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Abstract

In this paper, we consider a system of generalized resolvent equations involving generalized pseudocontractive
mapping with corresponding system of variational inclusions in real Banach spaces. We establish an equivalence
between the system of generalized resolvent equations and the system of variational inclusions using the concept
of H(.,.)-co-accretive mapping. Furthermore, we prove the existence of solution of system of generalized resolvent
equations and discuss the convergence of iterative sequences generated by the proposed algorithm.
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1. Introduction

A useful and important generalization of variational
inequalities is a mixed variational inequality
containing nonlinear term [1]. Due to the presence
of nonlinear term, the project method cannot be
used to study the existence of solution for the
mixed variational inequalities. In 1994, Hassouni
and Moudafi [2] introduced variational inclusions
which contain mixed variational inequalities as
special cases and they studied perturbed method for
solving variational inclusions.

Using the concept of resolvent operator
technique, Noor and Noor [3] introduced and
studied resolvent equations and established the
equivalence between the mixed variational
inequalities and the resolvent equations. The
resolvent operator technique is being used to
develop powerful and efficient numerical technique
for solving mixed (quasi) variationa inequalities
and related optimization problems.

Ahmad and Yao [4] introduced and studied a
system of generalized resolvent equations in
uniformly smooth Banach spaces by showing its
equivalence with a system of variational inclusions.
They developed an iterative algorithm for finding
the approximate solutions of system of resolvent
equations.

In 2008, Zou and Huang [5] introduced and
studied H(.,.)-accretive mapping and its resolvent
operator in Banach spaces. After that Ahmad et al. [6, 7]
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introduced and studied H(.,.)-cocoercive mapping
and H(.,.)-co-accretive mapping for solving
variational inclusion problems.

In this paper, by using the concept of H(.,.)-co-
accretive mapping, we solve a system of
generdlized resolvent  equations and the
convergence criterion is also discussed. Our results
can be viewed as a refinement and improvement of
some known results of thisfield.

2. Preliminaries

Throughout the paper, unless otherwise specified,
we assume that X be a real Banach space with its
norm,||. || X* is the topological dua of X, d is the
metric induced by the norm |.||, CB(X)
(respectively, 2%) is the family of al nonempty
closed and bounded subsets (respectively, all
nonempty subsets) of X, D (.,.) is the Hausdorff
metric on CB(X) defined by

D(AB) = max{Supd(x, B), Supd(A,y)},
X€eA YeB

where  d(x,B) = infd(x,) and d(A,y) =
ye

ingd(x,y).
XE.
We aso assume that (.,.) is the duality pairing

between X and X* and F:X - 2X is the
normalized duality mapping defined by

F&) ={f € X":(x, f) = lIxllllf Il and ||x]l
=fll}vx € X.
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We need the following concepts and results for
the presentation of the main result of this paper.

Proposition 2.1. [8]. Let X be area Banach space
and F: X - 2% be a normalized duality mapping.
Then for any x,y € X,

llx + ylI> < llxl1? + 2¢y, 4 (x + ),V j(x + y)
€ F(x+y).

Definition 2.1. Let T:X - X be a single-valued
mapping and F: X — 2*" be a normalized duality
mapping, then T issaid to be

(i) cocoercive, if there exists a constant ¢’ > 0 such
that

(Tx =Ty, j(x —=y)) = p'|ITx =Tyl Vx,y €
X, jx—y) € F(x—y);

(i) relaxed-cocoercive, if there exists a constant
y' > 0 such that

(Tx =Ty, j(x —y)) = (=y)ITx = Tyll% vV x,y €
X, j(x—y) € F(x—y),

(i) n- expansive, if there exists a constant n > 0
such that

ITx =Tyl = nllx —yll.Vx,y € X;
if n =1, thenitisexpansive.

