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Abstract 

In this paper, an effective direct method to determine the numerical solution of linear and nonlinear Fredholm and 
Volterra integral and integro-differential equations is proposed. The method is based on expanding the required 
approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration 
and product of the Chebyshev cardinal functions are described in detail. These matrices play the important role of 
reducing an integral equation to a system of algebraic equations. Illustrative examples are shown, which confirms 
the validity and applicability of the presented technique. 
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1. Introduction 

Integral equations provide an important tool for 
modeling of the numerous problems in engineering 
and science [1, 2]. These equations appear in the 
modeling of electromagnetic and electrodynamic, 
elasticity and dynamic contact, heat and mass transfer, 
fluid mechanic, acoustic, chemical and 
electrochemical process, molecular physics, 
population, medicine and in many other phenomena 
[3-9]. So, it is clear that solving integral equations can 
be used to describe many events in real world. 

In [10], some traditional methods for solving 
integral equations are classified and described. 
Recently, many researchers have focused on finding 
efficient numerical or analytical methods to estimate 
the solution of integral equations such as collocation 
method [1, 11], Adomian decomposition method 
(ADM) [12], homotopy perturbation method(HPM) 
[13], He's variational iteration method [14], optimal 
control [15], wavelets [16-19], neural networks [20], 
simulation methods [21], block-pulse method [22], 
and some other new methods [23-27]. 

In this study, Chebyshev cardinal functions are 
introduced as the efficient basis to approximate the 
solution of integral equations [28]. Also, the technique 
of solving is involved in operational matrices as a 
powerful tool to reduce an integral equation to a 
system of algebraic equations. However, operational 
matrices are applied with other basis [29, 30]. The 
coupling Chebyshev cardinal functions with 
operational matrices provide high accurate solutions 
using simple computations [31, 32]. 
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Moreover, the new defined operational matrix 
utilizes the computations such that the proposed 
method reduces the integral equation to an 
algebraic system of equations without using the 
collocation scheme. 

A nonlinear Fredholm-Volterra integro-
differential equation can be considered in the 
following general form 
 

 

 

m t p( j)
j 1 1a

j=0

b q

2 2a

(t)u (t) = f (t) k (t, s) u(s) ds

                       k (t, s) u(s) ds,

  

 

 

   (1) 

 
under the initial conditions 
 

1,0,1,...,=,=)()( mjau j
j              (2) 

 
where u(t) is an unknown function, the functions 

),(),( 1 stktf  and ),(2 stk  are defined on an 

interval bsta  ,  and also 21 ,  and 

1,0,1,...,=, mjj  are constants. Though 

different choices of the parameters lead to various 
problems, the method can afford to approximate the 
solution. 

The presented paper is organized in 6 sections. In 
Section 2, we introduce the Chebyshev cardinal 
functions and the matrix form of an approximated 
function. Section 3 includes some useful property 
of the Chebyshev cardinal functions. In Section 4, 
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we show how to approximate the solutions of the 
integral equation by the mentioned basis through 
the operational matrices. Numerical results are 
shown in Section 5. Finally, Section 6 concludes 
this paper with a brief summary and more 
discussion of the numerical results. 

2. Chebyshev cardinal functions 

Chebyshev cardinal functions of order N  in 
1,1][  are defined as [28] 
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xC

jjxN

N
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where )(1 xTN  is the first kind Chebyshev 

function of order 1N  in 1,1][  defined by 
 

)),(arccos1)((cos=)(1 xNxTN                  (4) 
 
subscript x  denotes x -differentiation and jx , 

1,1,2,= Nj  , are the zeros of )(1 xTN  

defined by )
22

1)(2
(cos
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, 1,1,2,= Nj  , 

with the Kronecker property 
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where ji  is the Kronecker delta function. We 

change the variable 
22

=
ab

x
ab

t





 to use 

these functions on ],[ ba . Now any function )(tg  

on ],[ ba  can be approximated as 
 

),(=)()()(
1

1=

tGtCtgtg N
T

jj

N

j




                (6) 

 
where jt , 1,1,2,= Nj  , are the shifted 

points of jx , 1,1,2,= Nj  , by transforming 
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=
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x
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,)](,),(),([= 121
T

NtgtgtgG                      (7) 
 
and 
 

.)](,),(),([=)( 121
T

NN tCtCtCt               (8) 

Also, we choose jt  so that, 121 <<< Nttt  . 

