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Abstract 

In this paper, the static characteristics of two-lobe, three-lobe and four-lobe noncircular gas journal bearing systems are 
studied in detail. The Reynold’s equation governing the noncircular gas bearing systems are analyzed by using Radial Basis 
Functions (RBF). The solutions are obtained numerically by solving systems of algebraic equations. The equilibrium position 
of the rotor is obtained without using the trial and error method; which is the merit of our method. 
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1. Introduction 

Many problems in physics and engineering are 
reduced to a set of differential equations in a 
mathematical model. It is not always easy to obtain 
their exact solution, so numerical methods are a 
useful option to use instead. 

In the last decade, the numerical solution of the 
various types of partial differential equations 
(PDEs) has been obtained by meshless methods. 
The development of the meshless method is 
required to alleviate the meshing problems 
associated with methods such as the finite element 
and finite difference (Dag and Dereli, 2008). 
Various meshless methods have been developed. 
Meshless methods based on the collocation method 
have been dominant and very efficient (Dag and 
Dereli, 2008). 

For the last 20 years, the radial basis functions 
method has been known as a powerful tool for the 
scattered data interpolation problem. The use of 
radial basis functions as a meshless procedure for 
numerical solution of partial differential equationsis 
based on the collocation scheme. Due to the 
collocation technique, this method does not need to 
evaluate any integral. The main advantage of 
numerical procedures, which use radial basis 
functions over traditional techniques, is the 
meshless property of these methods (Dehghan and 
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Shokri, 2009). Radial basis functions are used 
actively for solving partial differential equations 
(Kansa, 1990; Zerroukat et al., 1998; Chen et al., 
2012; Islam et al., 2012). 

The journal bearings have been widely used in 
rotating machinery. Reynold’s equations are the 
base for bearing static and dynamic analysis. The 
governing equations are a set of PDEs. The 
equation considered in this paper is a nonlinear 
PDE, which is very difficult to solve analytically. 
The commonly used numerical methods for solving 
Reynold’s equations include finite difference 
method (FDM) (Lund and Thomsen, 1978) and 
finite element method (FEM) (Klit and Lund, 
1986). Wang et al. (2007) investigated dynamic 
behavior of gas bearings system by using FDM. 
FEM is also used for solving Reynold’s equation. 
Reddi (1969) used FEM for incompressible 
lubricant and Reddi et al. (1970) used the FEM for 
compressible lubricant. Then this method was used 
in lubrication with compressible fluid for different 
problems. Rahmatabadi and Rashidi (2007) used it 
for investigation of static and dynamic 
characteristics in noncircular gas bearings system. 
The nonlinear dynamic behavior in such systems by 
using the parameters such as rotor mass, bearing 
number and preload has been investigated (Rashidi 
et al., 2010). FEM is the concept of finding 
approximate solutions to PDEs, which are broken 
up into a number of elements. It is usually assumed 
that the approximate solutions vary linearly over 
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each individual element. This fact may be true only 
for the case of sufficiently small elements. An 
efficient method for solving Reynold’s equation is 
still being investigated (Jiangang et al., 2008). 
Gustavo et al. (2011) proposed an analytical 
approximate solution of the Reynold’s equation for 
isothermal finite length journal bearings by means 
of the regular perturbation method. They obtained a 
solution by which they could give an analytical tool 
for the description of pressure. Kansa's RBF 
method has been used for solving Reynold’s 
equation governing circular journal bearings for 
finding characteristics of the system by Jiangagng 
et.al (2008). In this paper, we focus our attention on 
solving Reynold’s equation using RBFs to calculate 
the equilibrium point of rotor, which is important 
for investigating behavior of system in dynamical 
state. The aim is to overcome the problems in the 
previous methods. The equilibrium point in 
previous method (Rahmatabadi and Rashidi, 2007; 
Chandra and Sinhasan, 1983) was obtained by trial 
and error test but in this work the equilibrium point 
is obtained directly and pressure distribution is 
displayed as a continuous function for three types; 
two, three and four lobe noncircular journal 
bearings (See Fig. 1). 

