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Abstract 

In this paper, we propose the Chebyshev wavelet approximation for the numerical solution of a class of integro-

differential equation which describes the charged particle motion for certain configurations of oscillating magnetic 

fields. We show that the Chebyshev approximation transform an integral equation to an explicit system of linear 

algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new 

technique. 
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1. Introduction 

In the recent years, there has been increased usage 

among scientists and engineers to apply wavelet 

technique to solve both linear and nonlinear 

problems (Razzaghi et al., 2002; Lashab et al., 

2008; Lashab et al., 2007; Tretiakov and Pan, 

2004a; Tretiakov and Pan, 2004 b; Yan et al., 2014; 

Jiao et al., 2014; Bakar et al., 2014; Perez-Munoz, 

2013) and their references. The main advantage of 

the wavelet technique is its ability to transform 

complex problems into a system of algebraic 

equations. The overview of this method can be 

found in (Razzaghi and Yousefi, 2002; Razzaghi 

and Shamsi, 2004; Ghasemi et al., 2007; Tavassoli 

Kajani et al., 2006; Tavassoli Kajani et al., 2009; 

Tavassoli Kajmani and Ghasemi, 2009; Ghasemi 

and Tavassoli Kajani, 2011; Heydari  et al., 2012). 

In this work, we use Chebyshev wavelets on the 

interval [0, 1) to solve the integro-differential 

equation arising in oscillating magnetic fields. We 

clarify how the Chebyshev approximation 

transforms an integral equation to an explicit 

system of linear algebraic equations. We then apply 

the method to some numerical tests to clarify the 

efficiency of the method. Integral and integro-

differential equations of Volterra type arise in many 

modeling problems in physical fields such as optics, 

electromagnetism, electrodynamics, statistical 

physics, inverse scattering problems and many 

other practical applications. In this research, we 

study an integro-differential equation which 

describes the charged particle motion for certain 
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configurations of oscillating magnetic fields. 

Consider the following  

Volterra integro-differential equation (Dehghan et 

al., 2012): 
 
𝑑2𝑦

𝑑𝑡2 = −𝑎(𝑡)𝑦(𝑡) +  𝑏(𝑡)                                     (1) 

 
where a(t), b(t) and g(t) are given periodic functions 

of time which may be easily found in the charged 

particle dynamics for some field configurations. y(t) 

is an unknown function to be determined. The 

existence and the uniqueness results of these types 

of problems have been investigated by many 

authors. For instance, using Theorem 4 in 

(Bojedain, 1991), the existence and the uniqueness 

issues of the second kind of integro-differential 

equation (1) can be deduced. Throughout this 

paper, we assumed that the conditions of the given 

functions of the Eq. (1) are such that the existence 

and the uniqueness results of the solution of Eq. (1) 

are satisfied. For clarifying the model, suppose that 

the three mutually orthogonal magnetic field 

components are defined as: 
 

𝐵𝑥 = 𝐵1 sin(𝑤𝑝𝑡),       𝐵𝑦 = 0,   𝐵𝑧  = 𝐵0 . 
 

So, the nonrelativistic equations of motion for a 

particle of mass m and charge q in this field 

configuration are: 
 

𝑚
𝑑2𝑥

𝑑𝑡2   =    𝑞 (𝐵0
𝑑𝑦

𝑑𝑡
) ,                                           (2) 

 

𝑚
𝑑2𝑦

𝑑𝑡2   =    𝑞 (𝐵1 sin(wpt)
𝑑𝑧

𝑑𝑡
− 𝐵0

𝑑𝑥

𝑑𝑡
) ,             (3) 
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𝑚
𝑑2𝑧

𝑑𝑡2   =    𝑞 (−𝐵1 sin(wpt)
𝑑𝑦

𝑑𝑡
)  .                       (4) 

 
By integration of Eq. (2) and Eq. (4) and 

replacing the time first derivatives of z and x in Eq 

(3) one achieves Eq. (1) with: 
 
