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Abstract

In this paper, the static characteristics of two-lobe, three-lobe and four-lobe noncircular gas journal bearing systems are
studied in detail. The Reynold’s equation governing the noncircular gas bearing systems are analyzed by using Radial Basis
Functions (RBF). The solutions are obtained numerically by solving systems of algebraic equations. The equilibrium position
of the rotor is obtained without using the trial and error method; which is the merit of our method.
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1. Introduction

Many problems in physics and engineering are
reduced to a set of differential equations in a
mathematical model. It is not always easy to obtain
their exact solution, so numerical methods are a
useful option to use instead.

In the last decade, the numerical solution of the
various types of partial differential equations
(PDEs) has been obtained by meshless methods.
The development of the meshless method is
required to alleviate the meshing problems
associated with methods such as the finite element
and finite difference (Dag and Dereli, 2008).
Various meshless methods have been developed.
Meshless methods based on the collocation method
have been dominant and very efficient (Dag and
Dereli, 2008).

For the last 20 years, the radial basis functions
method has been known as a powerful tool for the
scattered data interpolation problem. The use of
radial basis functions as a meshless procedure for
numerical solution of partial differential equationsis
based on the collocation scheme. Due to the
collocation technique, this method does not need to
evaluate any integral. The main advantage of
numerical procedures, which use radial basis
functions over traditional techniques, is the
meshless property of these methods (Dehghan and
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Shokri, 2009). Radial basis functions are used
actively for solving partial differential equations
(Kansa, 1990; Zerroukat et al., 1998; Chen et al.,
2012; Islam et al., 2012).

The journal bearings have been widely used in
rotating machinery. Reynold’s equations are the
base for bearing static and dynamic analysis. The
governing equations are a set of PDEs. The
equation considered in this paper is a nonlinear
PDE, which is very difficult to solve analytically.
The commonly used numerical methods for solving
Reynold’s equations include finite difference
method (FDM) (Lund and Thomsen, 1978) and
finite element method (FEM) (Klit and Lund,
1986). Wang et al. (2007) investigated dynamic
behavior of gas bearings system by using FDM.
FEM is also used for solving Reynold’s equation.
Reddi (1969) used FEM for incompressible
lubricant and Reddi et al. (1970) used the FEM for
compressible lubricant. Then this method was used
in lubrication with compressible fluid for different
problems. Rahmatabadi and Rashidi (2007) used it
for investigation of static and dynamic
characteristics in noncircular gas bearings system.
The nonlinear dynamic behavior in such systems by
using the parameters such as rotor mass, bearing
number and preload has been investigated (Rashidi
et al, 2010). FEM is the concept of finding
approximate solutions to PDEs, which are broken
up into a number of elements. It is usually assumed
that the approximate solutions vary linearly over
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each individual element. This fact may be true only
for the case of sufficiently small elements. An
efficient method for solving Reynold’s equation is
still being investigated (Jiangang et al., 2008).
Gustavo et al. (2011) proposed an analytical
approximate solution of the Reynold’s equation for
isothermal finite length journal bearings by means
of the regular perturbation method. They obtained a
solution by which they could give an analytical tool
for the description of pressure. Kansa's RBF
method has been used for solving Reynold’s
equation governing circular journal bearings for
finding characteristics of the system by Jiangagng
et.al (2008). In this paper, we focus our attention on
solving Reynold’s equation using RBFs to calculate
the equilibrium point of rotor, which is important
for investigating behavior of system in dynamical
state. The aim is to overcome the problems in the
previous methods. The equilibrium point in
previous method (Rahmatabadi and Rashidi, 2007;
Chandra and Sinhasan, 1983) was obtained by trial
and error test but in this work the equilibrium point
is obtained directly and pressure distribution is
displayed as a continuous function for three types;
two, three and four lobe noncircular journal
bearings (See Fig. 1).

