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Abstract 

In this paper, by employing the Guo-Krasnoselskii fixed point theorem in a cone, we study the existence of 

positive solutions to the following nonlocal fractional boundary value problems 
 

{
 
 

 
 

c
𝐷0+
𝛼 𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)),        𝑡 ∈ (0,1),

𝑢(𝑡) + 𝑢′(0) =
1

2
[𝐻1(𝜑(𝑢)) + ∫ 𝐻2

𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠] ,

𝑢(1) + 𝑢′(1) = 0,

 

 
where c𝐷0+

𝛼  is the standard Caputo derivative of order 𝛼, 1 < 𝛼 < 2,𝐸 ⊆ (0,1) is some measurable set. We 

provide conditions on 𝑓, 𝐻1, 𝐻2 and 𝜑 such that the problem exhibits at least one positive solution. 

 
Keywords: Cone; fixed point theorem; standard Caputo; derivative 

 
1. Introduction 

Fractional calculus is the field of mathematical 

analysis which deals with the investigation and 

applications of integrals and derivatives of arbitrary 

order, the fractional calculus may be considered an 

old and yet novel topic. 

Recently, fractional differential equations have 

been of great interest. This is because of both the 

intensive development of the theory of fractional 

calculus itself and its applications in various 

sciences, such as physics, mechanics, chemistry, 

engineering, etc. For example, for fractional initial 

value problems, the existence and multiplicity of 

solutions were discussed in (Babakhani and Gejji, 

2003; Baleanu et al., 2012; Delbosco and Rodino, 

1996; Kilbas and Trujillo, 2001; Kilbas and 

Trujillo, 2002), moreover, fractional derivative 

arises from many physical processes, such as a 

charge transport in amorphous semiconductors 

(Scher and  Montroll, 1975), electrochemistry and 

material science are also described by differential 

equations of fractional order (Diethelm and Freed, 
1999; Gaul et al., 1991; Glockle and Nonnenmacher, 

1995; Mainar, 1997; Metzler et al., 1995). 
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The existence of solutions of initial value problems 

for fractional order differential equations have been 

studied in the literature (Agarwal et al., 2010; 

Lakshmikantham and Vatsala, 2008; Nyamoradi, 

2012; Nyamoradi, 2013; Nyamoradi, 2012; 

Nyamoradi and Bashiri, 2012; Nyamoradi and 

Bashiri, 2013; Podlubny, 1999; Razminia et al., 

2013; Samko et al., 1993) and the references 

therein. 

On the other hand, certain authors have 

investigated nonlocal, nonlinear boundary 

conditions including, for example, (Ehme et al., 

2002; Graef and Webb, 2009; Kong and Kong, 

2005; Liu et al., 2010; Webb and Infante, 2006; 

Webb and  Infante, 2009; Yang, 2005; Yang, 2006). 

In addition, there are examples of nonlocal 

boundary conditions in the context of fractional 

differential and difference equations (see, for 

example, (Goodrich, 2011; Goodrich, 2011; 

Goodrich, 2011; Goodrich, 2012; Goodrich, 2011) 

and the references therein). 

Our purpose in this paper is to show the existence 

and multiplicity of positive solutions for the 

boundary value problem of fractional differential 

equation: 
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{
 
 

 
 c

𝐷0+
𝛼 𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)),        𝑡 ∈ (0,1),

𝑢(𝑡) + 𝑢′(0) =
1

2
[𝐻1(𝜑(𝑢)) + ∫ 𝐻2

𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠] ,

𝑢(1) + 𝑢′(1) = 0,

        (1) 

 
where 𝑐𝐷0+

𝛼  is the standard Caputo derivative of 

order 𝛼, 1 < 𝛼 < 2, 𝐸 ⋐ (0,1) is some measurable 

set and 𝜑 is a linear functional having the form 
 

𝜑(𝑢) ≔ ∫ 𝑢(𝑡)𝑑𝛼(𝑡)
1

0

,                                             (2) 

 
where the integral appearing in (2) is taken in the 

Lebesgue-Stieltjes sense and 𝑓: [0,1] × ℝ → ℝ is a 

given function with suitable conditions. 