The layout of the rest of this paper is as follows: 
In Section 2 we introduce radial basis functions to 
approximate the solution. In Section 3 we give a 
brief introduction to Reynold’s equation governing 
noncircular gas journal bearings. In Section 4 the 
numerical method is explained. Section 5 is 
dedicated to results and discussion. An error 
analysis for the proposed method is introduced in 
Section 6. Finally, Section 7 is dedicated to a brief 
conclusion. 
 

 

 

 
 
Fig. 1. Noncircular journal bearing configurations: (a) 
two lobe, (b) three lobe and (c) four lobe 

2. Radial basis functions 

Here we briefly recall the theory behind radial basis 
functions also known as RBFs. 

2.1 Definition of radial basis function 

Let Rା ൌ ሼx א R, x ൒ 0ሽ and let Ԅ: Rା ՜ R be a 
continuous function with Ԅሺ0ሻ ൒ 0. A radial basis 
function (RBF) on Rୢ is a function of the form 
Ԅሺצ X െ X୧ where X, X୧		ሻ,צ א Rୢ and צ.  denotes צ
the Euclidean distance between X and X୧

,s. If one 
chooses N points ሼX୧ሽ୧ୀଵ

N  in Rୢ then  
 

sሺXሻ ൌ෍λ୧

N

୧ୀଵ

Ԅሺצ X െ X୧ λ୧				ሻ,צ א R,																				ሺ1ሻ 

 
is called a radial basis function as well (Parand and 
Rad, 2012; Baxter, 1992; Golberg, 1999). The 
standard radial basis functions are categorized into 
two major classes, infinitely smooth and piecewise 
smooth. Infinitely smooth functions are infinitely 
differentiable and depend heavily on the shape 
parameter c, see Table 1. Piecewise smooth 
functions are not infinitely differentiable and are 
shape parameter free, see Table 2. 
 

Table 1. Some commonly used infinitely smooth RBF 
 

Infinitely smooth RBFs ߶ሺݎሻ 
Gussian(GA) ݁ି௖

మ௥మ 
Inverse multiquadric (IMQ) 1/ඥcଶ ൅ rଶ 
Inverse quadric(IQ) 1/ሺcଶ ൅ rଶሻ 
Multiquadric (MQ) ඥcଶ ൅ rଶ 

 
Table 2. Some commonly used piecewise smooth RBFs 

 
Piecewise Smooth ߶ሺݎሻ 
Thin plate spline 
 

 ݎଶ݈݊ݎ

Generalized thin plate spline 
൜r
ଶ୩logr										k א N
rଶ஥																	υ ב N

 

Cubic spline 
 

 ଷݎ

Wendland functions ሺ1 െ ݇			,ሻݎሻା௞ܲሺݎ א ܰ
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Lܲ ൌ ෍න න ቆ
3݄଴ೖ
Λ

߲ ଴ܲೖ

ߠ߲
൅

1
݄଴ೖ

ቇ ߦ݀	ߠ݀
ఏమ
ೖ

ఏభ
ೖ

ఒ

ିఒ

௅

௞ୀଵ

,														ሺ10ሻ 

4. Numerical Method 

In this study, we explain the method for two lobe 
bearing; this can be extended to the three lobe and 
four lobe bearings similarly. Here, the object is to 
find the coordinates of the equilibrium of the center 
point of the rotor. Then, calculation of energy loss 
is intended. To obtain the equilibrium of the center 
point, it is necessary to obtain the pressure function 
governing the system. The problem of two lobe is 
different for the function ݄଴

௞ሺߠሻ, ݇ ൌ 1, 2 based 
on ߠ଴

௞, ݇ ൌ 1, 2 so that the form of the differential 
Equation (4) for each lobe is different. For this 
reason, since our object is to find the pressure 
function on the system and simultaneously to obtain 
the equilibrium point ሺݔ, 	ሻ, the functionݕ ଴ܲሺߠ,  ሻ isߦ
considered as follows: 
 

଴ܲሺߠ, ሻߦ ൌ ቊ ଴ܲ
ሺଵሻሺߠ, ,ሻߦ ଵߠ					

ଵ ൑ ߠ ൑ ଶߠ
ଵ

଴ܲ
ሺଶሻሺߠ, ଵߠ						,ሻߦ

ଶ ൑ ߠ ൑ ଶߠ
ଶ ,			െ ߣ

൏ ߦ ൏  ሺ11ሻ																																			,	ߣ
 

Now for the function P଴ሺθ, ξሻ to be continuous 
at	θ ൌ θଶ

ଵ ൌ θଵ
ଶ ൌ π, the boundary conditions 

Equations (5) and (6) for P଴
୩ሺθ, ξሻ, k ൌ 1, 2	can be 

rewritten as: 
 
