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Abstract 

A nonstandard finite difference (NSFD) scheme has been constructed and analyzed for a mathematical model that 

describes Lotka–Volterra food web model. This new discrete system has the same stability properties as the 

continuous model and,on the whole, it preservesthe same local asymptotic stability properties. Linearized stability 

theory and Schur–Cohn criteria are used for local asymptoticstability of this discrete time model. Numerical 

results are given to support the results. 
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1. Introduction 

The study of biological systems has been developed 

over many years. In these systems, it is common 

that the state variablesrepresent nonnegative 

quantities, such as concentrations, physical 

properties, the size of populations and the amountof 

chemical compounds (Murray, 2003). These 

biological models are commonly based on systems 

of ordinary differential equations (ODEs). Exact 

solutions of these systems are rarely accessible and 

usually complicated; hence good approximations 

are required. 

Numerical methodsare often the method of choice 

and should describe the dynamic behavior of the 

systems, produce the nonnegativesolutionsand 

reproduce the real dynamics of the biological 

systems. The interspecies interaction is among the 

most intensively explored fields of biology. The 

increasingamount of realistic mathematical models 

in that area helps in understanding the population 

dynamics ofanalyzed biological systems. Mathematical 

models of predator–prey systems, characterized by 

decreasinggrowth rate of one of the interacting 

populations and increasing growth rate of the 

other, consist of the ODE systems. In most of the 

modeled interactions, all rates of changes are 

assumed to be timeindependent, which makes the 

corresponding systems autonomous. The positivity 

of the size of bothinteracting populations requires the 

mathematical models to preserve the invariance of the 

first quadrant. 
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The differential equations in these 

mathematicalmodels are usually nonlinear 

autonomous differential equationsystems which have 

only time-independent parameters. It is not always 

possible to find the exact solutions of thenonlinear 

models that consist of at least two ODEs. It is 

sometimes more useful to find numericalsolutions to 

these types of systems in order to easily programand 

visualize the results. By applying a numerical method 

on a continuous differentialequation system, it 

becomes a difference equation system, i.e., a discrete 

time system. While applying thesenumerical 

methods, it is necessary that the new 

differenceequation system provides the positivity 

conditionsand exhibits the same quantitative behaviors 

of a continuoussystem such as 

stability, bifurcation and chaos. It is wellknown that 

some traditional and explicit schemes such as 

forwardEuler and Runge–Kutta are unsuccessful at 

generatingoscillation, bifurcations, chaos and false 

steady states, despite using adaptive step size (Arenas 

et al., 2008; Mickens, 2005; Moghadas et al., 2003, 

2004; Roeger, 2004, 2008). For forward Euler 

method, if the step size is chosen small enough and the 

positivityconditions are satisfied, it is seen that local 

asymptoticstability for a fixed point is saved while in 

some specialcases Hopf bifurcation cannot be 

seen. Instead of classicalmethods, NSFD scheme can 

alternatively be used to obtain more qualitative results 

andremove numerical instabilities. These schemes are 

developedfor compensating the weaknesses such as 

numerical instabilities that may be caused by 

standarddifference methods. Also, the dynamic 

consistency can be represented byNSFD scheme (Liao 

and Ding, 2012). The most important advantages of 

this scheme isthat by choosing a convenient 

denominator function instead ofthe step size, better 
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results can be obtained. If the step size is chosen small 

enough, the obtained results do not 

changesignificantly but if gets larger this advantage 

comes intofocus. 

This paper is organized as follows: The next 

sectionprovides a brief overview of the important 

features of the procedures for constructing NSFD 

schemes in ODEs. In section 3, we introduce the 

model thenceforth discretizated in a nonstandard 

form that provides the positivity conditions.  In 

section 4, we present a lemmaand then a linearized 

stability theorem is given for the localasymptotic 

stability of the discrete time systems. Finally in the 

last section, some numerical experiments are 

carried out tostudy the solution to this system. Later 

on some notes are presented on a Hopf 

bifurcationthat arises at a certain critical value. 

2.Nonstandard Finite Difference Schemes for 

ODEs 

The initial foundation of NSFD schemes come from 

the exact finitedifference schemes. These schemes 

were well developed by Mickens (1994, 2003, 

2005, 2007) in the pastdecades. These schemes are 

developed for compensating the weaknesses such as 

numerical instabilities that may be causedby 

standard finite difference methods .Regardingthe 

positivity, boundedness and monotonicity of 

solutions, NSFD schemes have a better 

performance over the standard finite difference 

schemes, due to their flexibility to construct a 

NSFD scheme that can preservecertain properties 

and structures, which are obeyed by the original 

equations. Also, thedynamic consistency could be 

presented well by NSFD schemes. 

