus the Ampere’s and 

Faraday’s laws are identically satisfied. Here  is 

the electrical conductivity, 0E  and 1E  are 

respectively the constant applied and induced 

electric fields. And, in the absence of electric field 

obtains: 
 

 0 0 00      J B J B V B B                     (3) 

 
Furthermore, the induction equation in this case 

reduces to 
 

0 2
01 ,

t



 



B
B                                                   (4) 

 
which is identically satisfied for a constant applied 

magnetic field. If we need to incorporate the effects 

of induced magnetic field which is due to induced 

currents 1J  then the low magnetic Reynolds 

number approximation must be dropped and thus 

1 1 1 0  E B J  and from Ampere’s, Faradays, 

Gauss’s and Ohm’s law we may write 
 

, 1 1B J                                                  (5) 

 

,
t


  


1

1

B
E                                               (6) 

 

0, B                                                            (7) 

 

0 0 1 1 ,        J E V B E V B                  (8) 

 
The induction equtation now takes the form 
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  2

1 ,
t




    


B
V B B                              (9) 

 

where *  is the magnetic permeability, 1  is the 

magnetic difusivity and /d dt  is the material time 

derivative defined by 
 

d

dt t


  


V                                                 (10) 

 

Instead of using  1 11   J E V B  from 

Ohm’s law for the effects of induced magnetic field 

we use the value of 1J  from the Ampere’s law and 

therefore, we have 
 

 0 0 1
1

,


      J E V B B               (11) 

 
For the two-dimensional flow with a transverse 

constant applied magnetic field we have 
 

    0 0, , , , , ,0 ,  0, ,0 ,  U X Y t V X Y t B       V B  (12) 

 

   1 2, , , , , ,0 0,0, , B X Y t B X Y t E       1 0B , E    (13) 

 

30,0, ( , , ) .E X Y t   1E                                  (14) 

 
and thus 
 

   

   

2 1
0 0 2

2 1
0 1

1
,

1

B B
E U B B B

X Y

B B
E U B B

X Y











     
        

     
   

     
           

J B
    (15) 

 
It is evident from Eq. (15) that in the absence of 

induced magnetic field the expression of the 

Lorentz force is valid when there is only applied 

magnetic field, i.e. 
 

2

0 ,0UB   
  

J B                                     (16) 

 
However, this is not possible with the model 

taken in (Eldabe et al., (2007); Mekheimer, (2008); 

Mekheimer, (2008)). 

3. Mathematical Model 

Let us Consider a two dimensional channel of half 

width a  filled with homogenous incompressible 

couple stress fluid. The walls of the channel are 

flexible with infinite wave train travelling with 

velocity c  along them. A uniform magnetic field 

0B  is applied in the transverse direction to the 

flow. Cartesian coordinates are used to analyze the 

flow with X  along the flow direction and Y  

normal to it. Let U  and V  be longitudinal and 

transverse velocity components of the fluid 

velocity, respectively. The equation of the wall 

surface is  
 

   
2

, sin ,X t a b X ct





 
   

 
        (17) 

 

in which b  is the wave amplitude,   is the 

wavelength and t  is the time. The geometry of the 

problem is illustrated in Fig. 1. 
 

3, 0.5,M F   

 

 
 

Fig. 1. Schematic diagram of flow geometry 
 

The equations that govern the flow are 
 

0,
U V

X Y

 
 

 
                                                  (18) 

 

  

2 4 4

2 4 4

2 4

2 2 2

0 0 2

01 1 2 1 2 1

2

,

m

U U U U U
U

pt X X X Y

XU U U
V

Y Y X Y

E UB B B

BB B B B B B

X X Y Y

  



    

        
                   

      
      

       

  

    
    

    

 (19) 

 

 

2 4 4

2 4 4

2 4

2 2 2

1 2 2 2
0 1

2

,

m

V V V V V
U

pt X X X Y

YV V V
V

Y Y X Y

B B B B
E UB B

X Y

  