଴ܲ
ሺ௞ሻ൫ߠଵ

௞, ൯ߦ ൌ 0, ଴ܲ
ሺ௞ሻ൫ߠଶ

௞, ൯ߦ ൌ 0,																												ሺ12ሻ 
 
଴ܲ
ሺ௞ሻሺߠ, ሻߣ ൌ 0, ଴ܲ

ሺ௞ሻሺߠ, െߣሻ ൌ 0	,																																ሺ13ሻ 
 

Now, consider an approximate solution to the 
analytic solution ଴ܲ

ሺଵሻሺߠ, ሻ and ଴ܲߦ
ሺଶሻሺߠ,  ሻ in theߦ

radial basis function forms: 
 

଴ܲ
ሺଵሻሺߠ, ሻߦ ൌ෍෍ߙሺଵሻ௜,௝߶ଵ௜,௝ሺߠ, ,ሻߦ

ெ

௝ୀ଴

ಿ
మ

௜ୀ଴

																								ሺ14ሻ 

 

଴ܲ
ሺଶሻሺߠ, ሻߦ ൌ෍෍ߙሺଶሻ௜,௝߶ଶ

௜,௝ሺߠ, ሻߦ
ெ

௝ୀ଴

ே

௜ୀ
ಿ
మ

,																								ሺ15ሻ 

 
where	αሺ୩ሻ୧,୨, k ൌ 1, 2 are the coefficients to be 
determined. Here N and M are the number of data 
points on axis	θ	and	ξ, respectively. It should be 
noted that N must be taken as a multiple of the lobe 
under consideration. ߶௞

௜,௝ሺߠ, ,ሻߦ ݇ ൌ 1, 2 is 

defined as: 
 

߶ଵ௜,௝ሺߠ, ሻߦ ൌ ߶ ቆටሺߠ െ పߠ
௞ሻ෪ ଶ ൅ ሺߦ െ ఫߦ

௞ሻ෪ ଶቇ,												ሺ16ሻ 

 

߶௜,௝
ଶሺߠ, ሻߦ ൌ ߶ ቆටሺߠ െ పߠ

௞ሻ෪ ଶ ൅ ሺߦ െ ఫߦ
௞ሻ෪ ଶቇ,												ሺ17ሻ 

Here Ԅ is Gaussian radial basis functions and 
 

పߠ
ଵ෪ ൌ ଵߠ

ଵ ൅ ݅
ଶߠ

ଵ െ ଵߠ
ଵ

ܰ
, ݅ ൌ 0,1,… ,

ܰ
2
,																								ሺ18ሻ 

పߠ
ଶ෪ ൌ ଵߠ

ଶ ൅ ݅
ଶߠ

ଶ െ ଵߠ
ଶ

ܰ
, ݅ ൌ

ܰ
2
,
ܰ
2
൅ 1,… ,ܰ,						 ሺ19ሻ  

ఫߦ
௞෪ ൌ ߣ ൬

2݆
ܯ
െ 1൰ , ݆ ൌ 0,1,2, … ݇							,ܯ, ൌ 1, 2,		 ሺ20ሻ 

 

 
 

Fig. 3. The grid points of θ, ξ 
 

By using (4)-(6) and (9) to calculate P଴ሺθ, ξሻ, we 

need to compute 2 ቀ
ே

ଶ
൅ 1ቁ ሺܯ ൅ 1ሻ ൅ 2 unknown 

parameters	αሺଵሻ୧,୨,	݅ ൌ 0,1,2, … ,
ே

ଶ
,݆ ൌ 0,1,2, …  ܯ,

and ߙሺଶሻ௜,௝	, ݅ ൌ
ே

ଶ
,
ே

ଶ
൅ 1,

ே

ଶ
൅ 2,… ,ܰ, ݆ ൌ

0,1,2, … ,ݔ and	ܯ,  Therefore, we require a set of ݕ

k ቀ
N

ଶ
൅ 1ቁ ሺM ൅ 1ሻ ൅ 2 equations. 