Definition 2.2. Let H: X XX - X, A,B:X - X be
the single-valued mappings and F:X — 2% be a
normalized duality mapping, then

(i) H(4,.) is said to be cocoercive with respect to
A, if there existsa constant u > 0 such that

(H(Ax,u) — H(Ay,u),7(x — y)) = (WIlAx —
AyllZ, vV x,y,u€ X,j(x —y) € F(x —y);

(i) H(.,B) is sad to be relaxed-cocoercive with
respect to B, if there exists a constant y > 0 such
that

(H(u,Bx) — H(u,By), j(x — y)) = (=y)|IBx —
Byl>,vx,y,u€ X, j(x —y) € F(x —y);

(iii) H(A4,.) is said to be symmetric cocoercive with
respect to A and B, if H(4,.) is cocoercive with
respect to A and H(., B) is relaxed-cocoercive with
respect to B;

(iv) H(A,B) is sdd to be mixed Lipschitz
continuous with respect to A and B, if there existsa
constant 7 > 0 such that

lH(Ax, Bx) = H(Ay, By)ll < rllx = yll,V x,y
€ X.

Definition 2.3. A single-valued mapping g: X - X
issaid to be

(i) k-strongly accretive, k € (0,1) if for any
x,y, € X thereexists, j(x —y) € F(x — y)
such that

(gx — gy, 5(x = y)) = kllx = yll*

(i) Lipschitz continuous, if for any x,y, € X there
exists aconstant A, > 0, such that

lgx — gyl < A4llx = ylI.

Definition 2.4. Let M:X x X —» 2¥ be a multi-
valued mapping, f,g:X — X be the single-valued
mappings and F: X — 2%" be a normalized duality
mapping, then

(i) M(f,.) is said to be a-strongly accretive with
respect to f, if there exists a constant @« > 0 such
that

u-vjx—y)zallx-yl>vx,yweXue
M(fx,w),v € M(fy,w),(x —y) € F(x —y);

(i) M(.,g) is said to be B-relaxed accretive with
respect to g, if there exists a constant g > 0 such
that

(u—-v,7x=y)=CEPlx—yl*vr,y,we
X, ueM(w,gx),veEMw,gy),jlx—y) €

Fx —y);

(iii) M(.,.) is said to be symmetric accretive with
respect to f and g, if M(f,.) is strongly accretive
with respect to f and M(., g) is relaxed accretive
with respect to g.

Definition 2.5. A multi-valued mapping T:X —
CB(X) is said to be D-Lipschitz continuous if for
any x,y € X there exists a constant A5, > 0 such
that

DT ), T < Ap,llx = yll.

Definition 26. Let A,B: X - X and H: X X X - X
be the single-valued mappings, then

(WH(A,.) is sad to be generdized
pseudocontractive with respect to A4, if there existsa
constant s > 0 such that

(H(Ax,u) — H(Ay,u),j(x —y)) < sllx —
ylIZvx,y,u€ X, j(x—y) € F(x —y);

(i) H(,B) is sad to be generdized
pseudocontractive with respect to B, if there exists
aconstant t > 0 such that

(H(u,Bx) — H(u,By),7(x — y)) < t|lx —
yIEVx,yu€e X, j(x—y) €F(x—y).

Note: If X =H, a red Hilbert space, then
Definition 2.6 reduces to Definition 2.4(4) of [9].
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Definition 2.7. Let A,B,f,g:X - X and H: X X
X — X be the single-valued mappings. Let M: X X
X — 2% be a multi-valued mapping. The mapping
M is said to be H(.,.)-co-accretive with respect to
A,/B,f and g, if H(A, B) is symmetric cocoercive
with respect to A and B, M(f,g) is symmetric
accretive with respect to f and g and (H(4, B) +
AM(f, 9))(X) = X, for every 1 > 0.

Theorem 2.1 [7]. Let X be area Banach space, let
AB,f,g:X—->Xand H:X XX - X bethe single-
valued mappings. Let M: X X X - 2¥ bean H(.,.)-
co-accretive mapping with respect to 4, B, f and g.
Let A be n-expansive and B be o-Lipschitz
continuous. Then the mapping (H (A,B) +

AM(f,g))_1 issingle-valued, for every 1 > 0.