3. Some new properties of chebyshev cardinal 
functions 

In this section, some operational matrices of 
integration and product will be derived.  
 

Lemma 1. The integration of the vector )(tN  

defined in (8) can be approximated as  
 

),()( tPdss NN

t

a
                                     (9) 

 
where P  is the 1)(1)(  NN  operational 

matrix of integration for Chebyshev cardinal 
functions. 
 
Proof: Let  
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Using (6), any function dssC j

t

a
)(  can be 

approximated as 
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where 

 
N 1t tk k
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= C (s)ds = (s t )ds,  j, k = 1, 2, , N 1.
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and 
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 . Comparing (9) and (11), we 

obtain 
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Remark: The elements of the matrix P  can be 
also found without integration equivalent to (12). 

Let )(1 xLM   be the Legendre polynomial of order 

1M  on 1,1][ . Then the Legendre-Gauss 

nodes are 
 

1,<<<<<1 121  M                        (14) 
 



 
 
 
15                     IJST (2012) A1: 13-24 

where 1
1=}{ M

ii  are the zeros of )(1 xLM  . No 

explicit formulas are known for the points i , and 

so they are computed numerically using subroutines 
[33]. Also, we approximate the integral of f  on 

1,1][  as 
 

),()(
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fwdxxf 



                               (15) 

 
where i  are Legendre-Gauss nodes in (14) and the 

weights iw  given in [33] 
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It is well known that the integration in (15) is 

exact whenever )(xf  is a polynomial of degree 

smaller than 12 M . 

By change of variable 
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=
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(12) can be written as  
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Now, using the Gaussian integration formula in 

(15) with 
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for 11,2,=, Nkj  . 

 

Lemma 2. Assume )(tN  in (8) and 
T

NfffF ],,,[= 121   as the column vectors, 

then 
 

),(
~

)()( tFFtt N
T
NN                            (19) 

 

where F
~

 is a 1)(1)(  NN  product 

operational matrix as follows 
 

].,,,[=
~

121 NfffdiagF                            (20) 

 

Proof: First, by using the definition of )(tN  in 

(8) we obtain 
 

1 1 1 2 1 N 1

2 1 2 2 2 N 1T
N N

N 1 1 N 1 2 N 1 N 1

C (t)C (t) C (t)C (t) C (t)C (t)

C (t)C (t) C (t)C (t) C (t)C (t)
(t) (t) .

C (t)C (t) C (t)C (t) C (t)C (t)
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Using (6), any function )()( tCtC kj , 

1,1,2,=, Nkj   can be approximated as 
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where 
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So, from (21) and (22), we have 
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Clearly, by using the vector F , we find the 

1)(1)(  NN  matrix F
~

 as follows  
 

].,,,[=
~

121 NfffdiagF                            (25) 
 
Lemma 3. Assume 1)(1)(  NN  is an arbitrary 

matrix, then  
 

),(ˆ)()( ttt NN
T
N                             (26) 

 

where )(tN  is defined in (8) and ̂  is a 

( 1N )-row vector including elements equal to the 
diagonal entries of   matrix. 
 
Proof: To prove the identity, we expand the 
formula as follows 
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Lemma 4. Suppose ],...,,[= 121 N
T uuuU  and 

],...,,[= jjj
T
je  . If we consider 

 

1,0,1,...,=),()()(  mjtUtu N
Tm  (27) 

 
then 
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                         (28) 

 
In particular, for ml = , we have 

 
T m T m 1 T T T

m 1 1 0 N m Nu(t) U P e P ... e P e (t) = L ,
           (29) 

 
where lL , ml 0,1,...,= , are the 1N -row 

vectors. 
 
