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Abstract

This paper presents approximate analytical solutions for nonlinear oscillators using the multi-step homotopy
analysis method (MSHAM). The proposed scheme is only a simple modification of the homotopy anaysis
method, in which it is treated as an algorithm in a sequence of small intervals (i.e. time step) for finding accurate
approximate solutions to the corresponding problems. Severad illustrative examples are given to demonstrate the
effectiveness of the present method. Figurative comparisons between the MSHAM and the classical fourth-order
Runge-Kutta method (RK4) reveal that this modified method is very effective and convenient.
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1. Introduction

Nonlinear oscillatory systems are of crucia
importance in all areas of physics and engineering,
aswell as in other disciplines. It is very difficult to
solve nonlinear problems and, in general, it is often
more difficult to get an analytic approximation than
a numerical one to a given nonlinear problem.
There have been many analytica and numerical
methods to solve the problems of nonlinear
oscillators, such as variationa iteration method [1-
3], homotopy perturbation method [4-7], Adomian
decomposition method [8-9], differential transform
method [10-11], harmonic balance based methods
[12-13] and the multiple scales method [14] are
extensively used to obtain approximate solutions of
non-linear oscillatory equations. But these familiar
methods are rarely used to solve the equations
which contain nonlinear terms. The basic reason is
that they become too complex and difficult when
applied to nonlinear equations. Recently, Momani
et a [15] proposed an anaytic method, namely
modified homotopy perturbation method (MHPM).
The approximate solution of the MHPM displays
the periodic behavior which is characteristic of the
oscillatory equations. In this paper, we developed a
symbolic agorithm to find the solution of linear
and nonlinear oscillators by the multi-step
homotopy anaysis method (MSHAM). The new
agorithm is only a simple modification of the
homotopy analysis method [16], in whichitis
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treated as an agorithm in a sequence of smal
intervals (i.e. time step) for finding accurate
approximate solutions to the linear and non-linear
oscillatory equations. It is found that the
corresponding numerical solutions obtained by
using HAM are valid only for a short time. While
the ones obtained by using MSHAM are more valid
and accurate over a longer time, and are in strong
agreement with the RK4-5 numerical solutions. The
structure of this paper is as follows. In section 2 we
describe the MSHAM. In Section 3 we present five
examples to show the efficiency and simplicity of
the method. Finally, the conclusions are given in
Section 4.

2. MHAM Algorithm

The HAM has been extended by many authors to
solve linear and nonlinear problems in terms of
convergent series with easily computable
components, however it does have some
drawbacks:. the series solution always converges in
avery small region and it has slow convergent rate
or is completely divergent in the wider region [17-
20]. In this section, we present the basic ideas of the
multi-step HAM that have been developed in [21].
To show the basic idea, let us consider the
following initial value problem,

y (t)=F(tyt),y (), t=0, (1)

subject to theinitial conditions
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y(0)=a, y(0)=b.

Where the function F(t y(®),y (1) is an
arbitrary linear or nonlinear function of its

arguments. With y= X, Eqg. (1) istransformed into
the system of the first-order differential equations

K_FEyOX0), xO=b

Y,

o y(0) =a,

t=>0. @

Let [0,T] be the interval over which we want to find

the solution of the initial value problem (2). The multi-
step approach introduces a new idea for constructing the
approximate solution. Assume that the interva
| =[0,T] isdivided into N -subintervals of equal length

At [t ), [t t), [t t) e [ty t ] With t=0, t =T, Let
t" be the initial value for each subinterval and let X (t)
and 'y, (t), j=212...,n be approximate solutions in
each subinterval [t ;,t;], j=12...,n with initial

guesses
Xl(t*):b, X; (t*):Xj—l(tj—l)’

yl(t*) =8, Y; (t*) = yj—l(tj—l);

j=23,...,n. 3)

Now, we can construct the so-called zeroth-order
deformation equations of the system (2) by

@-aLls, o) -x, ©)]-anly 4, €0
- F(t1¢1,j (t, Q)1¢2,j (t7 Q))]:
@=L, o) -y, @)= arl b, (.0