Definition 2.8 [7]. Let AB,f,g:X - X and
H:X x X —» X be the single-valued mappings. Let
M:X x X - 2% be an H(.,.)-co-accretive mapping
with respect to A,B,f and g. The resolvent
operator Ry \: X — X is defined by

f&? )(x) = (H(4,B) + AM(f,9)) ' (x),Vx €

Theorem 22 [7]. Let AB,f,g:X—-X ad
H:XxX —> X be the singlevalued mappings.
Suppose M: X X X — 2% be an H(.,.)-co-accretive
mapping with respect to A,B,f and g with
constants u,y,a and B, respectively. Let A be n-
expansive and B be o-Lipschitz continuous such
that « > B,u >y and n > o. Then the resolvent

operator Ry :X - X is Lipschitz continuous

with constant L, that is,

Ry, = REG 0| < Lk =yl vxyex, (2)

1
wherel =1 ———————,
e Ala=B)+(un2-yas?)

3. Iterative algorithms and convergence result

Let X; and X, be two rea Banach spaces,
Ay By f1,9::X1 = Xy, Az By, f2,92: X2 = Xo,
Hy: Xy X Xy > Xy Hy: X, X X > Xy, S: Xy X Xy o
X, and T:X; XX, > X, be the single-valued
mappings, E: X, - 2%1, F: X, - 2%2 pe the multi-
valued mappings. Let M;: X, X X; - 2% and
M,: X, X X, - 2%z pe the H,(4,, B;)-co-accretive
and H,(A,, B;)-co-accretive mappings,
respectively. We consider the problem of finding

(e, y)EX; XX, u€E(x),vEF(), 2z €X, 2" €X,

such that

{S(x, v) + 4,7 (Z) =0, 4,>0 -
Twy) + A o2 @) =0, 2,>0
where
H1(,)
1111.1\/11(-,-)
_ Hy () RH1()
=I1—H [A1 (R/111,M1( )( )) ( /111M1( )( ))];
Ha ()
Sy

=1—-H, [Az (RZZI(WZ)( B¢ )> ( ;122’("’2)( )¢ )>]'

Hy(.) Ha(.)
Ry i) and Ry vy are the resolvent operators
associated with M; and M, respectively,

Hy (A (RS 1 (2))) = Hy (A (RS ))(2")

and

Hy (A, (R 1(2"))) = Hy (A (RY2S) ) (@").

The system (3) is called system of generalized
resolvent equations.

We mention the following system of variational
inclusions and we will show its equivalence with
system of generalized resolvent equations (3).

Find (x,y) € X; X X,,u € E(x),v € F(y), such
that

{0 € S(x, U) + Ml(fl(x)! gl(x))' (4)
0€T(wy)+ M(f2(¥), 9.0),

Lemma 3.1. (x,y) € X; X X,,u € E(x),v € F(y)
is a solution of system of variational inclusions (4)
if and only if (x, y, u, v) satisfies

x = R [Hy (43 (), By (1) = 1,5, v)], 4, >0,
y =R H (A2, B2 () = 2,T(w,)], A2 > 0.

Proof: The proof of Lemma 3.1 follows directly
from the definition of resolvent operators

Ry ad Rz .

Proposition 3.1. The system of variational
inclusions (4) has a solution (x,y,u,v) with
(x,y) EX; XxX,,u€ E(x) and v € F(y), if and
only if system of generalized resolvent equations
(3) has a solution (z’,z",x,y,u,v) with (x,y) €
X, XX, u€E(x),vEF(y), z' € X1,z € X,,
where

x =R (@), )

y=R2) (@), (6)
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and
z' = [Hy (A, (), By () = 4,5 (x, v)],
z" = [Hz(Az(y)'Bz(Y)) — ,T(u, y)]

Proof: Let (x,y,u,v) be a solution of system of
variationa inclusions (4), then by Lemma (3.1) it
satisfies the following equations:

x =R THy (4, (2), B, (1) = 4,5, v)], 44 >0,

y = Ry [Hy (4,0, B,(3)) = ,T(wy)], Az > 0.

Let z' = [Hl(Al(x),Bl(x)) —1,S(x, v)] and

z" = [Hy(A;(»), B,()) — 2, T(w,y)], then we
have

_ RH1()
x =Ry ) (@)

y = R ),
and
2= Hy Ay (R @), By (R ()] =4S @),
2" = Hy [4 (R4, 2). B2 (RiZ ()] = AT @),
it follows that
1= iy (4 RGO B REGO))] @) = ~Asv),
and
[1 = 1, (A(RZ5O) Ba(REZS) ()] (@) = =2,T ),

that is,

S(e,v) + 47U (@) =0,

T(wy) + A 2 @) = 0.