Prior to describing the novel contributions of this 

work, let us place problem (1) in an appropriate 

context and review briefly some recent results on 

such problems. In particular, rich literature on 

nonlocal boundary value problems exists along, 

with the important work by Debbouche, Baleanu 

and Agarwal (Debbouche et al., 2012), in which a 

unified theory of a nonlocal onlinear fractional 

problem which the authors proved the existence of 

mild and strong solutions of a nonlocal nonlinear 

fractional problem with the nonlocal condition 

𝑢(0) + ∑ 𝑢(𝑡𝑘
𝑝
𝑘 =1 ) = 𝑢0. 

The rest of the article is organized as follows: in 

Section 2, we present some preliminaries that will 

be used in Section 3. In Section 3, we give the 

existence of one positive solution for the problem 

(1) by using the Guo-Krasnoselskii fixed point 

theorem. Finally, in Section 4, an example is given 

to demonstrate the application of our main result. 

2. Preliminaries 

In this section, we present some notations and 

preliminary lemmas that will be used in Sections 3 

and 4. 

 

Definition 1. Let X be a real Banach space. A non-

empty closed set XP is called a cone of X  if it 

satisfies the following conditions: 

(1) 𝑥 ∈ 𝑃 , 𝜇 ≥ 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜇𝑥 ∈ 𝑃, 
(2) 𝑥 ∈ 𝑃 , −𝑥 ∈ 𝑃 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑥 = 0 . 
 

Definition 2. The Riemann-Liouville fractional 

integral operator of order ,0 of function 

𝑓 ∈ 𝐿1(ℝ +) is defined as 
 

𝐼0+
𝛼 𝑓(𝑡) =

1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠,
𝑡

0

 

 

where )( is the Euler gamma function. 

 

Definition 3. The Riemann-Liouville fractional 

derivative of order ,0 ,1 nn    𝑛 ∈ ℕ is 

defined as 
 

𝐷0+
𝛼 𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)
𝑛

∫ (𝑡 − 𝑠)𝑛−𝛼−1𝑓(𝑠)𝑑𝑠,
𝑡

0

 

 

where the function )(tf  has absolutely continuous 

derivatives up to order (𝑛 − 1). 
 

Lemma 1. ((Kilbas, et al., 2006)). The equality 

0
00

),()(   tftfID  holds for 

).1,(L∈ 0
1f  

 

Definition 4. ((Kilbas, et al., 2006; Podlubny, 

1999)) The fractional derivative of 𝑓 in the Caputo 

sense is defined as 
 

𝑐𝐷0+
𝛼  𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫ (𝑡 − 𝑠)𝑛−𝛼−1𝑓(𝑠)𝑑𝑠,
𝑡

0
 𝑛

− 1 < 𝛼 < 𝑛, 
 
where 𝑛 = [𝛼] + 1. 

 

Lemma 2. ((Kilbas, et al., 2006)). Let 0  

Then the differential equation 
 

𝑐𝐷0+
𝛼  𝑢(𝑡)= 0 

 
has a unique solution u(t) = c0 + c1t + ⋯+
cn−1t

n−1, ci ∈ ℝ, 𝑖 = 1 , … , 𝑛  , where 𝑛 − 1 < 𝛼 ≤
𝑛 . 

 

Lemma 3. ((Kilbas, et al., 2006)). Assume that 

ℎ ∈ 𝐶(0,1) ∩ 𝐿1(0,1) with a derivative of order 

𝛼 > 0 that belongs to (0,1) ∩ 𝐿1(0,1). Then 

 

𝐼0+
𝛼 c

𝐷0+
𝛼 ℎ(𝑡) = h(t) + c0 + c1t + ⋯+ cn−1t

n−1, 

 

for some 𝑐𝑖 ∈ ℝ, 𝑖 = 1 , … , 𝑛 − 1 , where 𝑛 − 1 <
𝛼 ≤ 𝑛. 

