POSITIVE LAGRANGE POLYNOMIALS | ||
Iranian Journal of Science | ||
مقاله 5، دوره 32، شماره 3، آذر 2008، صفحه 191-195 اصل مقاله (237.56 K) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22099/ijsts.2008.2286 | ||
نویسندگان | ||
S. M. M. ZEKAVAT* ؛ SH. KHOSHDEL | ||
Department of Mathematics, School of Science, Shiraz University, Shiraz, I. R. of Iran | ||
چکیده | ||
In this paper we demonstrate the existence of a set of polynomials Pi , 1 i n , which are positive semi-definite on an interval [a , b] and satisfy, partially, the conditions of polynomials found in the Lagrange interpolation process. In other words, if a a1 an b is a given finite sequence of real numbers, then Pi (a j ) ij (ij is the Kronecker delta symbol ) ; moreover, the sum of Pi 's is identically 1. | ||
کلیدواژهها | ||
Positive polynomials؛ Lagrange polynomials | ||
آمار تعداد مشاهده مقاله: 942 تعداد دریافت فایل اصل مقاله: 907 |