  

        
                  

      
       

       

 
   

 

(20) 
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1 2 0,
B B

X Y

 
 

 
                                               (21) 

 

 
2 2

1 1 1
2 0 1 1 2 2

,
B B B

UB UB V B
Y X Y t


   

     
    

 (22) 

 

 
2 2

2 2 2
2 0 1 1 2 2

,
B B B

UB UB V B
X X Y t


   

      
    

 (23) 

 

3 1 ,
E B

Y t

 
 

 
                                                     (24) 

 

3 2 ,
E B

X t

 


 
                                                       (25) 

 

in which  2 2

1 2 /2mp p B B    . 

In the fixed frame of reference the flow 

phenomenon is unsteady. To carry out the steady 

analysis we switch to the coordinate system moving 

with the speed of the wave called the wave frame. 

The two frames are related through the following 

transformations 
 

, ,

, .

x X ct y Y

u U c v V

  

  
                                           (26) 

 
With the help of Eq. (26) we write Eqs. (18)-(25) 

as 
 

0,
u v

x y

 
 

 
                                                    (27) 

 

   

4 42

4 42

2 4

2 2 2

0 0 2

2

01 1 2 1

1

2

,

m

u uu u
u

x ypx x

u x u uv
y y x y

E u c B B B

B

BB B B Bx

Bx y

y

  



    

                      
      
             

    

 
 

   
  
 
 

 (28) 

 

  

4 42

4 42

2 4

2 2 2

1 2
0 1

2 2

2

,

m

v vv

x ypv v x
u v

x y y v v

y x y

B B
E u c B B

x

B B

y

  










   
                         

         


    







 (29) 

 

1 2 0,
B B

x y

 
 

 
                                                 (30) 

 

   

2

1

2
1

2 0 1 1 21
1

2

,

B

Bx
u c B B v B c

y xB

y



 
 

       
  
 
 

 (31) 

 

   

2

2

2
2

2 0 1 1 21
2

2

,

B

Bx
u c B B v B c

x xB

y



 
 

        
  
 
 

 (32) 

 

3 1 ,
BE

c
y x




 
                                                    (33) 

 

3 2 ,
BE

c
x x




 
                                                 (34) 

 

where  ,u v  are the longitudinal and transverse 

velocity components in the wave frame. The 

relevant boundary conditions are  
 

3

13

2

12

0, 0, 0 at 0,

0, 0, 0 at .

U U
B Y

Y Y

U
U B y

Y


 
   

 


   



             (35) 

 
In order to non-dimensionalize the set of Eqs. 

(27)-(35) we use the following  
 

3

3

0

2
1 2

0 0 0

, , , , ,

, , ,m
m x y

x y u v E
x y u v E a

a c c B c

a p B B E
p h h E

c B B B c




 



     

   

 (36) 

 
Utilizing the relations (12), (13), (26), (27), (30) 

and (36) and defining the stream function  ,x y  

and the magnetic force function  ,x y  by 

 

, , ,x yu w h h
y x y x

   
 

   
     
   

   (37) 

 
with /a  , the Eqs. (27) and (30) are satisfied 

identically and Eqs. (28)-(34) under long 

wavelength and low Reynolds number assumption 

yield 
 

3 5
2

3 2 5 2

2

1
1

,
1

m

E
yp

M
x y y

Rm y



 

 

 
      

    
    

  

(38) 
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0,mp

y





                                                           (39) 

 
3 2

3 2
0Rm

y y

  
 

 
                                           (40) 

 

where 
2 2 2

0 /M B a  , / a    and 

*Rm ac  are the non-dimensional Hartmann 

number, couple stress fluid parameter and magnetic 

Reynolds number, respectively.  