𝑎(𝑡) = 𝑤𝑐

2 + 𝑤𝑓
2𝑠𝑖𝑛2(𝑤𝑝𝑡) , 𝑏(𝑡) = 𝑤𝑓

2𝑤𝑝 sin(𝑤𝑝𝑡),    (5) 
 
𝑔(𝑡) =  𝑤𝑓 (sin(𝑤𝑝𝑡)) 𝑧′(0) + 𝑤𝑐

2𝑦(0) + 𝑤𝑐𝑥
′(0) . (6) 

 

where 𝑤𝑐 =  𝑞
𝐵0

𝑚
 and 𝑤𝑓 =  𝑞

𝐵1

𝑚
. By the additional 

simplifications and seting 𝑥′′(0) =0 and 𝑦(0) = 0 , 
the Eq. (1) can finally be written as: 
 
𝑑2𝑦

𝑑𝑡2
= −𝑤𝑐

2 − 𝑤𝑓
2𝑠𝑖𝑛2(𝑤𝑝𝑡)𝑦 − 𝑤𝑓 (sin(𝑤𝑝𝑡)) 𝑧

′(0)         (7)  

+ 𝑤𝑓
2𝑤𝑝𝑠𝑖𝑛 (𝑤𝑝𝑡) + ∫ cos(wps)y(s)ds

t

0

 . 

 
The numerical solvability of Eq. (1) and the other 

related equations have been pursued by several 

authors. Dehghan and Shakeri (see (Dehghan et al., 

2008), applied the homotopy perturbation method 

for solving Eq. (1). Machado et al. in (Machado and 

Tsuchida, 2002) solved Eq. (1) by using Adomian’s 

method. 

2. Properties of Chebyshev wavelets 

2.1. Wavelets and Chebyshev wavelets 

Wavelets constitute a family of functions 

constructed from dilation and translation of a single 

function called the mother wavelet. When the 

dilation parameter a and the translation parameter b 

vary continuously, we have the following family of 

continuous wavelets as (Ghasemi and Tavassoli 

Kajani, 2011): 
 

𝜓𝑎,𝑏(𝑡) =  |𝑎|− 
1

2𝜓 (
𝑡 − 𝑏

𝑎
) , 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0. 

 
Chebyshev wavelets 𝜓𝑛𝑚(𝑡) = 𝜓(𝑛,𝑚, 𝑡) have 

three arguments, namely: n = 1, 2...2 k, k ∈ Z
+
, m is 

the order for Chebyshev polynomials, and t is the 

normalized time. The Chebyshev wavelets are 

defined on the interval [0, 1): 
 

𝜓𝑛𝑚(𝑡) = {
𝛼𝑚2

𝑘

2

√𝜋
𝑇𝑚(2𝑘+1𝑡 − 2𝑛 + 1),

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 
𝑛 − 1

2𝑘
 

≤ 𝑡 ≤
𝑛

2𝑘
 , 

 
where: 
 

𝛼𝑚 =    {√2     𝑚 = 0,         
2        𝑚 = 1,2… .

  

 
Here 𝑇𝑚(𝑡) are the well-known Chebyshev 

polynomials of order 𝑚, which are orthogonal with 

respect to the weight function 𝑤(𝑡) =   
1

√1−𝑡2
 and 

satisfy the following recursive formula: 
 
𝑇0(𝑡) = 1,                                                                    
𝑇1(𝑡) = 1,                                                                    
𝑇𝑚+1(𝑡) =  2𝑡𝑇𝑚(𝑡) − 𝑇𝑚−1(𝑡).  𝑚 = 1, 2,3, …  .  
 

The set of Chebyshev wavelets are an 

orthonormal set with respect to the weight function 

𝑤̃(𝑡) = 𝑤(2𝑘+1𝑡 − 2𝑛 + 1). 