The advantages of NSFD schemes have been 

shown in manynumerical applications. Arenaset al .

(2010) and González-Parra et al. (2010) developed 

NSFD schemesto solve population and biological 

models. Jordan (2003) and Malek (2011) 

constructed NSFD schemes for heat transfer 

problems. For symplectic systems, Mickens (2005) 

derived a NSFD variational integrator for 

symplectic ODEs.  

We now give an outline of the critical points 

which will allow the construction of NSFD 

discretizations for ODEs.  

Consider the autonomous ODE given by  
 

0 0 0( ),         ( ) ,         [ , ],fx f x x t x t t t     

 

where  ( )f x  is, in general, a nonlinear function of 

.x  For a discrete-time grid with step size, 

t h  , we replace the independent variable t  

by 

 

,         0,1,2,  ,nt t nh n N     

where 0ft t
h

N


 .The dependent variable ( )x t  

is replaced by 
 

 ( ) ,nx t x
 

 

where  nx  is the approximation of  ( )nx t . 

The first NSFD requirement is that the dependent 

functions should be modeled nonlocally on the 

discrete–time computationalgrid. Particular 

examples of this include the following functions 

(Mickens, 2005, 1994). 
 

2
1

2 1 1

3 21 1

,

( ) ,
3

( ) .
2

n n

n n n
n

n n
n

x x x

x x x
x x

x x
x x



 

 









 









 

 
A standard way for representing a discrete first-

derivative is given by 
 

1 .n nx x
x

h
  

 
 
However, the NSFD scheme requires that x   has 

the more general representation 
 

1 ,n nx x
x


  

 
 

where the denominator function, i.e.  has the 

properties: 
 

2. ( ) ( ),

. ( ) ,

. ( )

.

I h h O h

II h is an increasing function of h

III h may depend on the parameters

appearing in the differential equations







 

 

 
The paper of Mickens (2007) gives a general 

procedure for determining ( )h  for systems of 

ODEs. 

An example of the NSFD discretization process is 

its application to the decay equation 
 

,x x    

 

where   is a constant. The discretization scheme is 

(Mickens, 2007) 
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1 1
 , ( , ) .

h
n n

n

x x e
x h



  
 


  

  
 

 
Another elementary example is given by 

 
2

1 2 ,x x x   
 

 
where the NSFD scheme is as follows (Mickens, 

2007) 
 

1
1 2 1 ,n n

n n n

x x
x x x 







 

 
 
where the denominator function is 
 

1

1

1

1
( , ) .

he
h



 



  

 
It should be noted that the NSFD schemes for 

both ODEs are exact in the sense that 

( )n nx x t  for all applicable valuesof 0h  . In 

general, for an ODE with polynomial terms, 
 

 ( ), ,x ax NL NL nonlinear terms     

 
the NSFD discretization for the linear expressions 

is given by Mickens (2007) 
 

1  ( ) ,n n
n n

x x
ax NL


   

 
 
where the denominator function is 
 

1
( , ) .

ahe
h a

a





 
 
It follows that if x   is a function of x  which 

does not have a linear term, then the denominator 

function would be just h , i.e. ( )h h  . 

3. Discretization of the Model 

In a food web, a species is called basal if it is prey 

but is not predatory, intermediate if it is both prey 

and predator, and top if it is only a predator; the 

compositionof predator and prey relationships in a 

food web is referred to as its trophic structure and 

individual levels as trophic levels. We use the word 

population to meanabundance or biomass of a 

species. Let ( ), ( )x t y t  and ( )z t  represent the 

populations of basal, intermediate, and top species 

respectively in a food web at time .t A sensible 

model for the trophic structure of a closed food-web 

population at timet  is a generalized Lotka–

Volterra system of the form 
 

2

0 0 0

,

,

,

(0) , (0) , (0) ,

x ax bx cxy dxz

y ey fxy gyz

z hz ixz jyz

x x y y z z

    

    

    

  

           (1) 

 

where a, b, ..., 0j  . In this model, the basal 

species with population x  haveintrinsic growth 

rate a  with environmental carrying capacity a b  

and the strengthof the effect of predation form. The 

other two species are measured by interaction–

termcoefficients c  and .d As the top species with 

population z  preys on both the basaland 

intermediate species, its interaction terms xz  and 

yz have positive coefficients,since z  increases 

under interaction with each of the other 

species. The intermediatespecies with population 

y  grows through interaction with the basal species 

butdeclines through interaction with the top species. 