 

Lemma 4. Suppose that ℎ ∈ 𝐶[0,1], then the 

boundary value problem (1) has a unique solution 
 

𝑢(𝑡) = (1 − 𝑡) [𝐻1(𝜑(𝑢)) + ∫ 𝐻2𝐸
(𝑠, 𝑢(𝑠))𝑑𝑠] +

∫ 𝐺(𝑡, 𝑠)ℎ(𝑠)𝑑𝑠
1

0
,                                                  (3) 

 
where 
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                  𝐺(𝑡, 𝑠) =

{
 
 

 
 (1 − 𝑠)

𝛼−1(1 − 𝑡) + (𝑡 − 𝑠)𝛼−1

Γ(𝛽)
+
(1 − 𝑠)𝛼−2(1 − 𝑡)

Γ(𝛼 − 1)
,   𝑜 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1 − 𝑠)𝛼−1(1 − 𝑡)

Γ(𝛽)
+
(1 − 𝑠)𝛼−2(1 − 𝑡)

Γ(𝛼 − 1)
,      𝑜 ≤ 𝑡 ≤ 𝑠 ≤ 1,

                          (4) 

 

 

Proof: The proof is similar to that of Lemma 3.1 in 

(Zhang, 2006), so we omit it here.  
 

Lemma5. Let 𝜃 ∈ (0,
1

2
), then the function 𝐺(𝑡, 𝑠) 

defined by (4) satisfies the following conditions: 

(𝑖) 𝐺(𝑡, 𝑠) ∈ 𝐶([0,1] × [0,1)) and (𝑡, 𝑠) > 0, for 

any (𝑡, 𝑠) ∈ (0,1) × (0,1); 
(ii) There exists a positive function 𝛾 ∈ 𝐶(0,1) such 

that 
 

min
0≤𝑡≤1−𝜃

 𝐺(𝑡, 𝑠) ≥ 𝛾(𝑠)𝑀(𝑠), 

max
0≤𝑡≤1−𝜃

𝐺(𝑡, 𝑠) ≤ 𝑀(𝑠),     𝑠 ∈ (0,1), 

 
where 
 

𝑀(𝑠) =
2(1 − 𝑠)𝛼−1

Γ(𝛼)
+
(1 − 𝑠)𝛼−2

Γ(𝛼 − 1)
,      𝑠 ∈ [0,1), 

 

𝛾(𝑠) = 𝜃
(1−𝑠)𝛼−1+(𝛼−1)(1−𝑠)𝛼−2

2(1−𝑠)𝛼−1+(𝛼−1)(1−𝑠)𝛼−2
,          𝑠 ∈ (0,1). 

 

Proof: The proof is similar to that of Lemma 2.5 in 

(Yang et al., 2012), so we omit it here. 

Now, we consider the system (1). By applying 

lemma 4, 𝑢 ∈ 𝐶(0,1) is a solution of the system (1) 

if and only if 𝑢 ∈ 𝐶[0,1] is a solution of the 

following nonlinear integral system: 
 

𝑢(𝑡) = (1 − 𝑡) [𝐻1(𝜑(𝑢)) + ∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠]

+∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

.                 (5) 

 
The basic space used in this paper is a real 

Banach space 𝛽 = 𝐶[0,1] with the norm ‖𝑢‖ =
𝑚𝑎𝑥0≤𝑡≤1|𝑢(𝑡)|. 

3. Main result for the single-valued case 

Now we are able to present the existence results for 

problem (1). In this section, to establish the 

existence one positive solution of system (1), we 

will employ the following Guo-Krasnoselskii fixed 

point theorem. 

Our approach is based on the following Guo-

Krasnoselskii fixed point theorem of cone 

expansion-compression type (Krasnoselskii, 1964). 