We define: 
 

,ߠ௞ሺܵܧܴ ሻߦ ൌ
డ

డఏ
ቄሺ݄଴

௞ሻଷ൫ ଴ܲ
ሺ௞ሻ ൅ 1൯

డ௉బ
ሺೖሻ

డఏ
ቅ ൅

డ

డక
ቄሺ݄଴

௞ሻଷ൫ ଴ܲ
ሺ௞ሻ ൅ 1൯

డ௉బ
ሺೖሻ

డక
ቅ െ Λ

డ

డఏ
൛൫ ଴ܲ

ሺ௞ሻ ൅ 1൯݄଴
௞ൟ,

݇		 ൌ 1, 2.                                                              (21)  
 

Since ܨ௫ ൌ 0	, ௬ܨ ൌ ଴ܹ, then as in [25] it follows 
that: 
 

௫ܨ ൌ െන න ଴ܲሺߠ, ሻߦ cosሺߠ, ,ߦ݀ߠሻ݀ߦ
ଶగ

଴

ఒ

ିఒ
																							ሺ22ሻ 

௬ܨ ൌ െන න ଴ܲሺߠ, ሻߦ ,ߠሺ݊݅ݏ ߦ݀ߠሻ݀ߦ
ଶగ

଴

ఒ

ିఒ
,																							ሺ23ሻ 

Now, by using the collocation points (18)-(20) 
and considering Fig. 3 the following equations are 
obtained: 
 
ଵܵܧܴ ቀߠప

ଵ෪ , ఫߦ
ଵ෪ቁ ൌ 0,				݅ ൌ 1,… ,

ே

ଶ
െ 1		; 	݆ ൌ 1,2, … ܯ, െ 1,(24) 

 
ଶܵܧܴ ቀߠప

ଶ෪ , ఫߦ
ଶ෪ቁ ൌ 0,			݅ ൌ

ே

ଶ
൅ 1,… , ܰ െ 1		; 	݆ ൌ

1,2, … ,M െ 1.																																																																						ሺ25) 
 

By using boundary conditions (12) and (13) for 
k ൌ 1, 2 we have: 
 

଴ܲ
ሺ௞ሻ ቀߠଵ

௞, ఫߦ
௞෪ , ቁ ൌ 0, ݆ ൌ 1,2, … ܯ, െ 1, ݇ ൌ 1,2  (26) 
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଴ܲ
ሺ௞ሻ ቀߠଶ

௞, ఫߦ
௞෪ , ቁ ൌ 0,				݆ ൌ 1,2,… ܯ, െ 1, ݇ ൌ 1,2   (27) 

଴ܲ
ሺଵሻ ቀߠప

ଵ෪ ,െߣቁ ൌ 0, ݅ ൌ 0,1, … ,
ே

ଶ
	,		                          (28) 

଴ܲ
ሺଵሻ ቀߠప

ଵ෪ , ቁߣ ൌ 0,												݅ ൌ 0,1,… ,
ே

ଶ
,                       (29) 

଴ܲ
ሺଶሻ ቀߠప

ଶ෪ ,െߣቁ ൌ 0,										݅ ൌ
ே

ଶ
,
ே

ଶ
൅ 1,… ,ܰ,							       (30)  

P଴
ሺଶሻ ቀθన

ଶ෪ ,െλቁ ൌ 0,										i ൌ
N

ଶ
,
N

ଶ
൅ 1,… , N       (31) 

 
From Fig. 3 it can be concluded that 

 

P଴
ሺଵሻ ቀθଵ

ଶ, ξ఩
ଵ෪, ቁ ൌ P଴

ሺଶሻ ቀθଶ
ଵ, ξ఩

ଶ෪, ቁ ൌ 0,            (32) 
 

This condition guarantees the continuity of the 
function P଴ሺθ, ξሻ	at the point	θ ൌ θଶ

ଵ ൌ θଵ
ଶ ൌ π. 