4,0 =120

where qe[0] is an embedding parameter, L is
an auxiliary linear operator satisfying L(0) =0,

h=0 is an auxiliay parameter and
$,ta),i=L2, j=12..,n, is an unknown

function. Obviously when g =0, we have

¢1,1(t10) =b, ¢1,j ('[,0) = Xj—l(tj—l)v
¢2,1(t'0) =a, ¢2,j (t,0) = yj—l(tj—l)’
j=23...,n,

and when g =1, we have

¢1,j (t11) =X (t),
¢2,j (t,l) = yJ' (t)v

Expanding g/ﬁ,’j(t,q), =12, j=12,...,n, in
Taylor series with respect to U one has

j=212,...,n.

o, (=X, () + 2%, O

b, (LO)=Y, (t*)+§ Y, mq",

] =12,...,n, )
where
1 0"¢,(t,0)
Xj,m(t)za a(;m ‘q:01
1 6m¢2,'(t’Q)
y],m(t)zﬁ a(;m ‘Q:O’
j=12,...,n. ©)

If the auxiliary parameter 7, and the initial
guesses X;(t") and y,;(t") ae so properly

chosen, then the series (5) converges at =1, and
one has

X, =%, )+ %, (1),

Y, 0=y, )+ >y, (D),

m=1

j=12,...,n, ™

Define the vectors
R =1%o (€)X 1 (),eees X, (D),
Vim=1Y,00), Y200 ¥, m(®)}

Differentiate system (4) with respect to the
embedding parameter , then setting =0 and
dividing them by m!, finaly using (6), we have
the so-called mth -order deformation equations
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LX; 1 (8) = 2 X s (D))
= BR (%, s (1),
LY, m® = 20 ¥, ma®)]
= BR (T, e (O),

(8)
subject to the initial conditions
X m(0)=Y,,(0)=0, j=12..,n, m=123..
where
1 — o 1 6rm1
Rl =X, s 0= (T

[F(t.¢,.(t,0). 8.t D) 0.
UG SR G B (3

And
{O, m<1,
Am=
1, m>1. (10)

d
Select the auxiliary linear operator L :d—,

then the mth -order deformation equations (8) can
be written in the form

Xj,m(t) = mej,mfl(t)

t
+1 R} (X ma(0))dr,
t:

j-1

yj,m(t) = Zmyj,m—l(t)

t
+h [RE () ma(0))dr,

tiy
j=12,...n. 1)

The solutions of system (2) in each subinterval
[ti—l'ti]’ ] =12....n, havetheform
X O=2% a0, Y;0O=2Y .0,
m=0 m=0

and the solution of system (2) for [0, T] is given
by

XO=Y 2%, YO=2 7 ¥,0),

e
Zr_o’

Finally, the solution of the initial value problem
DSy => 7 v, .
j=1

(13)
where

te[tj_l,tj),
teft,.t).

3. Numerical experiments

To demonstrate the effectiveness of the proposed
algorithm as an approximate tool for solving linear
and nonlinear oscillatory systems, we apply the
proposed algorithm, the multi-step HAM, to five
oscillator equations.

Example 3.1 Consider the following linear
equation

y (t)+0.5y(t) =1, t>0, 14
subject to theinitial conditions
y(0) =0, y(0)=0.

Let y'= X, then Eqg. (14) is transformed into the
following system

dx

— =1-0.5y(t), 0) =0,

o y() x(0)

dy

— = X(t), y(0) = 0.

dt (15)

In this example, we apply the proposed algorithm
on the interval [0,100] . We choose to divide the

interval [0,100] to subintervals with time step
At =0.1. Sowe start with initial approximation

X (") =0, X; (t)= X (tj) =by,

yl(t*) =0, Y; (t*) = yjfl(tjfl) =a,
j=23..,n (16)

Where t" isthe initial value for each subinterval.
In view of the algorithm presented in the previous

section, we have the mth-order deformation
equation (11), where
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R]l m (XJ ,m-1 (t)) = X‘j ,m-1 (t)
+0.5Y; 1 (D) = (= )
Rj2,m(y/j,m—1 (t)) = y]m—l(t) - Xj,m—l (t),

j=12,..n. (17)

Now, according to the multi-step HAM, the series
solution for system (15) isgiven by,

X, (t) =b, —A(h’ +3h+3)(1—a—21)(t—t*)

h? 3 R A
b, — A+t -t) 2+ ——1-D) -t ) +...,
| 2( +2)( ) +12( 2)( )"+
y;(t) =a, —b;a(h? +3n+3)(t-t")