The layout of the rest of this paper is as follows:
In Section 2 we introduce radial basis functions to
approximate the solution. In Section 3 we give a
brief introduction to Reynold’s equation governing
noncircular gas journal bearings. In Section 4 the
numerical method is explained. Section 5 is
dedicated to results and discussion. An error
analysis for the proposed method is introduced in
Section 6. Finally, Section 7 is dedicated to a brief
conclusion.
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Fig. 1. Noncircular journal bearing configurations: (a)
two lobe, (b) three lobe and (¢) four lobe

2. Radial basisfunctions

Here we briefly recall the theory behind radial basis
functions also known as RBFs.

2.1 Definition of radial basis function

Let Rf ={x € R,x =0} and let ¢:R* > R be a
continuous function with ¢(0) = 0. A radial basis
function (RBF) on RY is a function of the form
ol X —X; 1), where X, X; € RY and |I. || denotes
the Euclidean distance between X and Xj's. If one
chooses N points {X;}}, in RY then

N
s(X) = Z NG X=X 1), A€R, )

is called a radial basis function as well (Parand and
Rad, 2012; Baxter, 1992; Golberg, 1999). The
standard radial basis functions are categorized into
two major classes, infinitely smooth and piecewise
smooth. Infinitely smooth functions are infinitely
differentiable and depend heavily on the shape
parameter ¢, see Table 1. Piecewise smooth
functions are not infinitely differentiable and are
shape parameter free, see Table 2.

Table 1. Some commonly used infinitely smooth RBF

Infinitely smooth RBFs o)
Gussian(GA) e—c’r?
Inverse multiquadric (IMQ) 1 / [c2 4 r2
Inverse quadric(IQ) 1/(c? +1?)
Multiquadric (MQ) [c2 + r2
Table 2. Some commonly used piecewise smooth RBFs
Piecewise Smooth ¢(r)
Thin plate spline rlnr
Generalized thin plate spline {erlogr keN
r2v veéN
Cubic spline r3

Wendland functions (1 =rkP(), keEN
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2.2. Radial Basis function approximation

The approximation of a function u(x), using
radial basis functions, may be written as a linear
combination of N radial functions; it usually takes
the following form:

N
u(x) = Z AO(X X)) + v(X) forXeQ c RY,  (2)
j:

where N is the number of data points, X =
(X4,X3, ...,Xq), d 1s the dimension of the problem,
Ay's are coefficients to be determined and ¢ is the
radial basis function. Equation (2) can be written
without the additional polynomial v. In that case, ¢
must be unconditionally positive definite to
guarantee the solvability of the resulting system for
example, Gaussian and multi-quadrics. Gaussian
RBF will be used for the numerical scheme
introduced in Section 4.

3. Mathematical Analysis

Here we briefly describe the governing equations
and the mathematical analysis of the problem.

3.1. Governing Equation

Analysis of gas lubricated noncircular bearing,
involves solution of the governing equations
separately for an individual lobe of the bearing,
treating each lobe as an independent partial bearing.
To generalize the analysis for all noncircular
geometries, the film geometry of each lobe is
described with reference to bearing fixed Cartesian
axes (Fig. 2). Thus the film thickness in the
clearance space of the k" lobe, with the journal in
a state of translatory whirl, is expressed in the
steady state as (Chandra et al., 1983):

k_ 1 .
h, =g—xj0cose—yjosm6
1
+<g—1>cos(9—90k), (3)

STATIC STATE
ROTOR POSITION

labe 1

Fig. 2. Noncircular two-lobe bearing geometry and
coordinate axes

(Xio’yjo) is the steady state journal center

coordinates, 0 is preload and Qg is angle of lobe

line of centers.
The pressure governing equation of isothermal
flow field in a bearing lobe is [24]:

{ho (P + 1) } {ho P+ 1) _}

35 9§
= A—{(P’o + Dho}, 4

00

Subjected to the conditions:

P,(6,1) =0 ,Py(6,—A) =0, (5)
P,(6,",%) = 0,P,(8,%,8) = 0, k=12 (6)

where @ and 6} are the leading and trailing edge
boundaries of k" lobe respectively, and
6 fiwoR?
A=2E )
P.Ch,

is the dimensionless parameter called the
compressibility number or bearing number.