Thus (z',z",x,y,u,v) is asolution of system of
generalized resolvent equations (3).

Conversdly, let (z',z",x,y,u,v) be a solution of
system of generalized resolvent equations (3), then

1,SCv) = —J;100 (2", @
AT y) = —J325) (@"). (8)
Now

1,S(xv) = [ (")
|- (Al( Ryt n () Br (R4 G )))] )
= Hy [4, (lez(w)( )& )) By (Ritiit ) @))] -

It follows that
= i (R ). By (R, )] - st
Ribin @)
= RIG [ (40 (REE @) B (R @)
—1S(x, v)]
e, x =R [Hy (4;(0), By () — 41S(x,v)].
Further,
LTwy) = ~J270 @)
~[1 -, (AZ (Rzin ) B2 (R 5 )))] =)
= Hy [2, (R/ifi};(.,.)(z")) By (R, @) =2
It follows that
z" = H, [AZ (R)L;)(u)( )(Z”))'BZ( ;31(»1)( )(Z” )] LTwWy),
Ry @)
= R 1o (40 (RS, ). B2 (RE,2))
- AZT(u' J’)]
ey =R [Hy(4,(), B,(3)) — ,T(w,)].

Thus, we have
x =Ry [Hy (A (), B (0)) = 1,5 (x, v)],

y= R)Zzz(wz)( )[HZ(AZ(y)’Bz(y)) = 2,Tw,y)].

Then by Lemma 3.1, (x,y,u,v) is a solution of
system of variational inclusions (4).

Algorithm 3.1. For the given (%0, ¥0) € X; X
Xy ug € E(xg),vEF(yy),2'g €EX,andz""y €X,,

compute the sequences {z,,}, {z,,}, {x.}, {y.}, {u,}
and {v, } by the following iterative schemes:

= R @), ©
Y = REZ) (), (10)
Uy € E): lltnss = tnll < D(EGensn), (), (1)
Un € F): 1Vns1 = Unll S DFWns1), FOR)),  (12)
Zhr = Hy (A (), By () = 1S v), (13)
Zivs = Hy(Aa (), By ) — 2T (), (14)

where n=0,1,2,... and 4; > 0,4, >0 are two

constants.
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The system of generalized resolvent equations (3)
can also be written as

z' = Hy (4, (), By () = SCGo,v) + (I — 43 (@),
2" = Hy(4;00), B, () = T(w,y) + (1 = %7200, ().

We use the above fixed point formulation to
suggest the following iterative algorithm.

Algorithm 3.2. For the given (xg,¥,) € X; X
Xy, uy € E(xy),vEF(yy),2'o €X, and 2", € X,,
compute the sequences {z,}, {zy}, {xn}, {yn}, {un}
and {v, } by the following iterative schemes:

Hq(.,. ’
Xn = ,111,1(\41)(,,_)(211):

o)
Yn = Ry a0 (Zn)s

Up € E(xp): [uns1 — Unll < D(E (i), E(xp)),
Vp € F):i llvpsr — vl < D(F(yn+1):F(yn))'

Zrll+1 = Hl(Al(xn)' Bl(xn)) - S(Xn, vn) + (1 -
AL @,

Zys1 = H, (Az (), B2 (yn)) —TUn,yn) + U —
/12_1)]}1:122‘;.2)(,“) (z").

We now prove the following existence and
convergence result for the system of generalized
resolvent equations (3).