2+ 3=t +b gty
+ (h+2)(1 2)(t t")"+b; 12(t t ) +..., (18)
and the multi-step series solution of the problem
(14) in each subinterval [tjfl,tj], j=12...n,
has the form

y;(t) =a; —b,a(h* +3n+3)(t-t")

+h2(h+§)( —i)(t—t*)2+b.h—3(t—t*)3+
2 2 h12 (19

Figure 1 shows the displacement and phase
diagram of the MSHAM when % =-1 and the

; t
exact solution 1) = 2(1— cos(— of the
(y(t) = 2(1- cog( \E)))
oscillatory equation (14). It can be seen that the
results from the MSHAM match the results of the
exact solution very well; therefore, the proposed
method is very efficient and an accurate method
that can be used to provide analytical solutions for
linear systems of differential equations.

1of
nsf

F|H onf

Fig. 1. The displacement and phase plane for Example
3.1: MSHAM solution (Solid line), the exact solution
(Dotted line)

Example 3.2. Consider the following nonlinear
equation

yO+2y®+y =0 t=0
subject to theinitial conditions

y(0)=0.1 y (0)=0.

Momani et al. [15] derived a numerical solution
for the above eguation using the modified

homotopy perturbation method. Let y'= X, then
Eq. (20) istransformed into the following system

dx

i =2y(t) - y“(v), x(0) =0,
Y _ 0)=0.1.
o X(t), y(0) -

In this example, the interval [0,100] is divided
to subintervals with time step At=0.1. So we
start with initial approximation

x(t)=0, X (1) = x4 () =b;,
% () =01 yi(t*)zyj—l(tj—l):aj,
j=23,...,n 2

In view of the algorithm presented in the previous
section, we have the Mith-order deformation
equation (11), where



425

1JST (2013) 37A3 (Special issue-Mathematics): 421-429

RJ'l,m(Y(ivaFl (t)) = X'j,m—l (t) + 2yj,m—1 (t)
D RTHCIEC)

Rjz,m(yj,m—l(t)) = ylj,m—l(t) _Xj,m—l(t)n

Now, according to the multi-step HAM, the series
solution for system (21) is given by,

X;(t)=b, +a,a(h* +3n+3)(a, +2) (t—t)
—b,h?(2h+3)(a, +D)(t-t°)?

h3 *
—?(aj (a?-3a, +2)+b7)(t-t")° +...,
y,(t)=a, —ba(h* +3n+3)(t-t")

—ajrﬂ(mg)(aj +2)(t-t)?

h3 #43
b @ DE-t) e (24)

and the multi-step series solution of the problem
(20) in each subinterval [t ,t ], j=12..,n, has

the form

y;(t)=a, —ba(n* +3n+3)(t—-t")

—a,h?(h +§)(aj 1)t -t")?

3
b @ -ty e,
3 (25)

Figure 2 shows the displacement and phase
diagram of the MSHAM when % =-1 and the
fourth-order Runge-Kutta method of the nonlinear
oscillatory equation (20). The results from the
MSHAM match the results of the Runge-Kutta
method is a very well; therefore, the proposed
method is very efficient and accurate method that
can be used to provide anaytical solutions for
nonlinear systems of differential equations. Also,
the results of our computations are in excellent
agreement with the results obtained by the
numerical solution of Momani et a. [12] Using
modified homotopy perturbation method.
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Fig. 2. The displacement and phase plane for Example

3.2: MSHAM solution (Solid line), Runge-Kutta method
solution (Dotted line)

Example 3.3. Consider the following nonlinear
Van der Pol equation

y (t)+y(t) +0.1y?(t)y (t) =0, t>0, (26)
subject to theinitial conditions

y(0)=1, y (0)=0.

The solution of this equation is expected to
oscillate with decreasing amplitude to zero.
Momani et a. [15] derived a numerical solution for
the above equation using the modified homotopy
perturbation method.