Elimination of pressure from (38) and (39) yields 

the following determining equation for the stream 

function and magnetic force function 
 

4 6 2 3
2

4 2 6 2 3

1 1
0,M

Rmy y y y

   



     
    

     

 (41) 

 
3 2

3 2
0Rm

y y

  
 

 
                                   (42) 

 
It is important to mention that neglecting the 

effects of induced magnetic field form Eqs. (41) 

and (42) do not eliminate the effects of applied 

magnetic field. However, the equations derived in 

[32] do not delineate this fact. 

The dimensionless pressure rise over one 

wavelength can be calculated by 
 

2

0

mdp
p dx

dx



   ,                                               (43) 

 

where /mdp dx  is given by Eq. (38). The non-

dimensional expression for current density is given 

by 
 

2

2
1zJ Rm E

y y

   
    

  
                         (44) 

 
The appropriate boundary conditions in terms of 

stream function are  
2 4

2 4

*

3

3

0, 0, 0, 0 at 0,

, 1,

at 1 sin2 ,

0, 0, 0

y
yy y

F
y

y x

yy

  





  
 



  
    

 

 
    

  
    

 

 (45) 

 

where 
* /b a   is the amplitude ratio. The 

boundary conditions  0 0   and   F  
 
are 

consequence of the definition of flow rate F  in 

wave frame. According to this definition 

 

   
0

0 .F dy
y




  


  
  

 
The above expression furnish the conditions 

 0 0   and   F   . The dimensionless 

mean flow rates   in the fixed frame and F  in the 

wave frame are related through the following 

expression 
 

1.F                                                           (46) 

4. Exact Solution 

Substituting the value of 
3 3/ y   from Eq. (42) 

into Eq. (41) yields 
 

4 6 2
2

4 2 6 2

1
2 0.M

y y y

  



  
  

  
     (47) 

 
Integration of the above equation gives 

 

   

   

 

1 1 2 1

3 2 4 2

5 62 2
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2
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C y C
M


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  



 

    

(48) 
 

where 

2 4 2 2

1,2

8

2

M
m

  
 . 

The boundary conditions on   give 

2 4 6 0C C C   , while the values of other 

constants are 

   
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2 2
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1 1
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Thus we have the following expression of   

 

    3
1 1 2 2 2 2
sinh sinh

2

C
C m y C m y y
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


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IJST (2015) 39A1: 35-43                                                                                                                                                                                   40 
 

Utilizing the above value of   in Eq. (42) and 

using the corresponding boundary conditions on   

in (45), we get 
 

    

    

   
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3 1 2 2

2 2
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2 2
3 1 2 2 1 2

2 cosh cosh
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C m h m h m y
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C m h m h m y

C m m y h m h

C m m y h m h m m h


 
 
   

  



(50) 

 
With the help of Eq. (38), the axial pressure 

gradient turns out to be 
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(51) 

 

 
 

Fig. 2. Pressure rise per wavelength p  versus flow rate 

  for various values of Hartman number M . The other 

parameters chosen are 0.8, 0E    and
* 0.4.   

 

 
 

Fig. 3. Pressure rise per wavelength p  versus flow rate 

  for various values of E. The other parameters chosen 

are 0.8,   2M   and 
* 0.4.   

 

 
 

Fig. 4. Variation of axial induced magnetic field xh  as a 

function of y  for different values of magnetic Reynolds 

number Rm . The other parameters chosen are 

0.8, 0.5, 1,F E     0, 3x M   and 

* 0.4.   
 

 
 

Fig. 5. Variation of axial induced magnetic field xh  as a 

function of y  for different values of couple stress fluid 

parameter  . The other parameters chosen are

5, 0.5, 1,Rm F E   1/4, 3x M   and 

* 0.4.   
 

 
 

Fig. 6. Variation of axial induced magnetic field xh  as a 

function of y  for different values of Hartman number 

.M  The other parameters chosen are 

2, 0.5, 1, 1/ 4,Rm F E x     0.8   and 

* 0.4.   
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Fig. 7. Variation of current density zJ  as a function of 

y  for different values of .E  The other parameters 

chosen are 3, 0.5,M F   2, 1/4, 0.8Rm x     

and 
* 0.4.   