 

Theorem 1. Let 𝐸 be Banach space and 𝐾 ⊆ 𝐸 a 

cone in 𝐸. Assume Ω1 and Ω2 are open subsets of 𝐸 

with 0 ∈ Ω1 and Ω̅1 ⊆ Ω2. Let 𝑇:𝐾 ∩ (Ω̅2\Ω1) →

𝐾 be a completely continuous operator. In addition 

suppose either 

(A) ‖𝑇𝑢‖ ≤ ‖𝑢‖, ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω1 and ‖𝑇𝑢‖ ≥
‖𝑢‖, ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω2 or 

(B) ‖𝑇𝑢‖ ≥ ‖𝑢‖, ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω1 and ‖𝑇𝑢‖ ≤
‖𝑢‖, ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω2 

holds. Then 𝑇 has a fixed point in 𝐾 ∩ (Ω̅2\Ω1). 
Also, we introduce the following notations. 

Define 
 

𝜎 = 𝑚𝑖𝑛 {
𝑚𝑖𝑛𝜃≤𝑡≤1−𝜃(1−𝑡)

𝑚𝑎𝑥0≤𝑡≤1(1−𝑡)
,
𝑚𝑖𝑛𝜃≤𝑡≤1−𝜃𝛾(𝑡)

3
}. 

 
Then, choose a cone 𝐾 ⊂ 𝛽, by 

 

𝐾 = {
𝑢 ∈ 𝛽 ∶ 𝑢 ≥ 0 min

0≤𝑡≤1−𝜃
(u(t))

≥ σ‖u‖, 𝜑1(𝑢), 𝜑2(𝑢) ≥ 0
}. 

 
and define an operator 𝑇:𝐸 → 𝐸 by 
 
𝑇(𝑢)(𝑡)

= (1 − 𝑡) [𝐻1(𝜑(𝑢)) + ∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠]

+ ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

.                                        (6) 

 
Throughout the forthcoming analysis, the 

following conditions are assumed: 

(H1) Let 𝐻1: [0, +∞) →  [0, +∞) and 𝐻2: [0,1] ×
[0, +∞) →  [0, +∞) be two real-value, continuous 

function; 

(H2) The functional 𝜑(𝑢) ∶= ∫ 𝑢(𝑡)𝑑𝛼1(𝑡) +
1

0

∫ 𝑢(𝑡)𝑑𝛼2(𝑡)
1

0
 can be written in the form 

 
𝜑(𝑢) = 𝜑1(𝑢) + 𝜑2(𝑢) 

  ∶= ∫ 𝑢(𝑡)𝑑𝛼1(𝑡) + ∫ 𝑢(𝑡)𝑑𝛼2(𝑡),
1

0

1

0

                             (7) 

 
where 𝛼, 𝛼1, 𝛼2: [0,1] → ℝ satisfy 𝛼 ∈ 𝐵𝑉([0,1]) 
and 𝜑1, 𝜑2 are linear functionals; 

(H3) For each i=1,2 both 
 

∫ (1 − 𝑡)𝑑𝛼𝑖(𝑡)
1

0
 ≥ 0                                           (8) 

 
and 
 

∫ 𝐺(𝑡, 𝑠)𝑑𝛼𝑖(𝑡)
1

0

≥ 0                                                 (9) 

 
hold, where (9) holds for every 𝑠 ∈ [0,1]. 
(H4) There is a constant 𝐶1 ∈ [0,1) such that the 

functional 𝜑 in (7) satisfies the inequality 
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|𝜑(𝑢)| ≤ 𝐶1‖𝑢‖,   ∀𝑢 ∈ 𝐶([0,1]).                        (10) 
 
Moreover, there is a constant 𝐶2 > 0 such that the 

functional 𝜑 in (7) satisfies 𝜑2(𝑢) ≥ 𝐶2‖𝑢‖ 

whenever 𝑢 ∈ 𝐾; 
 