The Equation (4) is the nonlinear PDE. In this
work, the solution of this equation is obtained by
RBF collocation method.

3.2. Static Characteristics

Having obtained the steady state pressure field by
the solution of Equation (4), the static
characteristics are  obtained. = The  static
characteristics are described by the bearing load
capacity, the attitude angle and the viscous power
loss. The components of the gas film force on the
journal are given by:

-2
z f fe P | Cose]dedE ®)

where L stands for the number of lobes.
The load capacity and the attitude angle are then
given by:

Fo= (B3 +E2)'/2
Xi \» 9
¢, = arctan (Y_]O) ©)

Jo

and the viscous power loss is given by (Khattak et
al., 2009):
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05 3ho, 0 pok Here ¢ is Gaussian radial basis functions and
= Z f f a6 d 10
L ok \ A 00 ho $ (10) ~ 0.1 _ g1 N
0l =0,'+i2—2,i T Li=01 g (18)
i ~ 0,°—6,> NN
4. Numerical Method 02 =0,%+i2 = LI =Syt (19)
In this study, we explain the method for two lobe - (21 ) .
’ =A—=-1),j=012,...M, k=12, 20
bearing; this can be extended to the three lobe and d M / (20)

four lobe bearings similarly. Here, the object is to
find the coordinates of the equilibrium of the center
point of the rotor. Then, calculation of energy loss
is intended. To obtain the equilibrium of the center
point, it is necessary to obtain the pressure function
governing the system. The problem of two lobe is
different for the function hok(B), k =1,2 based
on Hok, k =1, 2 so that the form of the differential
Equation (4) for each lobe is different. For this
reason, since our object is to find the pressure
function on the system and simultaneously to obtain
the equilibrium point (x, y), the function P,(0, &) is
considered as follows:

Py(6.8) = P, (6,8, 6,'<6<86," .,
0(6,8) = ) 2 p9<p?
PO (9;5): 91 —9—92
<&<A, (11)

Now for the function Py(0,&) to be continuous
at0 =0," =0,>=m, the boundary conditions
Equations (5) and (6) for P,X(6,%), k = 1,2 can be
rewritten as:

P ®(6,%,8) = 0,P,(8,%,§) =0, (12)
P,% 6,0 =0,P,",-2) =0, (13)

Now, consider an approximate solution to the
analytic solution Po(l)(G,f) and PO(Z)(H, &) in the
radial basis function forms:

N

2 M

PyV(8,8) = a®, ¢, (6,0, (14)
N M

PO =) > a®¢?,0.9), (15)
._Nj:()

where a®;;, k=1,2 are the coefficients to be
determined. Here N and M are the number of data
points on axis 0 and &, respectively. It should be
noted that N must be taken as a multiple of the lobe
under  consideration. cpki,}.(e, ), k=12 is
defined as:

9,0, =9 (J (0057 + (- 57")2), (16)

$:,20.6) = ¢ (J ©-657+ - 57‘)2>, (17)

3 B6.8)  PNe,2)

+i

Fig. 3. The grid points of 6, §

By using (4)-(6) and (9) to calculate P,(6, ), we
need to compute 2 (ﬂ + 1) (M + 1) + 2 unknown
parameters a5, i = 0,1,2,. =01.2,..,.M
e i =;,;+ 1,;+2,...,N, j=
0,1,2, ..., M and x,y Therefore, we require a set of
k (g + 1) (M + 1) + 2 equations.

We define:

and a®,

®
RES*(6,) = 2= {(ho")* (P + 1) 22} +
T (B + 1) e} A (R + D'
k =1,2. (21)
Since F, = 0, F, = W, then as in [25] it follows
that:

A 21
—J-Af PO(H,f) cos(6, &)dodé, (22)
-1/o
A 21
=- f A f Po(6,€) sin(9, £)dOdz, 23)
-1Jo

Now, by using the collocation points (18)-(20)
and considering Fig. 3 the following equations are
obtained:

RES'(61,67) =0, i=1,..5-1;j=12,.,M—1,(24)
2 72 . N .