2.2. Function approximation 

A function 𝑓(𝑡) defined over [0, 1) may be 

expanded as: 
 
𝑓(𝑡) =  ∑ ∑ 𝑓𝑚𝑛

∞
𝑚=0

∞
𝑛=1 𝜓𝑛𝑚(𝑡),                           (8) 

 
where:  
 
𝑓𝑛𝑚 = 〈𝑓(𝑡), 𝜓𝑛𝑚(𝑡)〉                                           (9) 
 

In Eq. (9), the symbol 〈… 〉 denotes the inner 

product with weight function 𝑤̃(𝑡). If the infinite 

series in Eq. (8) is truncated, then Eq. (8) can be 

written as: 
 

𝑓(𝑡) ≅  ∑ ∑ 𝑓𝑛𝑚
𝑀−1
𝑚=0

2𝑘

𝑛=1 𝜓𝑛𝑚(𝑡) = 𝐹𝑇𝜓(𝑡),       (10) 
 
where 𝐹 and ψ(t) are 2𝑘𝑀 ×  1 matrices given by: 

 

                             𝐹 =  [𝑓1,0, 𝑓1,1, … , 𝑓1,𝑀−1, 𝑓2,0, 𝑓2,1, … , 𝑓2,𝑀−1, … , 𝑓2𝑘,0, 𝑓2𝑘,1, … , 𝑓2𝑘,𝑀−1]
𝑇,                      (11)  

 

                  Ψ(t)  =  [𝜓1,0(𝑡), … , 𝜓1,𝑀−1(𝑡) , 𝜓2,0(𝑡), … , 𝜓2,𝑀−1(𝑡) , … , 𝜓2𝑘,0
(𝑡), … , 𝜓2𝑘,𝑀−1 ] 𝑇.          (12) 

 

2.3. Chebyshev wavelets operational matrix of 

integration 

The integration of the vector Ψ(t) which is 

defined in Eq. (12) can be obtained as: 
 

∫  Ψ(s) 𝑑𝑠 ≃ 𝑃Ψ(t) .
𝑡

0
                                        (13) 

 
where P is the (2𝑘𝑀) × (2𝑘𝑀 ) operational matrix 

for integration and is given in (Ghasemi and 

Tavassoli Kajani, 2011) as: 
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𝑃 =

(

 
 

𝐶  𝑆  𝑆   ⋯    𝑆
0  𝐶  𝑆   ⋯    𝑆
0  𝐶  𝐶   ⋯    𝑆
⋮   ⋮   ⋮    ⋱       𝑆
0  0  0   ⋯      𝐶)

 
 

 

 
where S and C are 𝑀 × 𝑀  matrices given by: 
 

𝑆 =
√2

2𝑘

[
 
 
 
 
 
 
 
 
              1           0  0    ⋯    0
             0            0  0    ⋯    0

          −
1

3
          0  0    ⋯    0

          − 
1

15
       0  0    ⋯    0

               ⋮           0  0     ⋱    ⋮

− 
1

𝑀(𝑀 − 2)
  0  0    ⋯    0

]
 
 
 
 
 
 
 
 

 

 

and 
 

𝐶 = 
1

2𝑘  

[
 
 
 
 
 
 
 
 
 
 

  

             
1

2
                        

1

2√2
   0      0        …                     0                        0                      0

       −
1

8√2
                        0      

1

8
     0        …                     0                        0                      0

     

       −
1

6√2
                     −

1

4
    0      

1 

12
      …                     0                        0                      0

  
                      ⋮                             ⋮          ⋮          ⋱              ⋮                     ⋮                   ⋮          

−
1

2√2(𝑀−1)(𝑀−3)
         0       0      0          …         −

1

4(𝑀−3)
              0          −

1

4(𝑀−2)

        −
1

2√2 𝑀(𝑀−2)
             0       0      0         …                     0            −

1

4(𝑀−2)
            0          ]

 
 
 
 
 
 
 
 
 
 

 . 