Theorem 3.1. Let X; and X, be two rea Banach
spaces. Let E: X; - CB(X;), F:X, - CB(X,) be
the D-Lipschitz continuous mappings with
constants Ap, and Ap,, respectively. Let Hy: X; X
X, > X, Hy: X, xX, > X, be the single-valued
mappings such that H; is r;-mixed Lipschitz
continuous with respect to A; and By, s;-
generalized pseudocontractive with respect to A,
and t,-generalized pseudocontractive with respect
to B, and H, is r,-mixed Lipschitz continuous with
respect to A, and B,, s,-generdized
pseudocontractive  with respect to 4, and t,-
generalized pseudocontractive with respect to B,.
Let S:X; XX, = X;, T: X; X X, = X, be Lipschitz
continuous in the first and second arguments with
constants Ag, Ag, Ay, and Ar, respectively. Let
M;: X, xX; - 2% and M,:X, xX, > 2% be
H, (A4, B,)-co-accretive  and H,(A,, By)-co-
accretive mappings such that resolvent operators
associated with M; and M, are Lipschitz continuous
with constants L, and L, respectively,

where

1
- A1(a=B)+pni-v107)’

1

L =: .
1 M (az=B)+(Uam3-v,03)

Ly

If there exist constants A; > 0 and A, > 0, such
that

{0<L1(K1+\/9_1+\/9_3)<1
0<Ly(Ky ++/0,+46,) <1

where

K1 _ 14+2(s1+t1)+31¢ and K2 _ 1+2(sz+t2)+3r2.
1-71 1-1

Then there exist (x,y) € X; X X,,z' € X;,z" €
X, u € E(x) and v € F(y) satisfy the system of
resolvent equations (3) and the iterative sequences
{zn}, {z0'}, {xn}, {7}, {un} and {v,} generated by
Algorithm 3.1 converge strongly to z',z",x,y,u
and v, respectively.

(15)

Proof: From Algorithm 3.1, we have

|zn41 — zpll = ||H1(A1(xn)»B1(xn))
- Als(xn: Un)
— [H1 (A1 (Xp-1), B1 (%n-1))
- Als(xn—lﬂvn—l)]”
< ”xn —Xp-1t+ [H1(A1(xn); Bl(xn))
— Hy (A1 (xn-1), B1 (%n-1))] ”

Hllxn = Xn—1 + 2.(SCn, V1) — SCtn_1, Vr )|l (16)

By Proposition 2.1, using the mixed Lipschitz
continuity and generalized pseudoconractivity of
H;, wehave

”xn —Xp-1t+ [HI(Al(xn)’Bi(xn))
= Hy (A4 (1), By D

< ”xn - xn—lllz + 2<[H1(A1(xn)' Bl(xn)) -
Hy (A1 (xn-1), By (n-1))],
(G = Xpy + [H1(41 (%), By () —
Hy (A1 (Xn-1), B1(Xn-1))]))
< lxy = xpoqll? + 2([H1(A1(xn), Bl(xn)) -
Hy (A1 (xp-1), B (xn-1))], 7(xn — Xp—1))
< ”xn - xn—lllz + 2<[H1(A1(xn)' Bl(xn)) -
Hy (A1 (Xn-1), B1(Xn-1))], (X0 — Xp—1))
+2([H1(A1(xn)fBl(xn)) -
Hl(Al(xn—l)r By (xn—l))]'f(xn —Xp-1t
[Hl (Al (xn)t Bl (xn))
—H; (A1 (p—1), B1 )] — 7 (xn — Xn—1))
S ”xn - xn—1”2 + 2<[H1(A1(xn)' Bl(xn)) -
Hy (A1 (Xn-1), B1(Xn-1))], (X0 — Xp-1))
+2[||H1(A1(xn)’31(xn)) -
Hy (A1 (Xn-1), B1(xXn-1))l

X {”xn - xn—l + Hl(Al(xn): Bl(xn)) -
Hy (A1 (xn-1), B1(xn—1))” + lx, — xn—l”}]

< ”xn - xn—lllz + 2<[H1(A1(xn)' Bl(xn)) -
Hy (A1 (%n—1), By (xn-1))], 7 (X — Xn-1))
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+2[r1”xn - xn—l” X {”xn —Xn-1 +
H, (Al (%), B4 (xn)) - H1(A1(xn—1)' Bl(xn—l)) ”
+llxcp = xn-1l13]
S ”xn - xn—1”2 + 2([H1(A1(Xn), Bl(xn))
- Hl (Al(xn—l): Bl (xn—l))]: f(xn
- xn—l))
+‘I”1(||Xn - xn—1”2 + ”xn — Xp-1 +
H, (Al (xn), By (xn)) - HI(AI(xn—I)' Bl(xn—l)) ”2)
+271 |2 — x4 I
<l = xpoa 12 + 205y + t)lx, —
Xn-1ll? + 31 llx, — x4 112
+T1||xn — Xp_1 + H; (A1 (%), By (xn))