Proof: Clearly, by integration of (27) we will have  
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Also, from (9), we get  
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which concludes 
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From (6), 1m  as the constant function has the 

vector form )(1 te N
T
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Similarly, we can obtain vector forms of other 

differentiations of )(tu .  

 
Lemma 5. If we consider 
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then for every Nn  we have  
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Proof: By induction, for 1= nk , we will have  
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Lemma 6. If we consider  
 

),()()( tUtu N
Tm                                        (37) 

 
then for every Nq  we have 
 

  ),()( tUtu N
T
q
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where  qimiq LU )(=)(  and mL  is defined in 

Lemma 3. 
 
Proof: According to Lemma 4, hypostasis lead to  

).()( tLtu Nm  

So, considering the previous Lemma 5 gives 
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q
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q
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 and the proof is completed. 

4. Direct method to solve integral equations 

In this section, by using results obtained in the 
previous section concerning Chebyshev cardinal 
functions, an effective and accurate direct method 
for solving nonlinear Fredholm, Volterra and 
Fredholm-Volterra integral and integro-differential 
equations is presented. 

Consider the following integral equation 
 

   
m t bp q( j)

j 1 1 2 2a a
j=0

(t)u (t) = f (t) k (t, s) u(s) ds k (t, s) u(s) ds,            (39) 

 
under the initial conditions 
 

1,0,1,...,=,=)()( mjau j
j            (40) 

 
as before. 

We first reform the proposed integral equation to 
utilize for solving. This process is described in the 
following steps.  
 
Step 1. 
Since )(tf  is a given function, according to (6) we 

can approximate it as follows  
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where )](),...,(),([= 121 n
T tftftfF  and 

1,1,...,=, Njt j  are shifted points of 

1,1,...,=, Njx j  by 
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Step 2. 

From (6), )(tj  as the given functions can be 

rewritten in the following form 
 

T T
j j N N j

ˆ ˆ(t) A (t) = (t)A , j = 0, 2, ..., m,                (42) 
 

where )](),...,(),([=ˆ
121 Njjj
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by Lemma 4 we have 
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j   

 
Therefore, the right side of the equation can be 

approximated as 
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where jA
~

 is the 1)(1)(  NN  diagonal 

matrix whose entries correspond to the elements of 

.ˆ
jA  Note that the points jt  related to jx , 

1,1,2,...,= Nj  and the vectors jL , 

mj 0,2,...,= , are defined in (28). 

 
Step 3. 
Now we focus on the Integral part with the constant 
limits of integration of the proposed integral 

equation. It is clear that ),(2 txk , as a kernel of the 

Fredholm part, can be written as follows 
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where ij
ff

ijji Kkstk )(==),(2 . 

Now we describe the most important part of the 
process 
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where S  is defined as follows 
 

b b b bT
N N 1 2 N 1a a a a

S = (s) (s)ds diagonal[ C (s)ds, C (s)ds, , C (s)ds],       
 
which is obtained from (24).  

Note that the integral has the scalar value. So it is 
equal to its transpose. Finally, we have  
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q
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Step 4. 
This step explains how to reduce the Volterra 
Integral part of the proposed mixed Volterra-

Fredholm integral equation. Similarly, ),(1 stk , as 

a kernel of the Volterra part, can be approximated 
as 
 

N 1N 1
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where ij
vv
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Where, according to Lemma 2 pU
~

 is the diagonal 

matrix constructed by entries of pU . Also, Ĥ  is a 

column vector including the entries of the main 

diagonal of PUK p
v ~

. It is a direct result of Lemma 

3. 
 