 
 

The integration of the product of two Chebyshev 

wavelet vector functions is obtained as: 
 

𝐷 = ∫ Ψ(t)Ψ 𝑇(t)𝑑𝑡 ≃
1

0

 [

𝐷1     0     …      0
0       𝐷1    …     0

 ⋮         ⋮          ⋱      ⋮  
 0      0       …   𝐷1

] ,   

 
where D is a symmetric matrix and 𝐷1 is defined as 

follows: 
 

(𝐷1)𝑖𝑗 = 
𝛼𝑖𝛼𝑗

2𝜋
  ∫ 𝑇𝑖

−1

1

(𝑡)𝑇𝑗(𝑡)𝑑𝑡 . 

3. Applying Chebyshev wavelet to the problem 

In this section, we use the Chebyshev wavelet to 

approximate a given function. Then by substituting 

these approximations in the linear integro-

differential equation and using the collocation 

points, the equation will be transformed into a 

system of algebraic equations. 

3.1. Oscillating magnetic field integro-differential 

equations 

We consider the Eq. (1) with the following initial 

conditions: 
 
𝑔(0) =  𝛼 , 𝑦′(0) = 𝛽 .                                      (14) 
 

Second order derivation of the function y(t) in Eq. 

(1) exists, so: 
 

𝑦(𝑡) =  ∫ (
𝑡

0
∫ 𝑦′′(𝑠) + 𝑦′(0))𝑑𝑥

𝑥

0
+ 𝑦(0) .         (15) 

 
Approximating the functions y (s) and y ′′ (s) with 

respect to the basis functions by Eq. (10) gives: 
 

y (s) ≈  Y T Ψ (s),      y ′′ (s)  ≈  Y′′T  Ψ (s) .     (16)  
 

Substituting Eq. (16) into Eq. (15) and using Eq. 

(13), we obtain: 
 

𝑌𝑇𝛹 (𝑡)  ≈  Y′′T  𝑃2  𝛹 (𝑡)  +  𝑡𝑦 ′ (0)  +  𝑦 (0)       (17)  
 

In Eq. (17), two functions ty ′ (0) and y (0) can be 

approximated as: 
 
ty ′ (0)  ≈  H T Ψ (t) , y(0) ≈  K T Ψ (t).          (18) 
 

Therefore, we get: 
 

𝑌𝑇 ≈ Y′′T  𝑃2   +  H T  + K T.                              (19) 
 

Combining Eq. (1) and Eq. (17) yields: 

 

 

 

 

 

 

Y′′T  (𝛹 (𝑡) +  𝑎(𝑡)𝑃2 𝛹 (𝑡) −  𝑏(𝑡)𝑃2 ∫ 𝑐𝑜𝑠(wps)𝛹 (𝑠)𝑑𝑠
𝑡

0

) 
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=  𝑔(𝑡) − 𝑎(𝑡)( 𝑡𝑦′(0) +  𝑦(0)) +  𝑏(𝑡) ∫ 𝑐𝑜𝑠(wps) (𝑠𝑦 ′ (0)  +  𝑦(0)) 𝑑𝑠
𝑡

0

. 

 
 

Now, let 𝑡𝑖 = 
2𝑖−1

2𝑀 +3  , 𝑖 =  1, 2,· · · , 2𝑀 +2 be 

2𝑀 +2  collocation points in interval [0, 1). 

Substituting 𝑡 =  𝑡𝑖 into Eq. (20), we have a linear 

system of 2𝑀 +2algebraic equations of 

2𝑀 +2unknown coefficients corresponding 

to 𝑦 ′′ (𝑡). Solving this system of algebraic 

equations and substituting the results into Eq. (19) 

determines 𝑌𝑇 . 