This system is a special case of the well–known 

Lotka–Volterra cascade model (Chen and Cohen, 

2001) given by 
 

1

( ) ( ) ( ) , 1,2,...,
n

i i i ij j
j

x t x t e p x t i n


 
    

 
 (2) 

 

where ( )ix t  is the population of species ,i  ie  is 

the intrinsic growth or decline rateof species i  and 

ijp  is the interaction coefficient between species 

i  and .j We can consider here the case 3n   and 

then use the NSFD scheme which applies to predict 

the populationin the case of only one basal 

species, so that 11 0p   and 22 33 0p p   in 

(2), and with hierarchal predation, meaning that 

each successive species preys on thosebelow 

it. This means that in (2) species j  preys on 

species i  if and only if ,i j so that 0ijp   if 

i j  and 0ijp   if .i j  

In order to get a better analysis for the system, we 

reduce the number of parameters using the 

nondimensionalization method as in (Murray, 2003) 

as follows. Letting 
 

( ) ( ), ( ) ( ), ( ) ( ),
b c d

u T x t v T y t w T z t
a a a

  
 

 

where ,T at  consequently we get 
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2 2

2

'( ) '( ), '( ) '( ),

'( ) '( ).

a a
x t u T y t v T

b c

a
z t u T

d

 


   (3) 

 

Substituting (3) into (1) and renaming T  to ,t  

gives

 

 

0 0 0

(1 ),

( ),

( ),

(0) , (0) , (0)

u u u v w

v v A Bu Cw

w w D Eu Fv

u u v v w w

    

    

    

  
            (4) 

 
where 
 

, , ,

, , ,

e f g
A B C

a b d

h i j
D E F

a b c

  

  

 

 
with 
 

0 0 0 0 0 0, , .
b c d

u x v y w z
a a a

    

 
The system of nonlinear differential (4) will be 

discretizatedas follows 
 

1

1

2
1

1

1

1

( ) ,

( ) ,

( ) ,

( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

n

n

n

n n

n n

n n

n n

u T u

v T v

w T w

u T u u

u T v T u v

u T w T u w

v T w T v w



























 

 

If 1 1 ,n nu v   and 1nw   explicitly solved (4), the 

following iterations will be obtained: 
 

1
1

1

2 1
1

2

(1 ( ))
,

1 ( )( )

(1 ( , ) )
,

1 ( , )( )

n
n

n n n

n n
n

n

h u
u

h u v w

B h A u v
v

h A A Cw

















  




 

 

3 1 3 1
1

3

(1 ( , ) ( , ) )
,

1 ( , )
n n n

n

E h D u F h D v w
w

D h D

 


 



 



    (5) 

 
where denominator functions are chosen as by 
 

1

2

3

( ) 1,

1
( , ) ,

1
( , ) .

h

Ah

Dh

h e

e
h A

A

e
h D

D







 







 

4. Stability Analysis of the Model 

Consider the system of ODEs given by 
 

( , , ),

( , , ),

X F x y z

Y G x y z

 

 
  ( , , ),Z H x y z                                               (6) 

 

where ,F G and H are nonlinear functions. Let 

,X Y and Z  be the steady–state solution, i.e.,  

 

( , , ) ( , , ) ( , , ) 0   .   F X Y Z G X Y Z H X Y Z  
 

 
Now consider small perturbations to steady–state 

solutions  
 

( ) ( ),

( ) ( ),

( ) ( ).

X t X x t

Y t Y y t

Z t Z z t

 

 

 
 

 
Frequently these are called perturbations of the 

steady–state. Substituting, we arrive at  
 

( ) ( , , ),

( ) ( , , ),

( ) ( , , ).

X x F X x Y y Z z

Y y G X x Y y Z z

Z z H X x Y y Z z

    

    

    
 

 
On the left–hand side we expand the derivatives 

and that by definition  
 

0.X Y Z      
 
On the right–hand side we now expand F  G and 

H in aTaylor series about the point  ) ,  ( ,X Y Z . 

The result is 

2 2 2

(

 

, ,

ms

) ( , , ) ( , , )

(  of order ,, , ) , , ,

, and higher,,

x y

z

x F X Y Z F X Y Z x F X Y Z y

F X Y Z z x y z xy

yz xz
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2 2 2

(

 

, ,

ms

) ( , , ) ( , , )

(  of order ,, , ) , , ,

, and higher,,

x y

z

y G X Y Z G X Y Z x G X Y Z y

G X Y Z z x y z xy

yz xz

 

   

2 2 2

(

 

, ,

ms

) ( , , ) ( , , )

(  of order ,, , ) , , ,

, and higher.,

x y

z

z H X Y Z H X Y Z x H X Y Z y

H X Y Z z x y z xy

yz xz

 

   

 

Again by definition,  
 


 

 
so we are left with 
 

11 12 13

21 22 23

31 32 33

,

,

,

x a x a y a z

y a x a y a z

z a x a y a z

   

   

   
 

 
where the matrix of coefficients 
 

11 12 13

21 22 23

31 32 33

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ,

( , , ) ( , , ) ( , , )

x y z

x y z

x y z

a a a

A a a a

a a a

F X Y Z F X Y Z F X Y Z

G X Y Z G X Y Z G X Y Z

H X Y Z H X Y Z H X Y Z

 
 

  
 
 

 
 

  
 
 

 

 
is the Jacobian of the system of equations (6). 