Step 5. 
Now we substitute the obtained reformed parts into 
(39). So, we have 
 

 
m TT f

j j 1 2 q N
j=0

ˆL A F H K SU (t) = 0.
  

          
                       (49) 

 
Since the above equation is satisfied for every 

[ , ]t a b , we have 
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Solving the obtained system included 1N  

unknowns and 1N  equations, leading to the 
solution of  the  integral equation. Newton's method 
can fulfill the accurate solutions of nonlinear 
systems. 

5. Numerical results 

In this section, some different examples which have 
been solved with other usual methods are 
considered. Thus, the obtained numerical results 
can be compared with other methods. The 
associated computations with the examples were 
performed using MAPLE 13 with 64 digit precision 
on a Personal Computer. Although 64 digits were 
used in the computations, only 2 digits are legit in 
the illustrative examples. 
 
Example 1. As the first example, consider the 
following integral equation of the first kind [34] 
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where the exact solution is tetu =)( . We proceed 

with the process of solving corresponding to the 
described steps for 4=N . According to (39) 
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 and we approximate the solution as follows 
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Now, we obtain the needed vectors and matrices 

as follows 
 

,

1.72

1.76

1.99

2.52

3.09

=,

1.01.01.01.01.0

1.01.011.021.031.04

1.011.051.131.221.28

1.021.141.371.651.85

1.021.221.612.132.53

=
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0.080000
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u

u

u
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Substituting these values in (53) gives the 
following system of linear equations  
 

0,=)( T
q

fT SUKF   
 
which is equivalent to  
 




















.0=1.720.080.260.310.260.08

,0=1.760.080.270.310.270.09

,0=1.990.080.280.350.320.11

,0=2.520.090.300.420.430.16

,0=3.090.090.320.490.560.21

54321

54321

54321

54321

54321

uuuuu

uuuuu

uuuuu

uuuuu

uuuuu

 

 
From this system, the coefficients iu , 1,2,...,5=i  

are computed as 
 

 ,1.011.241.642.222.64=U  
 
and the approximate solution of the integral 
equation is obtained by 
 

),()(
5

1=

tCutu ii
i
  

 
which is fitted on the exact solution demonstrated 
in Fig. 1. In addition, error function is shown for 

10=N . Further investigations will be described 
in the conclusion. 

 

 
 
Fig. 1. The exact and approximated solution cover each other for 

4=N . The error function for 10=N  is also shown. See the 
Example 1 
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Example 2. Consider the following integral 
equation of the first kind [17] 
 

  0,=)())(sin(5cos3sin68
15

1
0

2 dssusteette tsttt 
  

 

where the exact solution is .=)( 2tetu  We 

describe the steps of solving for 4=N . 
According to (39)  
 

0,=1,=1,=),(sin=),( 211   pstestk ts

 

 2t t1
f (t) = 8e 6 sin t 3cos t 5e ,

15


     
 
and we approximate the solution as follows 
 

).()( tUtu N
T  

 
Now we obtain the needed vectors and matrices 

as follows  
 

v

1.0 1.01 1.08 1.16 1.20 3.18

1.02 1.0 1.04 1.11 1.16 2.03

K = , F = ,1.15 1.05 1.0 1.04 1.08 0.88

1.46 1.25 1.05 1.0 1.01 0.26

1.77 1.46 1.15 1.02 1.0 0.03

   
   
   
   
   
   
   
   

1

2

p 3

4

5

u 0 0 0 00.06 0.01 0.01 0.0 0.0

0 u 0 0 00.27 0.13 0.02 0.01 0.0

P = , U = 0 0 u 0 0 ,0.30 0.33 0.15 0.03 0.0

0 0 0 u 00.26 0.25 0.29 0.13 0.0

0 0 0 0 u0.08 0.09 0.08 0.10 0.03

    
      
  
  

   
  

   



 

and Ĥ  constructed by PUK p
v ~

 
 

.