4. Error and convergence analysis 

In this section, a convergence analysis is given for 

the proposed method. It is well-know that 

Chebyshev wavelets 𝜓𝑛𝑚 (t) forms a complete 

𝐿𝑤̃
2 ([0, 1]) orthogonal set (Caunto et al., 1988), 

where  𝐿𝑤̃
2 ([0, 1])  denotes the space of all functions 

u: [0, 1] → ℜ with weighted L
2
 -norm and define 

by: 
 

‖𝑢‖𝐿𝑤̃
2 ([0,1])𝑤

2  = ∫ 𝑢2(𝑡)𝑤̃(𝑡)𝑑𝑡 .
1

0

 

 
We recall that  𝐻𝑤̃

𝑚([0, 1]) is the Sobolev space 

of all functions u(t) on [0, 1] such that its weak 

derivatives up to order m are in 𝐿𝑤̃
2 ([0, 1]) and 

define ‖. ‖𝐻𝑤̃
𝑚([0,1])as: 

 

‖𝑢‖𝐻𝑤̃
𝑚([0,1]) = (∑ ‖

𝜕𝑛

𝜕𝑡𝑛
𝑢(𝑡)‖

𝐿𝑤̃
2 ([0,1])

2𝑚

𝑛=0

)

1

2

. 

 

Now, suppose that 𝑢2𝑘,𝑀−1 is the Chebyshev 

approximation of a function 𝑢 ∈ 𝐻𝑤̃
𝑚([0, 1]) , then, 

the truncation error is (Canuto, 1988): 
 
‖𝑢 − 𝐮2𝑘,𝑀−1‖𝐻𝑤̃

𝑚([0,1])
≤ 𝐶𝑁−𝑚 max

0≤𝑡≤2𝑘
‖𝑢‖𝐻𝑤̃

𝑚(𝐼𝑛),     (21) 

 

where, 𝑁 =  2𝑘𝑀 − 1, 𝐼𝑛 = [
𝑛−1

2𝑘  ,
𝑛

2𝑘] and C is a 

positive constant independent of m. 

We note that, for large values of N, accuracy of the 

solution will be improved. 

Now, consider Eq. (1) and let y be the exact 

solution of this equation. Let the approximate 

solution of 𝑦 be 𝑦𝑁 and the error defined by 

𝑒𝑁(𝑡)  =  𝑦(𝑡)  −  𝑦𝑁(𝑡). Therefore, from Eq. (1) 

we get: 

 

                                               𝐷2 𝑒𝑁(𝑡) +  𝑎(𝑡)𝑒𝑁(𝑡) −  𝑏(𝑡) ∫ 𝑐𝑜𝑠(wps)𝑒𝑁(𝑠)𝑑𝑠
𝑡

0
 =  𝑒𝑔𝑁(𝑡),                              (22) 

 
 where, 𝐷2 = 

𝑑2

𝑑𝑡2 and𝑒𝑔𝑁 = 𝑔 − 𝑔𝑁 with: 

 

                                                     𝑔𝑁(𝑡) = 𝐷2 𝑦𝑁(𝑡) +  𝑎(𝑡)𝑦𝑁(𝑡) − 𝑏(𝑡) ∫ 𝑐𝑜𝑠(wps)𝑦𝑁(𝑠)𝑑𝑠
𝑡

0

.                            (23) 

 
 

Taking the norm 𝐻𝑤̃
𝑚([0, 1]) from both sides of 

Eq. (22) yields: 

 

                                  ‖𝑒𝑔𝑁‖
𝐻𝑤̃

𝑚([0,1])
≤ ‖𝐷2 𝑒𝑁(𝑡)‖𝐻𝑤̃

𝑚([0,1]) + 𝐾𝑎‖𝑒𝑔𝑁‖
𝐻𝑤̃

𝑚([0,1])
+ 𝐾𝑏‖𝑒𝑔𝑁‖

𝐻𝑤̃
𝑚([0,1]),

                   (24)  

 
where 

𝐾𝑎(𝑜𝑟 𝑏) = max0≤𝑡≤2𝑘 ∥ 𝑎(𝑡)(𝑜𝑟 𝑏(𝑡)) ∥𝐻𝑤̃
𝑚([0,1]) <

 ∞. There exists a constant 𝐶̅ such that 

‖𝐷2 𝑒‖𝐻𝑤̃
𝑚([0,1]) ≤ 𝐶̅‖𝑒‖𝐻𝑤̃

𝑚([0,1]). (Canuto, 1988). 