Hence the problem has been reduced to a linear 

system of equations, i.e., w Aw   with 

) ,( , , Tw x y z for states that are in proximity to 

the steady state ( , , ). X Y Z  

A parallel statement exists for linearity concept 

systems at difference equations (Elaydi, 1999). 

Consider the autonomous (time-invariant) linear 

difference equations given by 
 

1n nx Ax  ,                                                       (7) 
 

where 1 2( , ,..., )T k
n n n knx x x x   and 

( ) is a ijA a k k  real nonsingular matrix, 

in which the values of Aare all constants and 
 

 ( ) ( )P det A I    

 
isthe characteristic polynomial of the matrix A. 
The following theorem gives necessary and 

sufficient conditions for asymptotic stability of the 

linear autonomous system (7). 

 

Theorem 1. The zero solution of (7) is 

asymptotically stable if and only if  ( ) 1.A   

Proof: (Elaydi, 1999). 

Consider the k-th order difference equation 
 

1 1 2 2 ... 0,n k n k n k k nx p x p x p x         (8) 

 

where any  ip  for  1,2,...,i k  is real number 

and  0. kp  For problem (8) the characteristic 

equation is given by 
 

1

1 ... 0,k k
kp p       

 
where 
 

1

1( ) ... ,k k
kP p p      

 
 
is called the characteristic polynomial of the 

difference equation (8). One of the main tools that 

provides necessary and sufficient conditions for the 

zeros of a k-th  degree polynomial, such as  ( ),P   

to lie inside the unit disk is the Schur–Cohn 

criterion (Elaydi, 1999). This is useful for studying 

the stability of zero solution of (8). By analyzing 

the Schur–Cohn criterion for 3,k    the following 

result can be gained.  

 

Lemma 1. (Jury conditions, Schur–Cohn criteria, 

3k  ). Suppose the characteristic polynomial 

( )P   is given by 3 2

1 2 3( )P p p p       . The 

solutions , 1, 2, 3 ( ) 0i i of P   satisfy | | 1i   if 

the following three conditions are held: 
 

1 2 3

3
1 2 3

2
3 2 3 1

. (1) 1 0,

. ( 1) ( 1) 1 0,

. 1 ( ) | | .

I P p p p

II P p p p

III p p p p

    

      

  
 

 

Proof: (Elaydi, 1999). 

 

Theorem 2. (The linearized stability theorem). Let 

x  be anequilibrium point of the difference 

equation 
 

 1 1F , ,..., , k 0,1,...n n n n kx x x x   
 

 
where the function F  is a continuously 

differentiable functiondefined on some open 

neighborhood of an equilibrium point x . Then the 

following statements are true.  

I. If all the roots of the characteristic polynomial 

haveabsolute value less than one, then the 

equilibrium pointx  is locally asymptotically stable. 

II. If at least one root of the characteristic 

polynomial has absolute value greater than 

one, then the equilibriumpoint x  is unstable. 

( , , ) ( , , ) ( , , ) 0   ,   F X Y Z G X Y Z H X Y Z  
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Proof: (Elaydi, 1999). 

Equilibrium points of (4) are found as follows: 

 

* * *
1 2 3(0,0,0), (1,0,0), ( ,0,1 ),

D D
X X X

E E
     

* * *
4 5 1 2 3 6( ,1 ,0), ( , , ), (0, , ),

A A D A
X X h h h X

B B F C
    

 
 
where 
 

1 ,
AF CD CF

h
BF CE CF

 


 
                                     (9) 

 

2 ,
AE BD CD CE

h
BF CE CF

   


 
                    (10) 

3 .
AE AF BD BF

h
BF CE CF

  


 
                     (11) 

 

Only fixed points 
*, 1,2,...,5iX i   have real 

biological meaning.Coordinates of all five steady 

states are nonnegative if 
 

, , .
A AF CD CF D

A B D E
B BF CE CF E

 
   

   
 
Equations (5) can be written as follows as 
 

1

1

2 1

2

3 1 3 1

3

(1 ( ))
,

1 ( )( )

(1 ( , ) )
,

1 ( , )( )

(1 ( , ) ( , ) )
.