RES?(82,67) =0, i=2+1,..,N-1;]=

1,2,..,M—1. (25)

By using boundary conditions (12) and (13) for
k =1, 2 we have:

P (65,6%) =0, j=12,..M~1k=12 (26)
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p,® (gzk‘ ng) =0, j=12,...M—1k=12 (27)
p,® (7, _/1) =0,i=01,..,3, (28)
P (61,2)=0, i=01..,% (29)
p,® (7’_/1) =0, i= g, +1,..,N, (30)

N
2
. . NN
PO(Z)( 12,—7\) =0, i=33+1.,N (I
From Fig. 3 it can be concluded that
R (0,255 ) =R@ (8,57 ) =0, (32)

This condition guarantees the continuity of the
function P, (6, ¥) at the point 8 = 8," = 0, = m.

Two more equations are needed to be able to
obtain x and y directly. We use equations (21) and
(22). From these equations, and considering
equation (5), since our problem is for the two lobe
system, we have the following results:

F+ [ f;’lﬁz P, (8, ) cos(8,)dodE +
[ 025 Py (6,6) cos(6,6)d0d =0, (33)

and

E+ [ fe”lﬁz P,V (8,¢) sin(,§)dOdE +
I fe“’fzz Py@(,8) sin(8,&)dodé = 0, (34)

These result in a system of 2 (g + 1) M+1)+

2 nonlinear equations and 2 (g + 1) M+1)+2

unknowns, which may be solved by standard
numerical methods such as the Newton's method.

5. Results and discussion

The results obtained by RBF collocation method
presented in this paper were applied to two, three
and four lobe gas journal bearings. By considering
aspect ratio is unity and preload equal to 0.5, the
distribution of pressure in two, three and four lobe
gas bearings is shown in Figs. 4-6, respectively.
The equilibrium point and power loss have been
obtained by these pressures and compared with the
other works. These results are shown in Table 3 for
GA-RBF and IMQ-RBF. These results are in
consonance with the previous results and confirm
the validity of our method.

(b): Three-lobe, c=1.3,M =4,N=9

(c): Four- lobe, ¢=0.9,M = 4,N = 12

Fig. 4. The distribution of pressures in different lobes
with A = 2,Fq = 0.2 and GA — RBF

(a) Two-lobe, c=1.3,M = 4,N =8
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0

s
(b) Three-lobe, ¢=0.7,M = 4,N =9

1y

(c) Four-lobe, ¢=0.8,M = 4,N = 16 (c) Four-lobe, ¢=2.2,M = 4,N = 12
Fig. 5. The distribution of pressures in different lobes Fig. 6. The distribution of pressures in different lobes
with A = 5,F, = 0.5 and GA — RBF with A = 10,F, = 1 and GA — RBF

(a) Two-lobe, c=1.2,M = 4,N = 10

Table 3. Comparison of the effects of different bearing numbers and load capacity on the
coordinates and pressure of gas bearings with different lobes

A F, Bearingtype x[16] x[25] x-GA x-IMQ  y[16] (251 y-GA  y-IMQ  Pl6] P[25] P-GA  P,-IMQ

Two-lobe 0217 0224 0224 0.232 -0.050  -0.053  -0.054  -0.052 10.22 10.29 10.27 10.27

202 Three-lobe 0.209  0.194  0.222 0.194 -0.071  -0.082  -0.089  -0.089 11.26 11.34 11.40 11.37

Four-lobe 0.231 0.23 0.237 0.232 -0.081  -0.085 -0.092  -0.093 11.96 12.00 12.00 12.00

Two-lobe 0.160  0.166  0.176 0.169 -0.103  -0.111  -0.119  -0.114 10.11 10.16 10.16 10.17