Now from this and Eq. (24) we find: 

‖𝑒𝑔𝑁‖
𝐻𝑤̃

𝑚([0,1])
 ≤   (𝐶̅ +  𝐾𝑎  +  𝐾𝑏) ∥ 𝑒𝑁  ∥𝐻𝑤̃

𝑚([0,1] .  (25) 

 
Finally, combining Eq. (21) and Eq. (25) gives 

the following bound for the error in approximate 

solution: 

 

                                          ‖𝑒𝑔𝑁‖
𝐻𝑤̃

𝑚([0,1])
 ≤   (𝐶̅ +  𝐾𝑎  +  𝐾𝑏)𝐶𝑁−𝑚 max0≤𝑡≤2𝑘 ∥ 𝑦(𝑡) ∥𝐻𝑤̃

𝑚(𝐼𝑛) .                         (26) 

 
Note that, since [0, 1] is a compact set, ∥

𝑦(𝑡) ∥𝐻𝑤̃
𝑚(𝐼𝑛) is bounded and this means that the 

approximation is convergent for sufficiently large 

value N. 

 

Theorem 1. The series solution (10) of Eq. (1) 

using Chebyshev wavelet method converges toward 

𝑦(𝑡) 𝑎𝑠 𝑀 →  ∞. 

 

Proof: For k=0, the Eq. (10) reads as 𝑦(𝑡) ≃
∑ 𝑦𝑀−1

𝑚=0 1𝑚
𝜓1𝑚(𝑡),  where 𝑦1𝑚 = 〈𝑦(𝑡), 𝜓1𝑚(𝑡)〉. 

For simplicity, we denote 𝜓1𝑚(𝑡) as 𝜓𝑚(𝑡) and 

𝛾𝑗 = 〈𝑦(𝑡), 𝜓𝑗(𝑡)〉. Let {𝑆𝑁(= ∑ 𝛾𝑁
𝑗=0 𝑗

𝜓𝑗(𝑡))}𝑁=0
∞  

be the sequence of partial sums of ∑ 𝛾∞
𝑗=0 𝑗

𝜓𝑗(𝑡), 

then we have 〈𝑦(𝑡), 𝑆𝑁〉 = 〈𝑦(𝑡), ∑ 𝛾𝑁
𝑗=0 𝑗

𝜓𝑗(𝑡)〉 =
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∑ 𝛾̅𝑁
𝑗=0 𝑗

〈𝑦(𝑡), 𝜓𝑗(𝑡)〉 = ∑ |𝛾𝑗|
2𝑁

𝑗=0 .   

Now, let 𝑆𝑁1
 and 𝑆𝑁2

 be arbitrary partial sums 

with 𝑁1  ≥  𝑁2. We assert that ‖𝑆𝑁1
− 𝑆𝑁2

‖
2

=

 ∑ |𝛾𝑗|
2𝑁1

𝑗=𝑁2+1
 for 𝑁1  ≥  𝑁2. For this, we have 

‖∑ 𝛾𝑗𝜓𝑗(𝑡)
𝑁1
𝑗=𝑁2+1

‖
2

 

= 〈∑ 𝛾𝑖𝜓𝑖(𝑡)
𝑁1
𝑖=𝑁2+1

, ∑ 𝛾𝑗𝜓𝑗(𝑡)
𝑁1
𝑗=𝑁2+1

〉 =

∑ ∑ 𝛾𝑖𝛾̅𝑖〈𝜓𝑖(𝑡), 𝜓𝑗(𝑡)〉
𝑁1
𝑗=𝑁2+1

𝑁1
𝑖=𝑁2+1

=

 ∑ |𝛾𝑗|
2
.