0.03

0.100.130.030.020.01

0.080.300.150.020.01

0.100.280.350.130.01

0.100.310.330.270.06

=ˆ

5

54321

54321

54321

54321




























u
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uuuuu
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H T
 

 
Substituting these values in (53) gives the 

following system of linear equations 
 

0,=ˆ TT HF   
 
which is equivalent to  
 






















.0=0.030.03

,0=0.260.100.130.030.020.01

,0=0.880.080.300.150.020.01

,0=2.030.100.280.350.130.01

,0=3.180.100.310.330.270.06

5

54321

54321

54321

54321

u

uuuuu

uuuuu

uuuuu

uuuuu

 

 

From this system, the coefficients iu , 

1,2,...,5=i  are computed as  

  ,1.051.522.714.916.99=U  
 
and the approximate solution of the integral 
equation is obtained by 
 

),()(
5

1=

tCutu ii
i
  

 
which is fitted on the exact solution demonstrated 
in Fig. 2. In addition, error function is shown for 

15=N .  

 

  
Fig. 2. The exact and approximated solution coincided with each 

other for 4=N . The error function for 15=N  is also 
shown. See the Example 2. 
 
Example 3. Consider the Volterra integral equation 
of the second kind as follows [35, 36] 
 

,)()()()(cos=)(
0

dssustcosstttu
t

   

 

where the exact solution is  13cos2
3

1
=)( ttu . 

Corresponding to (39) 
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1

1 2

k (t, s) = (t s) cos(t s), p = 1,

    = 1, = 0 m = 0,

 
    

 
1,=)(,cos=)( 0 tttf   

 
and we approximate the solution as follows 
 

).()( tUtu N
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Similarly, we obtain the needed matrices and 

vectors for 4=N  as follows 
 

,

1.0

0.98

0.88

0.70

0.56

=,=,

10000

01000

00100

00010

00001

=
~
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1

1

1

1

1
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4

3

2

1

000
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u

u

u
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u
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v

0.0 0.18 0.42 0.55 0.55 0.06 0.01 0.01 0.0 0.0

0.18 0.0 0.28 0.49 0.55 0.27 0.13 0.02 0.01 0.0

K = , P =0.42 0.28 0.0 0.28 0.42 0.30 0.33 0.15 0.03 0.0

0.55 0.49 0.28 0.0 0.18 0.26 0.25 0.29

0.55 0.55 0.42 0.18 0.0

  
    
   
 
   
     

,

0.13 0.0

0.08 0.09 0.08 0.10 0.03

 
 
 
 
 

 
 
 

1 2 3 4 5

2 3 4 5
T

p 3 2 4 5

4 2 3 5

5

u 0 0 0 0 0.05 u 0.13u 0.15u 0.05u

0 u 0 0 0 0.09 u 0.12 u 0.05 u
ˆU = 0 0 u 0 0 , H = .0.01u 0.08 u 0.03u

0 0 0 u 0 0.01u 0.01u 0.02 u

0 0 0 0 u 0.0

     
       
    
   

     
   

  



 
Substituting these values in (53) gives the 

nonlinear system of equations  
 





















0.=1.0

0.98,0.020.010.01

0,=0.880.030.080.01

0,=0.700.050.120.09

0,=0.560.050.150.130.05

5

5324

5423

5432

54321

u

uuuu

uuuu

uuuu

uuuuu

 

 
From this system, the coefficients iu , 

1,2,...,5=i  are computed as 
 

  .1.00.960.770.460.25= TU  
 
and the approximate solution of the mixed Volterra-
Fredholm integral equation is obtained by 
 

),()(
5

1=

tCutu ii
i
  

 
which coincides for 3 -digit arithmetic with the 

exact solution. The method for 10=N  gives 11 
true digits. The results are reported in Table1. 
 
 
 

Table 1. The infinity norm of error 

functions for different N . 
 