(H5) limsup𝑢→+∞
𝐻1(𝑢)

𝑢
= 0; 

 
(H6) There exists a function 𝑝: [0, +∞) →  [0, +∞) 
satisfying the growth condition 
 
𝑝(𝑢) ≤ 𝐶4𝑢,      for some 𝐶4 ≥ 0,                         (11) 
 
having the property 
 

limsup
𝑢→+∞

𝐻2(𝑡, 𝑢)

𝑢
= 0,                                               (12) 

 
uniformly with respect to (𝑡, 𝑢) ∈ [0,1] × ℝ+; 

(H7) limsup𝑢→0+
𝑓(𝑡,𝑢)

𝑢
= +∞ uniformaly with 

respect to (𝑡, 𝑢) ∈ [0,1] × ℝ+. 

(H8) limsup𝑢→+∞
𝑓(𝑡,𝑢)

𝑢
= 0 uniformaly with 

respect to (𝑡, 𝑢) ∈ [0,1] × ℝ+. 

 

Lemma 6. If (H1), (H2), and (H3) hold, then the 

operator 𝑇: 𝐾 → 𝐾 is well-defined, i.e. 𝑇(𝐾) ⊆ 𝐾 

and completely continuous. 

 

Proof: For any 𝑢 ∈ 𝐾, by Lemma 5, 𝑇(𝑢)(𝑡) ≥
0, 𝑡 ∈ [0,1], and it follows from (6) that 

‖𝑇(𝑢)‖

≤ max
0≤𝑡≤1

(1 − 𝑡) [𝐻1(𝜑(𝑢))

+ ∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠]       + ∫ 𝑀(𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

   

= max
0≤𝑡≤1

(1 − 𝑡) [𝐻1(𝜑(𝑢)) + ∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠]  

+ (∫ +
𝜃

0

∫ +
1−𝜃

0

∫
1

1−𝜃

) (𝑀(𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠) 

≤ max
0≤𝑡≤1

(1 − 𝑡) [𝐻1(𝜑(𝑢)) + ∫ 𝐻2𝐸
(𝑠, 𝑢(𝑠))𝑑𝑠] +

3∫ 𝑀(𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1−𝜃

𝜃
.                                  (13) 

 
Thus, for any 𝑢 ∈ 𝐾, it follows from Lemma 5 

and (6) that 
 
min

0≤𝑡≤1−𝜃
𝑇(𝑢)(𝑡) 

= min
0≤𝑡≤1−𝜃

{(1 − 𝑡) [𝐻1(𝜑(𝑢))

+ ∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠]

+ ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

} 

≥ min
0≤𝑡≤1−𝜃

(1 − 𝑡) [𝐻1(𝜑(𝑢)) + ∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠]

+ ∫ 𝛾(𝑠)𝑀(𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1−𝜃

𝜃

 

≥
min

0≤𝑡≤1−𝜃
(1 − 𝑡)

max
0≤𝑡≤1

(1 − 𝑡)
[𝐻1(𝜑(𝑢)) + ∫ 𝐻2

𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠]

+ min
0≤𝑡≤1−𝜃

𝛾(𝑡)∫ 𝑀(𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1−𝜃

𝜃

 

≥ 𝜎‖𝑇(𝑢)‖. 
 

Finally, for 𝑢 ∈ 𝐾, 𝑖 = 1,2 and (H3), one can 

obtain 
 

𝜑𝑖(𝑇(𝑢))

≤ ∫ (1 − 𝑡) [𝐻1(𝜑(𝑢))
1

0

+∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠] 𝑑𝛼𝑖(𝑡)

+∫ (∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

)
1

0

𝑑𝛼𝑖(𝑡) 

= [𝐻1(𝜑(𝑢))

+ ∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠]∫ (1 − 𝑡)𝑑𝛼𝑖(𝑡)
1

0

+∫ (∫ 𝐺(𝑡, 𝑠)𝑑𝛼𝑖(𝑡)
1

0

)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

 

≥ 0. 
 