1 ( , )

n

n n n

n n

n

n n n

h u
f

h u v w

B h A u v
g

h A A Cw

E h D u F h D v w
h

D h D









 





 




  




 

 




 

 
By using these equations, Jacobian matrix will be 

found as: 
 

( , , ) ,

n n n

n n n

n n n

u v w

n n n u v w

u v w

f f f

J u v w g g g

h h h

 
 

  
  
   

 
where 
 

1

2 2

2

2

2
2 1 2

2

2
1 2 2

2 2

1 2 1 2 3

2
3

2
1 2 1 2 3

, ,

,

,

( )
,

( )
,

(1 )

( )

n n n

n

n

n

n

n

n
u v w

n
u

n n n
v

n n n
w

n n n n n
u

n n n n n
v

u
f f f

B v
g

B u B u v
g

C B u BC u v
g

E E u BF v BF u v w
h

D

F E u BF u BF u v w
h



 



 

  

 

   

 

    

  

    



   



 


 
 

  




  


2
3

2 2
3

,
(1 )

,
(1 )nw

D

h
D

 

 

  




 



 

 
with 
 

1

2

1

1

1 ( ) ,

1 ( ) ,

1 ( ) ,

1 ,

n n n

n

n n

u v w

A Cw

v w

 

 

 

 

   

  

  

 

 

2 2
1 2 3

1 2 2 3

2 2
2 3

( )

( ) ,

( ) .

n n n

n n n

n n n n

E u CF v w

BF C u v w

E u F v BF u v

     

   

      

 

 

   

 

 
We determine stability of each steady state 

*, 1, 2, . ., 5 .iX i  by considering, where 

possible, the eigenvalues 
( ) ( )

1 2,i i  and 
( )
3

i  for 

each matrix
*( )iJ X . 

 
*
1. (0,0,0):I X 

 
 

2

3

0 0

1
(0,0,0) 0 0 ,

1
0 0

1

J

D









 
 
 
 

  
 
 
 

   
 
has eigenvalues 
 

(1) (1) (1)
1 2 3

1 1
, , .h

Ah Dh
e

e e
    

 
 

Now by theorem 2, we conclude that 
*
1X  is an 

unstable point. 
 

*

2. (1,0,0) :II X 
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1 1

2 2 2

2

3

3

(1,0,0) 0 0 ,

0 0
(1  )

B
J

E

D

 

  

 



 

 

 
  

 
 

  
 
 
 

   
 
has eigenvalues 
 

(2)
1

(2)
2

(2)
3

1
,

(1 )
,

(1 )
,

h

Ah

Ah

Dh

Dh

e

A B e

Ae

D E e

De









 


 


 

 

so by theorem 2, 
*
2X  is stable if A B  and 

E D  and unstable if A B  or E D . 
 

*
3. ( ,0,1 ) :

D D
III X

E E
 

 
 

1 1

2 2 2

2

2
1 3 3

2 2 2 2

3 3 3

( ,0,1 )

0 0 ,

( )( ) ( )

(1 ) (1 ) (1 )

D D
J

E E

D D

E E

E BD

E

E D E D E D E

E D E D E D

 

  

 



     

      



 
  

 
 

  
 
    
     

where

 

 
2

1 2

3 1 3

,

( ) ,

FE ED FBD

ED D D E

   

   

  

    

 
has eigenvalues 
 

(3)

1

(1 )
(3)

2

(1 )
(3)
3

(1 )
,

( )

( )(1 )
2

(1 ) (1 ) ,

( )(1 )
2

(1 ) (1 ) ,

(

)

(

)

Ah

Ah

D h
h

Dh h h

D h
h

Dh h h

AE BD e

CD CE AE CE CD e

e
D E e

E

Ee e e

e
D E e

E

Ee e e











 

 

 


   

  

   

  

   
 

 

with 
 

2 2 2

2 2 2 (1 2 )

( ) ( ) (2 2 ) (1 )

(3 4 ) .

h Dh h

Dh D h

E D E D e DE E e e

E e E ED e




      

  
 

 
So by theorem 2, 

*
3X  is stable if 

  AE CE BD CD    and .E D It is 

unstable if   .AE CE BD CD    

 
*
4 ( ,1 ,0) :.