Example 5=N  15=N  30=N  

1 2102.05   3107.82   4108.74   

2 3101.17   14107.52   36105.05   

3 5102.41   17101.04   41108.01   
4 52102.01   57103.57   59104.51   
5 4103.51   13101.37   30102.91   
6 5103.10   17101.94   

40102.73   

7 5104.51   18101.48   
43101.44   

8 6104.06   20103.82   48101.12   
9 2108.31   5105.59   

17103.61   

 
Example 4. Consider the following mixed 
Volterra-Fredholm integral equation [37, 24] 
 

6 4 2

t 12

0 0

1 1 5 5
u(t) = t t t t

30 3 3 4

      (t s)[u(s)] ds (t s)u(s)ds, t, s [0,1],


   

       

 

where the exact solution is 2=)( 2 ttu . 

According to (39) 
 

1 2 1 2k (t, s) = t s, k = t s, p = 2, q = 1, = = 1 m = 0,   
 

1,=)(,
4

5

3

5

3

1

30

1
=)( 0

246 ttttttf 


 

 
and we approximate the solution as follows  
 

.)()( tUtu N
T  

 
Then, for 4=N , we obtain the vector and 

matrices as follows  
 

,

1.21

0.95

0.65

0.43

0.30

=,=,

10000

01000

00100

00010

00001

=
~

,

1

1

1

1

1

=ˆ

5

4

3

2

1

000































































































F

u

u

u

u

u

LAA

 

f

v

1.95 1.77 1.48 1.18 1.0

1.77 1.59 1.29 1.0 0.82

K = ,1.48 1.29 1.0 0.71 0.52

1.18 1.0 0.71 0.41 0.23

1.0 0.82 0.52 0.23 0.05

0.0 0.18 0.48 0.77 0.95

0.18 0.0 0.29 0.59 0.77

K = 0.48 0.29 0.0 0.29 0.48

0.77 0.59 0.29 0.0 0.18

 
 
 
 
 
 
 
 


 
  

,

0.95 0.77 0.48 0.18 0.0
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0.06 0.01 0.01 0.0 0.0

0.27 0.13 0.02 0.01 0.0

P = ,0.30 0.33 0.15 0.03 0.0

0.26 0.25 0.29 0.13 0.0

0.08 0.09 0.08 0.10 0.03

0.08 0 0 0 0

0 0.26 0 0 0

S = ,0 0 0.31 0 0

0 0 0 0.26 0

0 0 0 0 0.08

  
   
 
 

 
 
 
 
 
 
 
 
 
 
 

  

,=,

0000

0000

0000

0000

0000

=
~

5

4

3

2

1

2
5

2
4

2
3

2
2

2
1













































u

u

u

u

u

U

u

u

u

u

u

U qp
 

 

and Ĥ , which is constructed by entries of 

PUK p
v ~

  
 

.

0.0010.0010.001

0.0180.0080.0070.003

0.0370.0840.0070.003

0.0670.1470.0980.002

0.0790.2030.1450.049

=ˆ

2
4

2
3

2
2

2
5

2
3

2
2

2
1

2
5

2
4

2
2

2
1

2
5

2
4

2
3

2
1

2
5

2
4

2
3

2
2





























uuu

uuuu

uuuu

uuuu

uuuu

H T  

 
Substituting these values in (53) gives the 

nonlinear system of equations  
 





















0.=1.211.00.060.160.220.08

0,=0.020.010.010.950.020.890.220.260.10

0,=0.040.080.010.650.040.190.690.340.12

0,=0.070.150.100.430.070.260.400.580.15

0,=0.080.200.140.050.300.080.310.450.460.84

54321

2
5

2
3

2
254321

2
5

2
4

2
254321

2
5

2
4

2
354321

2
5

2
4

2
3

2
254321

uuuuu

uuuuuuuu

uuuuuuuu

uuuuuuuu

uuuuuuuuu

 

From this system, the coefficients iu , 1,2,...,5=i  

are computed as  
 

  ,2.01.961.751.371.05= TU   
 

and the approximate solution of the mixed Volterra-
Fredholm integral equation is obtained by  
 

.)()(
5

1=

tCutu ii
i
  

 
The numerical results are reported in Table 1. 
 
