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Abstract 

This paper presents approximate analytical solutions for nonlinear oscillators using the multi-step homotopy 
analysis method (MSHAM). The proposed scheme is only a simple modification of the homotopy analysis 
method, in which it is treated as an algorithm in a sequence of small intervals (i.e. time step) for finding accurate 
approximate solutions to the corresponding problems. Several illustrative examples are given to demonstrate the 
effectiveness of the present method. Figurative comparisons between the MSHAM and the classical fourth-order 
Runge-Kutta method (RK4) reveal that this modified method is very effective and convenient. 
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1. Introduction 

Nonlinear oscillatory systems are of crucial 
importance in all areas of physics and engineering, 
as well as in other disciplines. It is very difficult to 
solve nonlinear problems and, in general, it is often 
more difficult to get an analytic approximation than 
a numerical one to a given nonlinear problem. 
There have been many analytical and numerical 
methods to solve the problems of nonlinear 
oscillators, such as variational iteration method [1-
3], homotopy perturbation method [4-7], Adomian 
decomposition method [8-9], differential transform 
method [10-11], harmonic balance based methods 
[12-13] and the multiple scales method [14] are 
extensively used to obtain approximate solutions of 
non-linear oscillatory equations. But these familiar 
methods are rarely used to solve the equations 
which contain nonlinear terms. The basic reason is 
that they become too complex and difficult when 
applied to nonlinear equations. Recently, Momani 
et al [15] proposed an analytic method, namely 
modified homotopy perturbation method (MHPM). 
The approximate solution of the MHPM displays 
the periodic behavior which is characteristic of the 
oscillatory equations. In this paper, we developed a 
symbolic algorithm to find the solution of linear 
and nonlinear oscillators by the multi-step 
homotopy analysis method (MSHAM). The new 
algorithm is only a simple modification of the 
homotopy analysis method [16], in which it is 
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treated as an algorithm in a sequence of small 
intervals (i.e. time step) for finding accurate 
approximate solutions to the linear and non-linear 
oscillatory equations. It is found that the 
corresponding numerical solutions obtained by 
using HAM are valid only for a short time. While 
the ones obtained by using MSHAM are more valid 
and accurate over a longer time, and are in strong 
agreement with the RK4-5 numerical solutions. The 
structure of this paper is as follows. In section 2 we 
describe the MSHAM. In Section 3 we present five 
examples to show the efficiency and simplicity of 
the method. Finally, the conclusions are given in 
Section 4. 

2. MHAM Algorithm 

The HAM has been extended by many authors to 
solve linear and nonlinear problems in terms of 
convergent series with easily computable 
components, however it does have some 
drawbacks: the series solution always converges in 
a very small region and it has slow convergent rate 
or is completely divergent in the wider region [17-
20]. In this section, we present the basic ideas of the 
multi-step HAM that have been developed in [21]. 
To show the basic idea, let us consider the 
following initial value problem, 
 

,0,))(),(,()( '''  ttytytFty                (1) 
 
subject to the initial conditions  
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Where the function ))(),(,( ' tytytF  is an 
arbitrary linear or nonlinear function of its 

arguments. With xy ' , Eq. (1) is transformed into 
the system of the first-order differential equations 
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Let ],0[ T  be the interval over which we want to find 

the solution of the initial value problem (2). The multi-
step approach introduces a new idea for constructing the 
approximate solution. Assume that the interval 

],0[ TI   is divided into n -subintervals of equal length 
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Now, we can construct the so-called zeroth-order 
deformation equations of the system (2) by 
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where ]1,0[q  is an embedding parameter, L  is 

an auxiliary linear operator satisfying 0)0( L , 

0  is an auxiliary parameter and 

,,...,2,1,2,1),,(, njiqtji   is an unknown 

function. Obviously when ,0q  we have 
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and when 1q , we have 
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Expanding ,,...,2,1,2,1),,(, njiqtji   in 

