Structure of quasi ordered ∗-vector spaces | ||
Iranian Journal of Science | ||
مقاله 7، دوره 38، شماره 4، اسفند 2014، صفحه 445-453 اصل مقاله (482.37 K) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22099/ijsts.2014.2561 | ||
نویسندگان | ||
G. H. Esslamzadeh* ؛ M. Moazami Goodarzi؛ F. Taleghani | ||
Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran | ||
چکیده | ||
Let (𝑋,𝑋+) be a quasi ordered ∗-vector space with order unit, that is, a ∗-vector space 𝑋 with order unite together with a cone 𝑋+⊆𝑋. Our main goal is to find a condition weaker than properness of 𝑋, which suffices for fundamental results of ordered vector space theory to work. We show that having a non-empty state space or equivalently having a non-negative order unit is a suitable replacement for properness of 𝑋+. At first, we examine real vector spaces and then the complex case. Then we apply the results to self adjoint unital subspaces of unital ∗-algebras to find direct and shorter proofs of some of the existing results in the literature. | ||
کلیدواژهها | ||
Quasi ordered ∗-vector space؛ bounded algebra؛ quasi operator system؛ Archimedeanization | ||
آمار تعداد مشاهده مقاله: 3,858 تعداد دریافت فایل اصل مقاله: 2,309 |