5. Results and Discussion 

The main feature of peristaltic motion is the 

pumping against the pressure rise i.e., when 

0p   the positive values of   are only due to 

peristaltic wave. We have prepared Figs. 2 and 3 to 

see the effects of applied magnetic  M and 

electric field  E  respectively on the pressure rise 

p  It is observed that p  increases in the 

pumping region by increasing .M  This increase is 

perhaps due to the fact that magnetic force acts as a 

resistance to the flow due to peristalsis and hence 

causes an increase in p . However, an increase in 

E  reduces the pressure rise. This is because of the 

fact that applied electric field acts perpendicular to 

the magnetic field and hence reduces the resistance 

offered to the peristaltic flow by the magnetic field. 

Further for large values of ,E p  become negative 

for all positive values of  . Thus we infer that 

applied magnetic field enhances the magnitude of 

p  but at the same time applied electric field 

minimizes the effects of applied magnetic field and 

makes p  negative. This is a very interesting 

observation and highlights the importance of 

imposed electric field which is usually neglected in 

MHD peristaltic flows. The variation of axial 

induced magnetic field xh  for different values of 

,Rm   and M  is shown in Figs. 4-6. We note that 

magnitude of axial induced magnetic field 

decreases by increasing   and .M  An increase in 

both these parameters suppresses the bulk motion 

of the fluid which results in the reduction of 

induced currents and hence the induced magnetic 

field. On the other hand, its magnitude increases for 

large values of Rm . Since increase in magnetic 

Reynolds number means low diffusion of magnetic 

field into the fluid, this results in an increase in the 

induced current which in turn increases the induced 

magnetic field. Also, the axial induced magnetic 

field is independent of ,E therefore it is not 

affected by it. The influence of E  on current 

density zJ  can be seen through Figure 7. This 

figure reveals that zJ  increases for large values of 

.E  

6. Concluding Remarks 

The two-dimensional equations incorporating the 

effects of the induced magnetic field are presented 

in this paper. The results for the small magnetic 

Reynolds number can be retrieved as a special case. 

The developed equations are used to discuss the 

peristaltic flow of a couple stress fluid in a planar 

channel. The exact solution of the problem is 

provided. These equations are different from those 

used in the articles (Eldabe et al., (2007); 

Mekheimer, (2008); Mekheimer, (2008)) for similar 

kinds of problem. 
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Nomenclature 

Generally quantities with over bars indicate that 

they are dimensional. 

 

V  Velocity vector 

t  Time 

  Density 

  Viscosity 

p  Pressure 

  Couple stress parameter 

J  Total current density 

0J  Applied current density  

1J  Induced current density 

B  Total magnetic field 

0B  Applied magnetic field 

1B  Induced magnetic field 

0E  Applied electric field 

1E  Induced electric field 
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  Electrical conductivity 

1  Magnetic diffusivity 

*  Permeability of free space 

 ,X Y  Cartesian Coordinates in fixed 

frame 

 ,U V  Longitudinal and transverse 

velocity components in fixed frame  

 1 2,B B  Longitudinal and transverse 

components of magnetic field in fixed frame 

0B  Transverse component of 

magnetic field in fixed frame 

E  Z -component of applied 

electric field in fixed frame 

3E  Z -component of induced 

electric field in fixed frame 

  Instantaneous height of 

peristaltic wall 

mp  Modified pressure 

 ,x y  Cartesian Coordinates in wave 

frame  

 ,u v  Longitudinal and transverse 

velocity components in wave frame 

  Wave number 

xh  Dimensionless axial magnetic 

field in wave frame 

yh  Dimensionless transverse 

magnetic field in wave frame 

  Magnetic force function 

  Stream function 

mR  Magnetic Reynolds number 

M  Hartmann number 
*  Amplitude ratio 

  Mean flow rate in fixed frame 

F  Mean flow rate in wave frame 
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