Therefore, from the above, we conclude that 

𝑇(𝑢)(𝑡) ∈ 𝐾, that is, 𝑇(𝐾) ⊂ 𝐾. Thus, The 

operator 𝑇 by an application of the Ascoli-Arzela 

theorem, is completely continuous. This completes 

the proof. 

It is clear that the existence of a positive solution 

for the problem (1) is equivalent to the existence of 

a nontrivial fixed point of 𝑇 in 𝐾. 

 

Theorem 2. If (H1)-(H8) hold, 𝐸 ⋐ (0,1) and 
 
𝐶1 + 𝐶4𝑚(𝐸) < 1,                                                   (14) 
 
then (1) has at least one positive solution. 

 

Proof: By (H7), there exists 𝑟1 > 0 such that 

𝑓(𝑡, 𝑢) ≥ 𝜂1𝑢, 0 < 𝑢 ≤ 𝑟1. Set 
 
Ω1 ∶= {𝑢 ∈ 𝛽: ‖𝑢‖ < 𝑟1},                                       (15) 
 
and let 𝜂1satisfy 
 

𝜂1𝜎∫ 𝑀(𝑠)𝑑𝑠 ≥ 1.
1−𝜃

𝜃

                                           (16) 

 
Then, for any 𝑢 ∈ 𝐾 ∩ 𝜕Ω1, one can get 
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𝑇(𝑢) (
1

2
) ≥ ∫ 𝐺 (

1

2
, 𝑠) 𝑓(𝑠, 𝑢(𝑠))𝑑𝑠

1

0

≥ ‖𝑢‖𝜂1𝜎∫ 𝑀(𝑠)𝑑𝑠 ≥
1−𝜃

𝜃

‖𝑢‖. 

 
which implies that 
 
𝑇(𝑢) ≥ ‖𝑢‖,    for 𝑢 ∈ 𝐾 ∩ 𝜕Ω1.                          (17) 
 

On the other hand, the condition (14) implies the 

existence of 𝜖 > 0 such that 
 

𝐶1 + 𝐶4𝑚(𝐸) + 𝜖 < 1. 
 

But then by choosing 𝜖 even closer to zero if 

necessary, we may also assume that 
 
𝜖𝐶1 +𝑚(𝐸)𝐶4𝜖 + 𝜖 < 1.                                       (18) 
 

Henceforth, we let 𝜖 be fixed such that (18) holds. 

Now, since (H5) holds, for 𝜖 > 0, there exists 

𝑀𝜖 > 0 such that 
 

𝐻1(𝜑(𝑢)) ≤ 𝜖𝜑(𝑢),     for each 𝜑(𝑢) > 𝑀𝜖 .     (19) 
 

Since 𝜑1(𝑢) ≥ 0, (H4), it follows that 𝜑(𝑢) ≥
𝜑2(𝑢) ≥ 𝐶2‖𝑢‖, so that if 
 

‖𝑢‖ ≥
𝑀𝜖

𝐶2
,                                                                 (20) 

 
then (19) holds. Similarly, condition (H6) implies 

the existence of a number 𝑀𝜖 > 0, which we do not 

relabel, such that 
 

𝐻2(𝑡𝜑(𝑢(𝑠))) ≤ 𝜖𝐹(𝑢(𝑠)),                                   (21) 
 
for each 𝑡 ∈ [0,1], 𝑢(𝑠) > 𝑀𝜖 . In order to ensure 

that this occurs, note that it is sufficient to assume 

that 
 

‖𝑢‖ ≥
𝑀𝜖

𝜎
.                                                                 (22) 

 
Indeed, it then holds that 

 
min
𝑡∈𝐸

𝑇(𝑢)(𝑡) ≥ min
0≤𝑡≤1−𝜃

𝑢(𝑢) ≥ 𝜎‖𝑢‖ ≥ 𝜎.
𝑀𝜖

𝜎
= 𝑀𝜖 .           (23) 

 
Note that (23) is allowable since 𝐸 ⋐ (𝜃, 1 − 𝜃). 