3 05 Three-lobe 0.192  0.194  0.186 0.194 -0.146  -0.147  -0.158 -0.152 11.22 11.29 11.34 11.34
Four-lobe 0.227  0.231 0.286 0.227 -0.154  -0.159  -0.196  -0.181 12.01 12.04 12.28 12.08
Two-lobe 0.126  0.122  0.118 0.123 -0.178  -0.174  -0.203 -0.195 10.03 10.07 10.11 10.10
10 1

Three-lobe 0.126  0.122 0.124 0.122 -0.178  -0.174  -0.198 -0.198 11.29 11.31 11.27 11.27

Four-lobe 0.268 0277  0.270 0.268 -0.241  -0.243  -0.297  -0.295 12.3 12.26 12.50 12.49
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6. Error Analysis

Madych have proven exponential convergence
property of multiquadratic approximation (Chen et al.,
2003). He has shown that under certain conditions, the

interpolation error is € = O(A% ) where c is the shape
parameter, h is the mesh size and 0 <A< 1lis a
constant. It implies the approximated solution can be
improved either by reducing the size of h or by
increasing the magnitude of c. It means that if ¢ —
then ¢ — 0. Since increasing of ¢ can improve the
accuracy exponentially without extra computation
(Hung et al., 2007; Chen et al., 2003; Madych, 1992),
it is preferred to decrease error rather than reduce 4.

However, according to ‘uncertainty principle’ of
Schaback (Schaback, 1995), as the error becomes
smaller, the matrix becomes more ill-conditioned;
hence the solution will break down as ¢ becomes too
large. The experimental results confirm such behavior
of the error values as ¢ becomes larger. The numerical
results for two lobe gas journal bearings are
demonstrated in Figs. 7 and 8 which show, according
to the findings of Madych, the error functions decrease
exponentially as ¢ becomes larger in bounded interval.
After that according to the research of Schaback the
error values decline as ¢ becomes too large. The best ¢
is different for various problems and is not the same
RBFs.

GAtA=2 F=0LM=4,N=8§

|IRES|

Logle)

GA:A=5,F=05M=4,N=10

5004

1004
I RES],,
504

Log(c)

Fig. 7. Horizontal axis is related to shape parameter (c)
with log mode and vertical axis shows residual error
(RES) values with log mode when the solutions are
approximated by using GA-RBF

IMQ:A=2,F=0.2,M=4,N=10

IRES|,

T ¥
04 0.3 0.6 07 08 09 1

IMQ:A=5,F=05,M=4,N=10

I RES]|,

Log(c)

Fig. 8. Horizontal axis is related to shape parameter (c)
with log mode and vertical axis shows residual error
(RES) values with log mode when the solutions are
approximated by using IMQ-RBF

7. Conclusion

In this work, based on the Radial Basis Function
solutions of gas lubrication equations, the static
characteristics such as the bearing load capacity, the
position of rotor center and the viscous power loss
is studied for three types of gas-lubricated
noncircular journal bearings. The merit of our
method for case study is that the equilibrium
position of the rotor is obtained without using the
trial and error method.

Nomenclature

Shape parameter
Conventional radial clearance, (711 )

c

E Minor clearance when rotor and bearing
m geometric centers are coincident, (771 )

1_2 Rotor radius, (771)

Fy

F Components of the fluid film force on the rotor
T in the steady state,
Load capacity
F 0
ho Film thickness,

L Number of lobe
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Length of bearings

The number of data points on axis 0
The number of data points on axis §
Gas pressure

v 2R

Py(6,8) Approximate Solution of pressure

R; Ambient pressure, (72 )
m
X . Y . Coordinates of the rotor center in steady state
JO> 7
a Unknown Coefficients
ij
5 —
Preload in the bearing, (i )
C
A _ :
Bearing aspect ratio, (——)
A Bearing number
H Ambient dynamic viscosity of the lubricant,
( N.s )
m2
J2] Angular coordinate measured from X — axis
ek Angle of lobe line of centers
0
k nk Angles at the leading and trailing edge of the
172 lobe
D) ) rad
Rotational speed of the rotor, ( )
N
5 Coordinate along bearing axis measured from
mid span
bo Attitude angle
superscrib
k Lobe designation
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