Taylor series with respect to ,q  one has 
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where 
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If the auxiliary parameter ,  and the initial 

guesses )( tx j and )( ty j  are so properly 

chosen, then the series (5) converges at ,1q  and 

one has 
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Define the vectors 
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Differentiate system (4) with respect to the 
embedding parameter ,q  then setting 0q  and 

dividing them by m !, finally using (6), we have 

the so-called mth -order deformation equations 
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subject to the initial conditions 
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And 
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Select the auxiliary linear operator ,
d

L
dt

 

then the mth -order deformation equations (8) can 
be written in the form 
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The solutions of system (2) in each subinterval 

,,...,2,1],,[ 1 njtt jj   have the form  
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and the solution of system (2) for ],0[ T  is given 

by 
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Finally, the solution of the initial value problem 

(1) is .)()(
1




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j
jr tyty    

3. Numerical experiments 

To demonstrate the effectiveness of the proposed 
algorithm as an approximate tool for solving linear 
and nonlinear oscillatory systems, we apply the 
proposed algorithm, the multi-step HAM, to five 
oscillator equations. 
 
Example 3.1 Consider the following linear 
equation  
 

,0,1)(5.0)(''  ttyty
                 (14) 

 
subject to the initial conditions 
 

.0)0(,0)0( '  yy  
 

Let xy ' , then Eq. (14) is transformed into the 

following system 
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In this example, we apply the proposed algorithm 
on the interval ]100,0[ . We choose to divide the 

interval ]100,0[  to subintervals with time step 

.1.0 t  So we start with initial approximation 
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Where *t is the initial value for each subinterval. 

In view of the algorithm presented in the previous 
section, we have the mth -order deformation 
equation (11), where  
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Now, according to the multi-step HAM, the series 
solution for system (15) is given by, 
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and the multi-step series solution of the problem 

(14) in each subinterval ,,...,2,1],,[ 1 njtt jj   

has the form 
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Figure 1 shows the displacement and phase 
diagram of the MSHAM when 1  and the 

exact solution ( ))
2

cos(1(2)(
t

ty  ) of the 

oscillatory equation (14). It can be seen that the 
results from the MSHAM match the results of the 
exact solution very well; therefore, the proposed 
method is very efficient and an accurate method 
that can be used to provide analytical solutions for 
linear systems of differential equations. 
 

 

 
 
Fig. 1. The displacement and phase plane for Example 
3.1: MSHAM solution (Solid line), the exact solution 
(Dotted line) 
 
Example 3.2. Consider the following nonlinear 
equation  
 

,0,0)()(2)( 2''  ttytyty
      (20) 

 
subject to the initial conditions  
 

.0)0(,1.0)0( '  yy    
 

Momani et al. [15] derived a numerical solution 
for the above equation using the modified 
homotopy perturbation method. Let xy ' , then 

Eq. (20) is transformed into the following system  
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In this example, the interval ]100,0[  is divided 

to subintervals with time step .1.0 t  So we 

start with initial approximation 
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In view of the algorithm presented in the previous 
section, we have the mth -order deformation 
equation (11), where  
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Now, according to the multi-step HAM, the series 
solution for system (21) is given by, 
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and the multi-step series solution of the problem 
(20) in each subinterval ,,...,2,1],,[ 1 njtt jj  has 

the form 
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Figure 2 shows the displacement and phase 
diagram of the MSHAM when 1  and the 
fourth-order Runge-Kutta method of the nonlinear 
oscillatory equation (20). The results from the 
MSHAM match the results of the Runge-Kutta 
method is a very well; therefore, the proposed 
method is very efficient and accurate method that 
can be used to provide analytical solutions for 
nonlinear systems of differential equations. Also, 
the results of our computations are in excellent 
agreement with the results obtained by the 
numerical solution of Momani et al. [12] Using 
modified homotopy perturbation method. 
 