In any case, then, both (20) and (24) hold provided 

that 
 

‖𝑢‖ ≥ 𝑚𝑎𝑥 {
𝑀𝜖

𝐶2
,
𝑀𝜖

𝜎
}.                                            (24) 

 
Since (H8) holds, for 𝜂2 > 0, there exists 

𝑟2 > 𝑟1 > 0 such that 𝑓(𝑡, 𝑢) ≤ 𝜂2𝑢 for 𝑢 > 𝑟2, 

where 𝜂2 satisfy 
 

𝜂2∫ 𝑀(𝑠)𝑑𝑠 ≤ 𝜖
1

0

.                                                  (25) 

 

We consider two cases: 

Case (i): Suppose that 𝑓 is unbounded, then define 

a function 𝑓∗: [0, +∞) → [0, +∞) by 
 
𝑓∗(𝑟) ∶= 𝑚𝑎𝑥{𝑓(𝑡, 𝑢) ∶  𝑡 ∈ [0,1], 0 ≤ 𝑢 ≤ 𝑟}. 

 
It is easy to see that 𝑓∗ is nondecreasing and 

limsup𝑟→+∞
𝑓∗(𝑟)

𝑟
= 0, and 

 
𝑓∗(𝑟) ≤ 𝜖𝑟,    𝑓𝑜𝑟 𝑟 > 𝑟2.           (26) 
 

Taking 𝑟2
∗ > 𝑚𝑎𝑥 {𝑟2,

2𝑟1

𝜎
,
𝑀𝜖

𝐶2
,
𝑀𝜖

𝜎
}, then from (26), 

one has 
 
𝑓(𝑡, 𝑢) ≤ 𝑓∗(𝑟2

∗) ≤ 𝜖𝑟2
∗,   𝑓𝑜𝑟 𝑡 ∈ [0,1], 0 ≤ 𝑢 ≤ 𝑟2

∗. (27) 
 
Set 
 
Ω2 ∶= {𝑢 ∈ 𝛽: ‖𝑢‖ < 𝑟2

∗}.                                       (28) 
 

Then, for any 𝑢 ∈ 𝐾 ∩ 𝜕Ω2, one may obtain 

‖𝑇(𝑢)‖ ≤ 𝐻1(𝜑(𝑢)) + ∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠

+ ∫ 𝑀(𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

 

≤ 𝜖𝜑(𝑢) + ∫ 𝜖𝐹(𝑢(𝑠))

𝐸

𝑑𝑠 + 𝑟2
∗𝜂2∫ 𝑀(𝑠)𝑑𝑠

1

0

 

≤ 𝜖𝐶1‖𝑢‖ + 𝑚(𝐸)𝐶4 ∈ ‖𝑢‖+∈ ‖𝑢‖ 

≤ [𝜖𝐶1 +𝑚(𝐸)𝐶4 ∈ +∈]‖𝑢‖ ≤ ‖𝑢‖. 
which implies that 
 
𝑇(𝑢) ≤ ‖𝑢‖,        𝑓𝑜𝑟  𝑢 ∈ 𝐾 ∩ 𝜕𝛺2.                    (29) 
 
Case (ii): Suppose that f is bounded, say 

maxt∈[0,1] f(t, u) ≤ r2 for some r2 ≥ 0 is 

sufficiently large. In fact, without loss of generality, 

we may assume that 
 

𝑓(𝑡, 𝑢) ≤
𝑟2

∫ 𝑀(𝑠)𝑑𝑠
1

0

𝜖.                                           (30) 

 