Example 5. Consider the following initial value 
problem [38, 39]  
 

[0,1],1,=(0),)()2(121=)()( )(

0
  tudssuettttutu stst

 

where 1=(0)u  and the exact solution is 

.=)(
2tetu  With respect to (39),  

 
1,=0,=1,=1,=,)2(1= 21

)(
1 mpettk sts 

 
1,=)(1,=)(,21=)( 10 ttttf   

 
and we approximate the solution as follows:  
 

.)()( tUtu N
T  

 
Then, for 4=N , we obtain the vector and 

matrices as follows:  
 

0 1 0 1

0

1 1 0 0 0 0

1 0 1 0 0 0
ˆ ˆA = A = , A = A = ,1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

2.95 1

2.59 1

         F = , e = ,2.0 1

1.41 1

1.05 1

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 

 

 
1 1 2 3 4 5

2 1 2 3 4 5
T T T T
0 3 1 0 1 2 3 4 5

4 2 3 4 5

5 5

u 0.06 u 0.27 u 0.30 u 0.26 u 0.08 u

u 0.01u 0.13u 0.33u 0.25 u 0.09 u

L = U = u , L = U P e = 0.01u 0.02 u 0.15 u 0.29 u 0.08u ,

u 0.01u 0.03u 0.13u 0.10 u

u 0.03u

      
          
       
   

     
   
   

 

v

2.88 3.33 3.65 3.37 2.95

1.72 2.05 2.38 2.32 2.09

K = ,0.63 0.79 1.0 1.06 1.01

0.14 0.18 0.25 0.29 0.29

0.01 0.01 0.02 0.02 0.03

0.06 0.01 0.01 0.0 0.0

0.27 0.13 0.02 0.01 0.0

P = 0.30 0.33 0.15 0.03 0.0

0.26 0.25 0.29 0.13 0

 
 
 
 
 
 
 
 

 
 




,

.0

0.08 0.09 0.08 0.10 0.03

 
 
 
 
 
 
 
 

 

 

,

10.03

10.100.130.030.01

10.080.290.150.020.01

10.090.250.330.130.01

10.080.260.300.270.06

=

5

5432

54321

54321

54321






























u

uuuu

uuuuu

uuuuu

uuuuu

U p

 

 
),)(,)(,)(,)(,)((=

~
5544332211 pppppp UUUUUdiagonalU  

 

and Ĥ , which is constructed by entries of 

PUK p
v ~
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.

0.0

0.06

0.040.080.010.52

1.810.150.360.190.02

0.270.700.490.153.30

=ˆ
543

5432

5432




























uuu

uuuu

uuuu

H T  

 
Substituting these values in (53) gives the linear 

system of equations  
 





















0.=0.051.03

0,=0.470.091.120.030.01

0,=1.520.040.211.140.020.01

0,=3.400.060.110.141.110.01

0,=5.250.190.430.190.121.06

5

5432

54321

54321

54321

u

uuuu

uuuuu

uuuuu

uuuuu

 

 
From this system, the coefficients iu , 

1,2,...,5=i , are computed as  
 

  ,0.050.431.282.985.05= TU  
 
and the approximate solution of the mixed Volterra-
Fredholm integral equation is obtained by 
 

),()(
5

1=

tCutu ii
i
  

 
which coincides for 2 -digit arithmetic with the 
exact solution. Also, the norm infinity of error 
function for 10=N  shows 8  true digits with 
respect to the exact solution. 

We are reminded that we used the 64  digits for 
solving the examples, however, we show the results 
with 2  digits. Compare the last equation in (54) 

with the obtained value for 5u . It confirms digits 

can have a serious effect on the results. The results 
are reported in Table 1. 
 