 

 
 
Fig. 2. The displacement and phase plane for Example 
3.2: MSHAM solution (Solid line), Runge-Kutta method 
solution (Dotted line) 
 
Example 3.3. Consider the following nonlinear 
Van der Pol equation  
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subject to the initial conditions 
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The solution of this equation is expected to 
oscillate with decreasing amplitude to zero. 
Momani et al. [15] derived a numerical solution for 
the above equation using the modified homotopy 
perturbation method. 
Let xy ' , then Eq. (26) is transformed into the 

following system  
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Divide the interval ]100,0[  to subintervals with 

time step .1.0 t  Then start with initial 

approximation 
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In view of the algorithm presented in the previous 
section, we have the mth -order deformation 
equation (11), where  
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Now, according to the multi-step HAM, the series 
solution for the Van der Pol equation (26) in each 

subinterval ,,...,2,1],,[ 1 njtt jj  has the form 
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Figure 3 shows the displacement and phase 
diagram of the MSHAM when 1  and the 
fourth-order Runge-Kutta method of the nonlinear 
Van der Pol equation (26). Also, the results of our 
computations are in excellent agreement with the 
results obtained by the numerical solution of 
Momani et al. [15] Using modified homotopy 
perturbation method. 
 

 
 
 
 

    
 
Fig. 3. The displacement and phase plane for Example 3. 
3: MSHAM solution (Solid line), Runge-Kutta method 
solution (Dotted line) 
 
Example 3.4. Consider the following nonlinear 
equation  
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Let xy ' , then Eq. (31) is transformed into the 

following system  
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Also, divide the interval ]100,0[  to subintervals 

with time step .1.0 t  We start with initial 

approximation 
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In view of the algorithm presented in the previous 
section, we have the mth -order deformation 
equation (11), where  
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Now, according to the multi-step HAM, the series 
solution for the nonliear equation (31) in each 

subinterval 
,,...,2,1],,[ 1 njtt jj  has the form 
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Figure 4 shows the comparison between the 
MSHAM solution when 1  and the numerical 
integration results obtained by RK4 method for the 
displacement and phase diagram of nonlinear 
equation (31).  
 

    

 
 
Fig. 4. The displacement and phase plane for Example 
3.4: MSHAM solution (Solid line), Runge-Kutta method 
solution (Dotted line) 

 
Example 3.5. Consider the oscillatory equation 
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subject to the initial conditions 
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The simple idea is to divide the interval ]100,0[  
to subintervals with time step .1.0 t  So we 

start with initial approximation 
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In view of the algorithm presented in the previous 
section, we have the mth -order deformation 
equation (11), where  
 

.,...2,1

),()())((

),()()(

)()()(

)())((

1,
'

1,1,
2
,

0

1

0
1,

0

1

0

'
1,

'
1,1,

1
,

nj

txtytyR

tytyty

tytytx

txtxR

mjmjmjmj

ni

i

n
n

m

i
imj

ni

i

n
n

m

i
imj

mjmjmj







































  (40) 
 

Now, according to the multi-step HAM, the series 
solution for the nonliear equation (36) in each 

subinterval ,,...,2,1],,[ 1 njtt jj  has the form 
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Figure 5 shows the comparison between the 
MSHAM solution when 1  and the numerical 
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integration results obtained by RK4 method for the 
displacement and phase diagram of nonlinear 
equation (36). From Fig. 5, it is obvious that the 
solution obtained by the present method is nearly 
identical with that given by RK4 method. 
 

 
 
Fig. 5. The displacement and phase plane for Example 
3.5: MSHAM solution (Solid line), Runge-Kutta method 
solution (Dotted line) 

4. Conclusions 

In this work, we proposed an efficient modification 
of the HAM which introduces an efficient tool for 
solving linear and nonlinear oscillatory equations. 
Comparisons of the results obtained by using the 
MSHAM with that obtained by the fourth-order 
Runge-Kutta method reveal that the approximate 
solutions obtained by HAM are only valid for a 
small time, while the ones obtained by MSHAM 
are highly accurate and valid for a long time. 
Finally, we can see that the method considered here 
is very simple in its principle and we think that the 
method has great potential and can be applied to 
other strongly nonlinear oscillators. 
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