Taking 𝑟2
∗ > 𝑚𝑎𝑥 {𝑟2,

2𝑟1

𝜎
,
𝑀𝜖

𝐶2
,
𝑀𝜖

𝜎
}, for any 𝑢 ∈ 𝐾 ∩

𝜕Ω2, we have 
 

‖𝑇(𝑢)‖ ≤ 𝐻1(𝜑(𝑢)) + ∫ 𝐻2
𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠

+ ∫ 𝑀(𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
1

0

 

≤ 𝜖𝜑(𝑢) + ∫ 𝜖𝐹(𝑢(𝑠))

𝐸

𝑑𝑠

+
𝑟2

∫ 𝑀(𝑠)𝑑𝑠
1

0

∫ 𝑀(𝑠)𝑑𝑠
1

0

 

≤ 𝜖𝐶1‖𝑢‖ + 𝑚(𝐸)𝐶4 ∈ ‖𝑢‖+∈ ‖𝑢‖ 

≤ [𝜖𝐶1 +𝑚(𝐸)𝐶4 ∈ +∈]‖𝑢‖ 

≤ ‖𝑢‖. 
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which implies that 
 
𝑇(𝑢) ≤ ‖𝑢‖,        for  𝑢 ∈ 𝐾 ∩ 𝜕Ω2.                    (31) 
 

Thus, in either case, we may combine estimates 

(17) and (29) or (31) together with Theorem 1 to 

deduce the existence of a function 𝑢0 ∈ 𝐾 ∩
(Ω̅2 Ω1⁄ ) such that (𝑢0) = 𝑢0. Therefore the 

problem (1) has at least on positive solution. So, the 

proof is complete. 

4. Application 

Example 3. Consider the following singular 

boundary value problem: 
 

{
  
 

  
 c

𝐷
0+

3

2 𝑢(𝑡) = (
𝑡 + 1

2
)
4

(𝑢𝑒
1

𝑢 − 𝑢) ,        𝑡 ∈ (0,1),

𝑢(0) + u′ (0) = 1

2
[𝐻1(𝜑(𝑢)) + ∫ 𝐻2

𝐸

(𝑠, 𝑢(𝑠))𝑑𝑠] ,

𝑢(1) + u′ (1) = 0,

      (32) 

 

here, =
3

2
, 𝑓(𝑡, 𝑢) = (

𝑡+1

2
)
4

(𝑢𝑒
1

𝑢 − 𝑢). Now, we 

define 
 

𝐻1(𝑢) = 𝑢 − 𝑢𝑒
1

√𝑢 ,    𝑝(𝑢) = 4𝑢,       𝐻2(𝑡, 𝑢)

=
𝑡

10
(𝑢𝑒

1

𝑢 − 𝑢), 

and 𝜑(𝑢) = 𝜑1(𝑢) + 𝜑2(𝑢) where 

𝜑1(𝑢) =
1

6
𝑢 (
2

3
) −

1

8
𝑢 (
1

2
),            𝜑2(𝑢)

=  ∫ 𝑢(𝑡)𝑑𝑡

2

3

1

3

. 

 

Also, we choose 𝜃 =
1

4
, 𝐸 = [

9

30
,
1

3
], which 

implies that 𝑚(𝐸) =
1

30
. In addition, we have  

 

|𝜑(𝑢)| ≤
1

6
‖𝑢‖ +

1

8
‖𝑢‖ + (

2

5
−
1

3
) ‖𝑢‖ =

129

360
, 

 
and  
 

𝜑2(𝑢) ≥
1

15
𝜎‖𝑢‖, 

 

for each 𝑢 ∈ 𝐾. Thus, upon putting 𝐶1 ∶=
129

360
∈

[0,1)  and 𝐶2; =
1

15
𝜎 > 𝑜. Clearly, 𝑓, 𝜑, 𝐻1 and 𝐻2 

satisfy the conditions (H1)-(H8). Then, all 

conditions of Theorem 2 hold. Hence, the system 

(32) has at least one solution. 
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