𝑁1
𝑗=𝑁2+1

  

According to the Bessels inequality, we have 

∑ |𝛾𝑗|
2∞

𝑗=0  which is convergent and ‖𝑆𝑁1
−

 𝑆𝑁2
‖

2
→ 0, so ‖𝑆𝑁1

− 𝑆𝑁2
‖ → 0 as 𝑁1 , 𝑁2 →

 ∞. Therefore, we proved that 𝑆𝑁 is a Cauchy 

sequence in Hilbert space, so then it is convergent. 

Now, we claim that (𝑡)  =  𝑆 : =  lim𝑁 →∞ 𝑆𝑁. We 

have, 〈𝑦(𝑡) − 𝑆, 𝜓𝑗(𝑡)〉  =  〈𝑦(𝑡), 𝜓𝑗  (𝑡)〉 −

〈𝑆, 𝜓𝑗  (𝑡)〉 = 𝛾𝑗 − 〈lim𝑁 →∞ 𝑆𝑁 , 𝜓𝑗  (𝑡)〉 = 𝛾𝑗 −

lim𝑁 →∞ 〈∑ 𝛾𝑖𝜓𝑖(𝑡), 𝜓𝑗(𝑡)
𝑁
𝑖=0 〉 = 𝛾𝑗 −

∑ 𝛾𝑖〈𝜓𝑖(𝑡), 𝜓𝑗(𝑡)〉
∞
𝑖=0 = 𝛾𝑗−𝛾𝑗 = 0, ∀𝑗 . Hence, 

𝑦(𝑡) − 𝑆 ≡  0 ⇒  y(t) ≡  S( =  ∑ 𝛾𝑗𝜓𝑗(𝑡))
∞
𝑗=0  i.e., 

 ∑ 𝛾𝑗𝜓𝑗(𝑡)
∞
𝑗=0  converges to 𝑦(𝑡), (exact 

solution) ∀𝑡. 

5. Illustrative examples 

To employ the presented method and its efficiency 

for solving the general Eq. (1) we consider this 

equation for different values of a(t), b(t) and g(t), 

and derive respective analytical solutions. The 

computations for these examples were performed in 

Maple 14. 

 

Example 1. Consider Eq. (1) with: 
 

𝑤𝑝 = 2, 𝑎(𝑡) =  cos(𝑡), 𝑏(𝑡) = sin (
𝑡

2
), 

𝑔(𝑡) =  cos(𝑡) − 𝑡 sin(𝑡) + cos(𝑡) (tsin(𝑡)
+ cos(𝑡)) 

−sin (
𝑡

2
) (

2

9
sin(3𝑡) −

t

6
cos(3𝑡) +

t

2
cos(𝑡) 

 
and α = 1, β = 0. The exact solution of this problem 

is y(t) = t sin(t) + cos(t)(see (Dehghan et al., 2008)). 

The numerical solution for Example (1) is obtained 

by the proposed method with M = 3 and k = 2 (8-

terms). Table 1 represents the numerical results of 

this example. In (Maleknejad et al., 2013), for M = 

N = 2 (15-terms), the corresponding error is about 

10−9, for M = 4 and N = 5 (54-terms), the error is 

about 10−14. 