— Hy (A3 Gnr), By Gon )|

which implies that

a- rl)”xn —Xp-1t+ H1(A1(xn), B1(xn))

2
- H1(A1(xn—1), B1(xn—1))”
< [1+42(sg +t4) + 3nr]llx, — Xn—1 %

Thus, we have

”xn —Xp-1t H1(A1(xn)' Bl(xn)) -
Hl(Al(xn—l)' B1(xn—1))” < Killxp — xpqll, (17)

1+2(s1+t1)+3
where K; = /—(S; rl) a,
-

Since S is Lipschitz continuous in both the
arguments and F is D-Lipschitz continuous, we
have

”S(Xn, vn) - S(xn—lt vn—l) ”
< ”S(xn' vn) - S(xn—lt vn)”
+ 1S Cen—1, ) — SGepog, v
< Asyllxn = xnall + A5, llvn — vn4ll
< s, l1xn = xn—all + A5, D(F (xn), F (Yn-1))
=< /131"xn - xn—l” + /152/1@1?“3’11 - yn—l”- (18)

Using (18) and Proposition 2.1, it follows that

1, = Xn—1 + A1 (S Cxn, V) — S (X1, Vn—l))llz
< llxp — x4 |12
+2241(S (X, v3) — S(Xn-1, V1), 4 (X — Xp—q
+ /11 (S(xn' vn)
- S(xn—lt vn—l))))
< ”xn - xn—lllz + 2/11[”S(xn' Un) -
S(xn—lt vn—l)”
X ”xn —Xp-1t Al(s(xn' Un) -

S(xXp_1, Vn_
ool o e + 224 (s, Il —
Xn-1ll + A5, Ap 1Y — Y1l
X ”xn —Xp-1t Al(s(xn’ Un) -
S(xn—lt vn—l))”
= “xn - xn—lllz + Allsl(”xn -

xn—1”2 + ”xn —Xp—1 t Al(s(xn! Un)

=S G-, VD)) 2125, A (130 = Yr-a 2

+”xn — Xp-1 + Al(s(xn' Un) -
S(xn—l'vn—l))llz
= llxn = Xn—gl1? + 2145, llxn —
Xn—1 I + /11/152)%,:“}’11 = Yn-all?
+ (M, + A ds, Ap )Xy — xp—g +
/11 (S(xnt vn) - S(xn—lt vn—l))llzy

[1— 21 (s, + As,Ap )]l — Xy +

/11 (S(xn! Un) - S(xn—lx vn—l))llz
< (X + AAs)DNxn = xn1l1? + Aids, Ap,llyn —

Yn-1ll?

It follows that
”xn —Xp-1t /11(5()(", Un)l_ a(ﬁn—l' Un—l))llz
+
< ( 14s,) I,
1-24,(As, + 25,29,)
Ao - xn—lllz
1752'DF 2
1_11(151_‘_152/11)1:) ”yn—yn—lll

= 04llx, — xn—1”2 + 92||Yn—Yn—1||2
< O04llx, — xn—1”2 + 92||3’n—3’n—1||2

+2\/ 9192”xn - xn—l”llyn—yn—llly

”xn —Xp-1t+ /11(S(Xn, Vn) - S(xn—1: vn—l))” <

VOillxn — Xl + 02 11yn — yrall, (19)
where
_ (1+)»1);51) AIASZADF
91 2

 1-24(As, +25,2p;,) - 1-21(As, +25,Ap;,)

Using (17) and (19), (16) becomes

Izp1 — zhll < (Ky + 0D Ixn — xnall +
VO = ynall. (20)

Again, from Algorithm 3.1, we have

lzye1 — 20 Il = ||H2(A2(yn):BZ(yn))
- AZT(unt yn)
— [H2(A2(¥n-1), B2(¥n-1))
- AZT(un—lﬂ yn—l)]”