Two more equations are needed to be able to 
obtain x and y directly. We use equations (21) and 
(22). From these equations, and considering 
equation (5), since our problem is for the two lobe 
system, we have the following results: 
 

௫ܨ ൅ ׬ ׬ ଴ܲ
ሺଵሻሺߠ, ሻߦ ,ߠሺݏ݋ܿ ߦ݀ߠሻ݀ߦ

ఏభ
మ

ఏభ
భ

ఒ
ିఒ 	൅

׬ ׬ ଴ܲ
ሺଶሻሺߠ, ሻߦ ,ߠሺݏ݋ܿ ߦ݀ߠሻ݀ߦ ൌ 0,

ఏమ
మ

ఏభ
మ

ఒ
ିఒ             (33) 

 
and 
 

௬ܨ ൅ ׬ ׬ ଴ܲ
ሺଵሻሺߠ, ሻߦ ,ߠሺ݊݅ݏ ߦ݀ߠሻ݀ߦ

ఏభ
మ

ఏభ
భ

ఒ
ିఒ ൅

׬ ׬ ଴ܲ
ሺଶሻሺߠ, ሻߦ ,ߠሺ݊݅ݏ ߦ݀ߠሻ݀ߦ ൌ 0

ఏమ
మ

ఏభ
మ ,				

ఒ
ିఒ          (34) 

 

These result in a system of 2 ቀ
N

ଶ
൅ 1ቁ ሺM ൅ 1ሻ ൅

2 nonlinear equations and	2 ቀ
N

ଶ
൅ 1ቁ ሺM ൅ 1ሻ ൅ 2 

unknowns, which may be solved by standard 
numerical methods such as the Newton's method. 

5. Results and discussion 

The results obtained by RBF collocation method 
presented in this paper were applied to two, three 
and four lobe gas journal bearings. By considering 
aspect ratio is unity and preload equal to 0.5, the 
distribution of pressure in two, three and four lobe 
gas bearings is shown in Figs. 4-6, respectively. 
The equilibrium point and power loss have been 
obtained by these pressures and compared with the 
other works. These results are shown in Table 3 for 
GA-RBF and IMQ-RBF. These results are in 
consonance with the previous results and confirm 
the validity of our method. 

 
(a): Two-lobe, c=1.3, M ൌ 4, N ൌ 8 

 
(b): Three-lobe, c=1.3, M ൌ 4, N ൌ 9 

 
(c): Four- lobe, c=0.9, M ൌ 4, N ൌ 12 

 
Fig. 4. The distribution of pressures in different lobes 
with Λ ൌ 2, F଴ ൌ 0.2	and	GA െ RBF 
 

 
(a) Two-lobe, c=1.3,	M ൌ 4, N ൌ 8 
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(b) Three-lobe, c=1.2,	M ൌ 3, N ൌ 9 

 
(c) Four-lobe, c=0.8,	M ൌ 4,N ൌ 16 

 
Fig. 5. The distribution of pressures in different lobes 
with Λ ൌ 5, F଴ ൌ 0.5	and	GA െ RBF 
 

 
(a) Two-lobe, c=1.2, M ൌ 4, N ൌ 10 

 
(b) Three-lobe, c=0.7, M ൌ 4,N ൌ 9 

 
(c) Four-lobe, c=2.2, M ൌ 4, N ൌ 12 

 
Fig. 6. The distribution of pressures in different lobes 
with Λ ൌ 10, F଴ ൌ 1	and	GA െ RBF 
 
 
 
 
 
 
 
 

 
Table 3. Comparison of the effects of different bearing numbers and load capacity on the  

coordinates and pressure of gas bearings with different lobes 
 

௅ܲ-IMQ ௅ܲ-GA 
௅ܲ[25] 

௅ܲ[16] y୨-IMQ y୨-GA y୨[25] y୨[16] ݔ୨-IMQ ݔ୨-GA ݔ୨[25] ݔ୨[16] Bearing type ܨ଴ Λ 

10.27 10.27 10.29 10.22 -0.052 -0.054 -0.053 -0.050 0.232 0.224 0.224 0.217 Two-lobe 

0.2 2 11.37 11.40 11.34 11.26 -0.089 -0.089 -0.082 -0.071 0.194 0.222 0.194 0.209 Three-lobe 

12.00 12.00 12.00 11.96 -0.093 -0.092 -0.085 -0.081 0.232 0.237 0.23 0.231 Four-lobe 

10.17 10.16 10.16 10.11 -0.114 -0.119 -0.111 -0.103 0.169 0.176 0.166 0.160 Two-lobe 