 

Example 2. In this example, we consider Eq. (1) 

with: 
 

𝑤𝑝 = 1, 𝑎(𝑡) = − sin(𝑡),   b(t) = sin(𝑡), 
 

Table 1. Numerical results for Example (1) 
 

Absolute Error t 

9.7958 × 10-11 0 

4.0445 × 10-13 0.1 

3.6216 × 10-13 0.2 

3.7054 × 10-13 0.3 

3.9322 × 10-13 0.4 

4.0165 × 10-13 0.5 

9.9463 × 10-11 0.6 

1.7852 × 10-12 0.7 

1.7513 × 10-12 0.8 

1.7689 × 10-12 0.9 

 

𝑔(𝑡) =
1

9
𝑒−

𝑡

3 − sin(𝑡)(𝑒−
𝑡

3 + 𝑡) − sin(𝑡) (−
3

10
cos(𝑡) e−

t

3 +
9

10
𝑒−

𝑡

3sin(𝑡) + cos(𝑡) + 𝑡 sin(𝑡) −
7

10
) 

 
 

and 𝛼 =  1, 𝛽 =  
2

3
 . 𝑦(𝑡)  =  𝑒−

𝑡

3  +  𝑡 is the exact 

solution of this equation (see (Dehghan et al., 

2008)).We solve this example with M = 3 and k = 2 

(8-terms), and compare with the method in 

(Maleknejad et al., 2013),(6-terms, Table 2). Table 

3 indicates the numerical results of this example 

with M = 5 and k = 2, (16-terms). In Maleknejad et 

al (2013), for M = N = 2 (15-terms), the error is 

about 10−7, for M = 4 and N = 5 (54-terms), the 

error is about 10−11. 

 

Example 3. Finally, we consider Eq. (1) with: 
 
𝑤𝑝 = 3, 𝑎(𝑡) = 1, b(t) = sin(𝑡) + cos (𝑡), 

𝑔(𝑡) = −𝑡3 + 𝑡2 −  11𝑡 + 4 − (sin(𝑡) + cos (𝑡)) 

(−
𝑡3

3
sin(3𝑡)−

𝑡3

3
cos(3𝑡) +

13

27
cos(3𝑡)

+
13

9
𝑡 sin(3𝑡) 

+
t2

3
sin(3t) +

16

27
sin(3t) +

2

9
tcos(3t) +

13

27
 ) 

 
and α = 2, β = −5.  𝑦(𝑡)  =  −𝑡3 + 𝑡2  −  5𝑡 +  2 is 

the exact solution of this equation (see (Dehghan et 

al., 2008)). The absolute error for M = 6 and k = 3 

is listed in Table 4. 
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Table 2. Numerical results for Example (2) 
 

t 
AE our 

method 

AE method of 

(Maleknejad et al., 2013) 

0 1.2632 × 10-11 4 × 10-4 

0.2 5.4356 × 10-11 1 × 10-5 

0.4 9.1043 × 10-12 1 × 10-5 

0.6 2.2734 × 10-11 2 × 10-5 

0.8 3.0997 × 10-11 2 × 10-5 

 
Table 3. Numerical results for Example (2) 

 
Absolute Error t 

3.9293 × 10-14 0 

4.0016 × 10-14 0.1 

2.5215 × 10-13 0.2 

2.7045 × 10-13 0.3 

4.0072 × 10-14 0.4 

4.1051 × 10-14 0.5 

2.7134 × 10-13 0.6 

3.8752 × 10-14 0.7 

3.1597 × 10-13 0.8 

3.0076 × 10-13 0.9 
 

Table 4. Numerical results for Example (3) 
 

Absolute Error t 

3.7958 × 10-14 0 

4.8835 × 10-15 0.1 

3.1626 × 10-14 0.2 

6.0054 × 10-15 0.3 

2.9029 × 10-14 0.4 

4.7865 × 10-15 0.5 

3.1004 × 10-14 0.6 

5.5278 × 10-15 0.7 

5.7975 × 10-15 0.8 

6.1176 × 10-15 0.9 

6. Conclusions 

The aim of the present work is to propose an 

efficient method for solving an integro-differential 

equation which describes the charged particle 

motion for certain configurations of oscillating 

magnetic fields. The Chebyshev wavelets and 

collocation points have been applied for solving the 

problem by reducing the given integro-differential 

equation into a system of algebraic equations. The 

method is computationally attractive and 

applications are demonstrated through several 

illustrative examples. 
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