< ”}’n —Yn-1t [Hz(Az(}’n); Bz()’n)) -
Hy(A;(Vn-1), Bz()’n—l))]”

+"yn —Vn-1 + AZ(T(un' Yn) -
T(up—1, Y-l (21)

Using the same argument as for (17), we have

”)’n = Yn-1tH; (Az (yn)'BZ(yn)) -
H, (Az ¥n-1), B2 ()’n—1))” < Kllyn — }’n—1||21 (22)

1+2(sp+tz)+3
where K, = /—(Si :) 2,
-2

Since T is Lipschitz continuous in both the
arguments, E is D-Lipschitz continuous, we have
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”T(unt yn) - T(un—l' yn—l)”
S T @y yn) = T (Un—1, )l
+ 1T (-1, Yn)
- T(un—l' yn—l)“
< /1T1”un - un—l” + ATZ “}’n - yn—l”
< A, D(E(xn), E Ccpma )l — tnoll +
< A Apgllxn — xp-all +
Az, llyn = yn-all- (23)

Using (23) and Proposition 2.1, we have

"yn —Yn-1t /12 (T(unt yn) - T(un—lf yn—l))llz
< llyn = Yn-all®
+2/12(T(un' yn) - T(un—lt yn—l)t 7(yn —Yn-1
+ 22 (T (un, yn)
— T(Un-1,Yn-1))))
< "yn - yn—lllz + 2/12[||T(uw yn)
- T(un—l' yn—l)”
X “yn —Yn-1t AZ(T(un: yn) - T(un—lfyn—l))”]
S My = Ynall? + 22, (A, Apgllxn, —
xn—l” + /1T2 ”yn - yn—lll)
X “J/n ~Yn1t AZ(T(un' yn) -
T(un—lf yn—l))”
S My = Ynall? + /12/1T1/12)E(”xn -
xn—1”2 + ”3’n —Yn-1

F 2 (T Uy ¥i) = T W1, Y1) I?)
+ 222, (lyn = yn-all* +
”yn —Yn-1t Az (T(un’ Yn) - T(un—lr yn—l))llz)
< My = Yn-1ll? + 2227, A9, (1%, —
Xn_qll® + AxAr, lyn = Yn-1ll?
+A2(Ar, Ap, + Ax )Y — Yn-1 +
AZ(T(un' yn) - T(un—lw yn—l))llzu

[1—=2A(AAp, + Ap )V — Yno1 + A2 (T (U, Y)
- T(un—l' yn—l))llz
< QA Apllxy — Xnoqll? + 14 A A7, |y —

Yn-1ll%.

It follows that
1y = Y1 + A2 (T (i, ) = T(Up—g, Y- ))II? <
A2Ar, Apg 2
[t — Xn_1ll

1-21; ()vr1 )‘DE"')-TZ)

1+/12/1T2
1-1;, (ATlaDE +ﬂ.7'2)

1y = Yn-1ll?
= 05|x, — xn—lllz + O4llyn — yn—lllz
< 93”xn - xn—lllz + 64”yn - Yn—lllz
+24/ 05041, — 21 Y-yl

”yn —Yn-1 + AZ(T(unt Yn) - T(un—lﬂ yn—l))” <
VOsllxn = Xnoall +/0ully — Yuall, (24)

where
P L
3 T 1-2,(Ar, Apg+iTy)’ 1-A2(Ar, Apg+aT,)"

Using (22) and (24), (21) becomes
Izner — 21| < Osllxy — Xy ll + (K2 +
\/9_4)”}’11 - yn—l”- (25)
Adding (20) and (25), we have

”Z;l+1 Zn” + ”Zn+1 - Zn ”

< (Kl + \/_1 + \/6_3)“xn

- xn—l"
+(Ky + 02 + 0,y — Ynall. (26)

Also, from (9) and (10), we have

Hy( Hy
[l = x4l = ||R,111_1(V11)(_’_)(Zn) Rlll(\/ll) )(Zn 1)” <
Lyillzy — zp4l (27)
and
lyn = ynosll = ||REZG @) = RIZGD @] <
Lallzg =z (29)