Example 6. Consider the following nonlinear 
Volterra integral equation of the second kind [40, 
24] 
 

[0,1],,)]([)(sin3sin1=)( 2

0

2   tdssustttu
t

 
where the exact solution is .cos=)( ttu  

Corresponding to (39)  
 

1 1 2k (t, s) = sin(t s), p = 2, = 3, = 0, m = 0,     

 
1,=)(,sin1=)( 0

2 tttf   
 

and we approximate the solution as follows  
 

).()( tUtu N
T  

 
The results are reported in Table 1. 
 
Example 7. Consider the Fredholm integro-
differential equation as follows [41]:  
 

t

1 s

1

u (t) tu (t) tu(t) = e 2sin t

        sin(s)e u(s)ds, t [ 1,1],



   

    

1,=(0)1,=(0) uu   
 

where the exact solution is tetu =)( . According 

to (39)  
 

2,=1,=0,=1,=,)(sin=),( 211 mqesstk s 

 
1,=)(,=)(,=)(,sin2=)( 210 ttttttetf t  

 
and we approximate the solution as follows 
 

).()( tUtu N
T  

 
The results are shown in Table 1. 
 
Example 8. Consider the Volterra integro-
differential equation as follows [42]  
 

[0,1],,)(
2

1
sinhcosh

2

1
sinh=)( 2

0
  tdssutttttu

t

 
1,=(0)0,=(0) uu   

 
where the exact solution is .sinh=)( ttu  

According to (39)  
 

2,=0,=1,=2,=1,=),( 211 mqstk    

0 1 2

1 1
f (t) = sinh t cosh t sinh t t,

2 2
(t) = 0, (t) = 0, (t) = 1,

 

    

 
and we approximate the solution as follows 
 

).()( tUtu N
T  

 
The results are reported in Table 1. 

 
Example 9. Consider the integral equation of the 
first kind as follows [17]  
 

0,=)(
1)16)(1(1

4)(4sin)(4cos4
2022

dssu
s

e

t

ett st
t

t





 


  

 
where the exact solution is ).(4sin=)( ttu   

According to (39)  
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0,=1,=1,=,
1

=),( 2121  




q
s

e
stk

st

,
)16)(1(1

4)(4sin)(4cos4
=)(

22 





t

ett
tf

t

 

 
and we approximate the solution as follows: 
 

).()( tUtu N
T  

 
We illustrate the numerical example in Table 1. 

Conclusion 

The Chebyshev cardinal functions and the 
associated operational matrices of integration P  

and product F
~

 are applied to solve the general 
type of linear and nonlinear integral equations. 
Moreover, the new defined matrix operations utilize 
the computations so that the proposed method can 
reduce the integral equation to an algebraic system 
without using the collocation scheme. The obtained 
results showed that this approach can solve the 
problem effectively with simple computations. 

There are some notable points in the numerical 
results which we investigate in detail. Table 1 
shows the maximum errors for 5,15=N  and 30 . 

Looking carefully at the results shows the different 
behavior of error functions. In particular, Examples 
1 and 4 have an irregular rate of convergence. 
Experimental results show the Fredhlom integral 
equations of the first kind have the most ill-
conditioned systems, which lead to weak accurate. 
Also, the best candidate integral equations for this 
method have the solution in the polynomial forms, 
even if the problem includes many terms or the 
higher order of differentiations. 

The method of Chebyshev cardinal functions 
proposed in this paper can be extended to solve  the 
more general type as follows 
 

m t( j)
j 1 1a

j=0

b

2 2a

(t)u (t) = f (t) k (t, s)F(t, s, u(s))ds

                        k (t, s)G(t, s, u(s))ds,

 



 

  

 
under the initial conditions 
 

1.0,1,...,=,=)()( mjau j
j   

 
Here we can use Taylor series of F  and G . 
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