A A
IV X

B B
 

 
 

1 1

2 2 2

2
2 1 2 2

2 2 2 2

3

( ,1 ,0)

( ) ( ( ) ) ( )
,

0 0
(1 )

A A
J

B B

A A

B B

A B B A B A B A B

B

B

B D

 

  

     

     

 

 



 
  

 
     

  
 
  

 
 

 

 
where 
 

2
1 2

3 2 3

( ),

( ) ( ) ,

C A C

AF AE BF A B AF

    

      

  

    
 

 
has eigenvalues 
 

(4)
1

(1 )
(4)
2

(1 )
(4)
3

( )(1 )
,

( )(1 )
2

(1 ) ( 1) ,

( )(1 )
2

(1 ) ( 1) ,

(

)

(

)

Dh

Dh

A h
h

h Ah h

A h
h

h Ah h

BD AE BF AF e

BDe

e
B A e

B

B e e e

e
B A e

B

B e e e











 

 

   


  


   

  


   
 

 
with 
 

 
 

So by theorem 2, 
*
4X  is stable if 

  AF DB AE BF   and B  A . It is 

unstable if   .AF DB AE BF    


*
5 1 2 3( , ). ,V X h h h where 1 2,  h h  and 3h  are 

defined in (9)-(11): 
*

5( )J X is extremely 

complicated, making a general investigation of the 

stability of
*
5X  infeasible. 

2 2 2

(1 ) (1 2 )

( ) ( 1) 2 ( )

2 ( ) (4 3 ) .

h Ah Ah

A h A h

A B e B B A e B e

B B A e B A B e
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5. Numerical Results and Conclusion 

For the numerical scheme (5), wedivide the 

experiments into two parts: In Figs. 1-4, we allow 

at least one zeroinitial condition, while in Figs. 5-

9, we consider the case where all initial data 

arepositive. 

Figures 1-3.We choose  
 

, , ,1 ,4 2 1,1 1A B C D E F       

 

and 0.01h  . By thepreceding discussion of 

steady states, the equilibrium solutions for (4) 

are given by 
 

1 3
(0,0,0), (1,0,0), ( , ,0),

4 4

1 1 1 1 1
( ,0, ),( , , ).
2 2 3 3 3

                         (12) 

 
Although the only stable steady state of these is 

the last one, all nonzero initialconditions would be 

necessary for an orbit to approach it, sincethe 

coordinate planes are invariant under the flow of 

(4). Wedescribe each figure in further detail as 

follows. 

Figure 1: We choose initial data (0) 1 2,u  

(0) 0v   and (0) 0.w  Thefigure shows that 

0nv   and 0nw   for all 0,1,2,...n   while 

1nu   as .n  The second equilibrium in 

(12) is approached, which means thatthe population 

of the basal species approaches carrying capacity in 

absenceof the intermediate and top species as 

expected.  

Figure 2: Initial conditions are 

 (0) 0, (0) 2u v   and (0) 2.w  Thefigure 

shows that as 0,nv  so does 0nw   as 

.n  The top specieswill remain as long as 

there is an intermediate species to prey on, while 

theintermediate species dies off exponentially in 

absence of a basal species. Thesteady state (0, 0, 0) 

in (12) is approached with the given initial data. 

Figure 3 :Initial conditions in this figure are 

(0) 2, (0) 0u v   and (0) 2.w  Wesee that

1 2nu   while 1 2nw   as .n 

Populations of species oscillate as food web 

populations progress towardequilibrium .The fourth 

steady state in (9) is approached 
 

 

 
 
Fig. 1. Solutions for (0) 0.5, (0) 0u v   and (0) 0w   

with h 0.01  
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Fig. 2. Solutions for (0) 0, (0) 2u v   and (0) 2w   

with h 0.01  
 
Figure 4: Here we choose  
 

1, 4, 1, 2, 1, 1A B C D E F       

 

and 0.01.h  This gives rise to (0, 0, 0), (1, 0, 0) 

and 3 4(1  4, ,  0)  as equilibria of (4). We choose 

initial conditions (0) 2, (0) 0u v   and 

(0) 2.w  By invarianceof the coordinate 

planes, as n  the steady state (1, 0, 0) is 

approached by ( , , ).n n nu v w  

 

 

 

 

 
 
Fig. 3. Solutions for (0) 2, (0) 0u v   and (0) 2w   

with h 0.01  
 

 

 

 

 
 
Fig. 4. Solutions for (0) 2, (0) 0u v   and (0) 2w   

with h 0.01  
 

In contrast to Fig. 3, Fig. 4 shows that if the death 

rate ofthe top species is too large, this species will 

face extinction, at least compared tothe system with 

relatively large interaction rate with the basal 

species comparedto death rate for the top species. 

Figure 5: We choose  
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, , ,1 ,4 1 1,1 2A B C D E F     
 

 
and h 1.1, giving riseto equilibria for (4) of 

(0, 0, 0), (1, 0, 0) and (1 4, 3 4, 0)  as those with 

allcoordinates nonnegative. We choose initial data 

   u 0 2, v 0 2   and  (0) 2.w  The figure 

suggests that since the death rate D  of the top 

species is relativelylarger than the interaction rate 

E  between the basal and top species, and if 

thedeath rate A  of the intermediate species is 

relatively smaller than the interactionrate B  

between the basal and intermediate species, then the 

population of thebasal species will approach 

1 4A B   while the intermediate species 

approaches1 .A B The top species becomes 

extinct. 