Using (27) and (28), (26) becomes

”Zn+1 - Zn” + ”Zn+1 - Zn ”

< Ll(Kl + \/9_1 + \/9_3)”21'1

_Zn 1”
+Ly(Ky + /0, +04) Iz — 2l
< {(llz = zp—ll + Nz, — 21 11) (29)

where (= max{Ll(K1 + \/0_1 + \/9_3), LZ(KZ +
Bz +3,)

By (15), we know that 0<{ <1 and so (29)
implies that {z;,} and {z,} are both Cauchy
sequences. Thus, there exist z'eX; and z"e€X, such
that z, —» z’' and z;; - z"" asn — oo. From (27) and
(28), it follows that {x,} and {y,} are also Cauchy
sequences in X; and X,, respectively, that is, there
exist xeX;, yeX, such that x, - x and y,, > y as
n — oo. Also, from (11) and (12) we have

ltunsr — unll < D(E(xn+1):E(xn)) =
ADE”xn+1 - xn”y

lvnt1 = vpll < DF Y1), FOR)) <
A‘Dp”YTl+1 _Ynllv

and hence, {u,} and {v,} are adso Cauchy
sequences such that u, »u and v, - v,
respectively. Now we will show that ueE(x) and
veF (y). Sinceu,eE (x,) and

d(un, E(x))
< max{d(uy, E(x)), Sup (E(xn) w1)}

w1 €E (x)
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<max{ Sup (w,E(x)), Sup (E(xn) wy)} inclusions dealing with (h,n)-proximal mapping. J.
w2€E (xn) w1 €E(x) Korean Math. Soc., 45(5), 1323-1339.

= D(E(xn), E(x)),

we have

d(u,E(x)) < lu—uyll + d(un,E(x))
< llu — upll + D(E(xp), E (X))
< llu — upll + Ap.llx, — x|l = 0,as n - oo,

which implies that d(u,E(x)) =0. Since
E(x)eCB(X), it follows that ueE (x). Similarly, we
can show that wveF(y). By continuity of
Hy, Hy, Ay, Ay, By By My My E,F,S,T, R R
and Algorithm 3.1, we have

z' = Hl(Al(x) Bl(x)) — /115(x V)

=H1<A1( h M()(Z)) ( A C, )(Z)))
- ,5(x,v),

" = Hy(A;(»), B,(»)) — ,T(w,y)

) Hz(.) "
—H, <A2 (RIS @) By (RS, G2 )))
- AZT(uI y)
By Proposition (3.1) the required result follows.

References

[1] Siddiqi, A. H. & Ansari, Q. H. (1990). An agorithm
for a class of quasivariational inequalities, J. Math.
Anal. Appl., 145, 413-418.

[2] Hassouni, A. & Moudafi, A. (1994). A perturbed
algorithm for variational inclusions. J. Math. Anal.
Appl., 185, 706-712.

[3] Noor, M. A. & Noor, K. I. (1997). Multi-valued
variational inequalities and resolvent equations. Math.
Comput. Model., 26(7), 109-121.

[4 Ahmad, R. & Yao, J C. (2009). System of
generalized resolvent equations with corresponding
system of variational inclusions. J. Global Optim., 44,
297-309.

[5] Zou, Y. Z. & Huang, N. J. (2008). H(.,.)-accretive
operator with an application for solving variational
inclusions in Banach spaces. Appl. Math. Compui.,
204, 809-816.

[6] Ahmad, R., Dilshad, M., Wong, M. M. & Yao, J. C.
(2011). H(.,.)-cocoercive operator and an application
for solving generalized variationa inclusions, Abstr.
Appl. Anal., Article ID 635030, 12 pages, doi:
10.1155/2011/261534.

[7] Ahmad, R., Lee, B. S. & Akram, M. H(.,.)-co-
accretive mapping with an application for solving a
system of variational inclusions. To appear in Thai J.
Math.

[8] Petryshyn, W. V. (1970). A characterization of strictly
convexity of Banach spaces and other uses of duality
mappings. J. Funct. Anal., 6, 282-291.

[9] Liu, Z., Chen Z., Shim, S. H. & Kang, S. M. (2008).
On generalized nonlinear quasi variational-like