0.5 5 11.34 11.34 11.29 11.22 -0.152 -0.158 -0.147 -0.146 0.194 0.186 0.194 0.192 Three-lobe 

12.08 12.28 12.04 12.01 -0.181 -0.196 -0.159 -0.154 0.227 0.286 0.231 0.227 Four-lobe 

10.10 10.11 10.07 10.03 -0.195 -0.203 -0.174 -0.178 0.123 0.118 0.122 0.126 Two-lobe 

1 10 11.27 11.27 11.31 11.29 -0.198 -0.198 -0.174 -0.178 0.122 0.124 0.122 0.126 Three-lobe 

12.49 12.50 12.26 12.3 -0.295 -0.297 -0.243 -0.241 0.268 0.270 0.277 0.268 Four-lobe 
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6. Error Analysis 

Madych have proven exponential convergence 
property of multiquadratic approximation (Chen et al., 
2003). He has shown that under certain conditions, the 

interpolation error is ߝ ൌ ܱሺߣ
೎
೓	ሻ	where c is the shape 

parameter, h is the mesh size and 0 ൏ ߣ ൏ 1	is a 
constant. It implies the approximated solution can be 
improved either by reducing the size of h or by 
increasing the magnitude of c. It means that if c → ∞ 
then ε → 0. Since increasing of c can improve the 
accuracy exponentially without extra computation 
(Hung et al., 2007; Chen et al., 2003; Madych, 1992), 
it is preferred to decrease error rather than reduce h. 

However, according to ‘uncertainty principle’ of 
Schaback (Schaback, 1995), as the error becomes 
smaller, the matrix becomes more ill-conditioned; 
hence the solution will break down as c becomes too 
large. The experimental results confirm such behavior 
of the error values as c becomes larger. The numerical 
results for two lobe gas journal bearings are 
demonstrated in Figs. 7 and 8 which show, according 
to the findings of Madych, the error functions decrease 
exponentially as c becomes larger in bounded interval. 
After that according to the research of Schaback the 
error values decline as c becomes too large. The best c 
is different for various problems and is not the same 
RBFs. 
 

 

 
 
Fig. 7. Horizontal axis is related to shape parameter (c) 
with log mode and vertical axis shows residual error 
(RES) values with log mode when the solutions are 
approximated by using GA-RBF 
 

 

 
 
Fig. 8. Horizontal axis is related to shape parameter (c) 
with log mode and vertical axis shows residual error 
(RES) values with log mode when the solutions are 
approximated by using IMQ-RBF  

7. Conclusion 

In this work, based on the Radial Basis Function 
solutions of gas lubrication equations, the static 
characteristics such as the bearing load capacity, the 
position of rotor center and the viscous power loss 
is studied for three types of gas-lubricated 
noncircular journal bearings. The merit of our 
method for case study is that the equilibrium 
position of the rotor is obtained without using the 
trial and error method.  

Nomenclature 

Shape parameter c 
Conventional radial clearance, ( m ) C
Minor clearance when rotor and bearing 
geometric centers are coincident, ( m ) mC
Rotor radius, ( m ) R
Components of the fluid film force on the rotor 
in the steady state,  00

, YX FF  

Load capacity 
0F

Film thickness, 
0h

Number of lobe L
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Length of bearings L  
The number of data points on axis	θ M 
The number of data points on axis	ξ N 
Gas pressure 

0P
 

Approximate Solution of  pressure ଴ܲሺߠ,  ሻߦ

Ambient pressure, (
2m

N
) aP

 

Coordinates of the rotor center in steady state 
00 , jj YX  

Unknown Coefficients   
ji ,

 

Preload in the bearing, (
C

Cm ) 
  

Bearing aspect ratio, (
R

L

2
) 

  

Bearing number   
Ambient dynamic viscosity of the lubricant,  

(
2

.

m

sN ) 


 

Angular coordinate measured from X – axis   
Angle of lobe line of centers k

0  
Angles at the leading and trailing edge of the 
lobe 

kk
21 ,

 

Rotational speed of the rotor, (
s

rad
) 

  

Coordinate along bearing axis measured from 
mid span 


 

Attitude angle ߶଴ 
 superscrib 

Lobe designation k  
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