Figure 6: This figure has  
 

2, 1, 1, 1, 2, 1A B C D E F       

 

and h 1.1  so equilibria of (4) are 

(0, 0, 0), (1, 0, 0), and (1 2, 0, 1 2). With initial 

conditions chosen as    u 0 2, v 0 2   and 

(0) 2,w  ( , , ) (12,  0, ).1 2 n n nu v w  In 

general, if the death rate D  of the top species is 

smaller than the interactionrate E  between the 

basal and top species and the death rate A  of the 

intermediatespecies is larger than the interaction 

rate B  between the basal and 

intermediatespecies, then the population of the 

basal species will approach D E , the population 

of the top species will approach 1  D E  and 

the intermediate speciesdeclines to extinction. 
 

 

 

 

 
 
Fig. 5. Solutions for (0) 2, (0) 2u v   and (0) 2w   

with h 1.1  

 

Figure 7: Here 
 

 2, 1, 1, 2, 1, 1A B C D E F       

 

and h 1.5, so that the onlypossible equilibria of 

(4) are (0, 0, 0) and (1, 0, 0). With initial 

conditionsof    u 0 2, v 0 2   and  (0) 2w 

and given that only (1, 0, 0) is stable, thisis the one 

approached over time. The figure confirms that if 

the death rate A of the intermediate species is 

larger than the interaction rate B  between thebasal 

and top species, and the death rate D  of the top 

species is larger than theinteraction rate E  between 

the basal and top species, then the population of 

thebasal species will approach the carrying capacity 

while the intermediate and topspecies become 

extinct. 
 



 

 

 
409                      IJST (2014) 38A4: 399-414 

 

 

 

 

 
 
Fig. 6. Solutions for (0) 2, (0) 2u v   and (0) 2w   

with h 1.1  
 

 

 

 

 
 
Fig. 7. Solutions for (0) 2, (0) 2u v   and (0) 2w   

with h 1.5  
 

In Tables 1 and 2, for different step sizes h , the 

qualitative stability results, obtained by NSFD 

scheme, of the fixed point 
*
2X and 

*
3X  are 

respectively compared to classical methods such as 

forward Euler and Runge–Kutta. If step size h is 

chosen small enough, the results of the proposed 

NSFD scheme are similar with the results of the 

other two numerical methods. But if the step size h  

is chosen larger, the efficiency of NSFD scheme is 

clearly seen. 

 

Table 1. Qualitative results of the fixed point *
2X  for 

different time step sizes,t = 0–100 
 

h  Euler Runge-Kutta NSFD 

0.001 Convergence Convergence Convergence 

0.01 Convergence Convergence Convergence 

0.1 Convergence Convergence Convergence 

0.2 Divergence Convergence Convergence 

0.5 Divergence Convergence Convergence 

1 Divergence Divergence Convergence 

10 Divergence Divergence Convergence 

 

Table 2. Qualitative results of the fixed point 
*
3X  for 

different time step sizes, t = 0–500 
 

h  Euler Runge-Kutta NSFD 

0.001 Convergence Convergence Convergence 

0.01 Convergence Convergence Convergence 

0.1 Convergence Convergence Convergence 

0.4 Divergence Convergence Convergence 

0.5 Divergence Convergence Convergence 

1 Divergence Divergence Convergence 

10 Divergence Divergence Convergence 
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In Figs. 8 and 9, the NSFD solutions of u , v and 

w converge to fixed points 
*
2X  and 

*
3X as 

simulated and also Runge–Kutta, forward Euler and 

proposed NSFD scheme are compared graphically. 

All the numerical calculations and simulations are 

performed by using Matlab programme. In 

conclusion, the efficiency of the proposed NSFD 

scheme is investigated and compared with other 

numerical methods. 

 

 

 

 
 

 
 
Fig. 8. Comparison with NSFD scheme, 4th order 

Runge–Kutta and forward Euler solutions of u , v and 

w converges to fixed point *
2X  with  0.1h   

 

 

 

 

 
 
Fig. 9. Comparison with NSFD scheme, 4th order 

Runge–Kutta and forward Euler solutions of u , v and 

w converges to fixed point *
3X  with  0.1h   

 
In Tables 3 and 4, for different step sizes h , the 

qualitative stability results of the fixed point *
4X

and *
5X obtained by NSFD scheme are respectively 

compared to classical methods such as forward 

Euler and Runge–Kutta. If step size h is chosen 

small enough, the results of the proposed NSFD 

scheme are similar with the results of the other two 

numerical methods. But if the step size h  is chosen 

larger, the efficiency of NSFD scheme is clearly 

seen. 
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Table 3. Qualitative results of the fixed point *
4X  for 

different time step sizes, t = 0–500 
 

h  Euler Runge-Kutta NSFD 

0.001 Convergence Convergence Convergence 

0.01 Convergence Convergence Convergence 

0.1 Convergence Convergence Convergence 

0.4 Divergence Convergence Convergence 

0.5 Divergence Divergence Convergence 

1 Divergence Divergence Convergence 

10 Divergence Divergence Convergence 

 

Table 4. Qualitative results of the fixed point 
*
5X  for 

different time step sizes, t = 0–5000 
 

h  Euler Runge-Kutta NSFD 

0.001 Convergence Convergence Convergence 

0.01 Convergence Convergence Convergence 

0.1 Divergence Convergence Convergence 

0.4 Divergence Divergence Convergence 

0.5 Divergence Divergence Convergence 

1 Divergence Divergence Convergence 

10 Divergence Divergence Convergence 

 
In Figs 10 and 11, the NSFD solutions of u , v

and w converge to fixed points 
*
4X  and 

*
5X as 

simulated and also Runge–Kutta, forward Euler and 

proposed NSFD scheme are compared graphically.  

 

 

 

 

 
 
Fig. 10. Comparison with NSFD scheme and 4th order 

Runge–Kutta and forward Euler solutions of u , v and 

w converges to fixed point *
4X  with  0.1h   

 

 

 

 
 
Fig. 11. Comparison with NSFD scheme and 4th order 

Runge–Kutta and forward Euler solutions of u , v and 

w converges to fixed point *
5X  with  0.01h   
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5.1. A Hopf Bifurcation 

We claim that for an appropriate choice of 

constantsA and C F, a value of B  exists across 

which a periodic orbit arises through achange in the 

stability properties; specifically, there is a Hopf 

bifurcation arising atthis B -value. To demonstrate 

this, we fix 1, 1, 1, 4, 1A C D E F      

and considersolutions of (4) as the value of B  is 

varied. The steady state of interest inthis case is 

* 1 7 3
( ,  , )

3 3 3
 B

B
X

B B B




  
from which we 

extract the initial requirementthat 7B   so that 

this is a first-octant steady-state equilibrium.  

The matrix 
*( )BJ X  of the linearization about 

*
BX  

has eigenvalues that are roots of the characteristic 

polynomial (Armstrong and Han, 2012) 
 

2
3 2

2 2

1 4 9 3 21
( ) .

3 ( 3) ( 3)
 B

B B B
P

B B B
   

  
   

  
 

 
The Schur–Cohn stability criterion (lemma 1) 

ensures that the roots of BP  lie in the 

negativecomplex half-plane as long as each 

coefficient is positive and the product of 

thecoefficients of   and 
2  exceeds the product 

of the coefficient of 
3  and the 

constantterm. Solving these simple inequalities 

shows that 2 13 9B    which, togetherwith 

the initial requirement that 7B   means that BP  

has three roots two complexconjugates and one real 

with negative real part as long as 7 9.B   

Figure 12: Choosing  

 

1, 8, 1, 1, 4, 1A B C D E F       

 

and 2.1h   givesrise to (0, 0, 0), (1, 0, 0), 

(1 8,7 8,0), (1 4,0,3 4)  and (1 5,1 5,3 5)  

as steadystates of (4). With initial conditions 

   u 0 2, v 0 2   and  (0) 2w  and given 

that the only stable steady state is (1 5,1 5,3 5),

the figure confirms that ( , , )n n nu v w  approaches 

the steady state solution 
*

5 1 2 3( , , ) (1 5,1 5,3 5)X h h h   as .n   

Figure 13: With  

 

1, 11, 1, 1, 4, 1A B C D E F       

 

and 2.5h   all equilibria are unstable. Choosing 

   u 0 2, v 0 2   and  (0) 2,w  the figure 

confirms that ( , , )n n nu v w will not approach (for 

example) the steady state solution

1 2 3( , , ) (17,37,37)h h h   as n

although A B D E  but rathera periodic 

solution. This suggests a limit cycle. 

 

Remark 1. The foregoing computations show that 

the system (4) undergoes a Hopf bifurcation for  

 

1, 1, 1, 4, 1A C D E F      

 

across B 9. For7 9B  the system has a 

stable equilibrium point 
*
BX  as described above 

where as
*
9X  is a stable center. For 9B   

solutions of the system approach a limit cycle 

asdemonstrated in Fig. 13. 
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Fig. 12. Solutions for (0) 2, (0) 2u v   and (0) 2w   

with h 2.1  
 

 
 
Fig. 13. Solutions for (0) 2, (0) 2u v   and (0) 2w   

with h 2.5  
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