Let y'=X, then Eq. (26) is transformed into the

following system

% — _y®-01x()y2 (),  x(©0)=0,
Yo, y(0) =1

dt 27
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Divide the interval [0,100] to subintervals with i
time sep At=0.1. Then sart with iniid r
approximation
Xl(t*):O, X; (t*):Xj—l(tj—l):bﬂ ,:,_5-_
y,(t) =1, Yi (t*):yj—l(tj—l):aji -
j=23,...,N. i ]
J (29) ] ¥itl
In view of the algorithm presented in the previous I ]
section, we have the mth-order deformation
equation (11), where -5t
le,m()_{j,m—l(t)) = le,m—l(t) + yj,m—l(t) _ ]
m-1 i 10y e o
-1.0 0.3 0.0 0.5 10

+ Olz Xj,m—i—l(t)z yn (t)yi—n (t )’

Rjz,m(yj,m—l(t)) = ylj,rrkl(t) _Xj,m—l(t)u

j=12,..n. (29)

Now, according to the multi-step HAM, the series
solution for the Van der Pol equation (26) in each

subinterval [tj—l'ti]’ j=12...,n, hastheform

y;(t) =a, —b;a(h* +3n+3)(t -t")
ab;
10

—a-hz(h+§)( +1)(t-t*)? +E((b_ _ai)
J 2 30 10

+

201 6, - 2a-t) s
5 1 20 (30)

Figure 3 shows the displacement and phase
diagram of the MSHAM when % =-1 and the
fourth-order Runge-Kutta method of the nonlinear
Van der Pol equation (26). Also, the results of our
computations are in excellent agreement with the
results obtained by the numerical solution of
Momani et al. [15] Using modified homotopy
perturbation method.
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Fig. 3. The displacement and phase plane for Example 3.
3: MSHAM solution (Solid line), Runge-Kutta method
solution (Dotted line)

Example 3.4. Consider the following nonlinear
equation

y (t) + y(t) + 0.45y*(t) — y(t)y (t) = O,
t>0, a1

subject to theinitial conditions
y(0)=0.1, y (0)=0.

Let y'= X, then Eqg. (31) is transformed into the
following system
dx
4= Y0045 0 --XOY0), X0 =0

] (32)
Ei/ —x(t), (0)=01

Also, divide the interval [0,100] to subintervals

with time step At =0.1. We start with initial
approximation

Xl('[*)zo, Xj (t*):Xj_l(tj—l)sz
yl(t*)zo'l Yi (t*)zyj—l(tj—l)zaj’
j=23,...,n. (33)

In view of the algorithm presented in the previous
section, we have the mMth-order deformation
equation (11), where
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Rll m (5.(] »m-1 (t)) = X‘j,m—l(t) + yj,m—l (t)

m-1
+ 0-452 Yii Y mia()
i-0

B il Xj,i (t)yj,m—i—l(t)’

Rjz,m(yj,m—l(t)) = ijl(t) _Xj,m—l(t)u

j=12,..n. (34)
Now, according to the multi-step HAM, the series
solution for the nonliear equation (31) in each

[tj—l’tj]! j=12...n,

subinterval has the form

y; (t) =a, —b;a(h? +3n +3)(t -t")

3,9 .
—aht (h+ )(osay by + (-t

sl 2y, 3 ) "ﬁ _t*\3
+n (6(1 bj)(bj+aj)+20aj(bj+ 2))(t )% +..., (35)

Figure 4 shows the comparison between the
MSHAM solution when 7 = —1 and the numerical
integration results obtained by RK4 method for the

displacement and phase diagram of nonlinear
equation (31).
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Fig. 4. The displacement and phase plane for Example
3.4: MSHAM solution (Solid line), Runge-Kutta method
solution (Dotted line)

Example 3.5. Consider the oscillatory equation

vy YO _

Ly () (3
subject to theinitial conditions
y(0) = 0, y'(0)=0.3. (37)

By using the transformation y'= X, we get the
following systems of differential equations

X () +X () Y (1) + y*(t) =0, x(0)=0.3,
y (t) = X(t), y(0)=0.

(38)

The simple idea is to divide the interval [0,100]
to subintervals with time step At=0.1. So we
start with initial approximation
x(t)=03  x({")=x(t.)=b,

V() =0, yt)=y.(t;.) =4,
j=23..,n (39)
In view of the algorithm presented in the previous

section, we have the mth-order deformation
equation (11), where

R (X a0 =X 2 ()

+ i le ,m-i-1 (t)lz yn (t)yi—n (t)

m-1 i

+ Z yj,m—i—l(t)z_: Yn (t)yi—n (t),

R (V) ma(0) = Y a0 =X, (1),

j=212,..n (40)

Now, according to the multi-step HAM, the series
solution for the nonliear equation (36) in each

subinterval [tjfl,tj], j=12....n, hastheform

y; () =a, —b,a(h* +3n+3)(t—t")
2

a; 3
—ahi(h(l+ )+ D) (t-t")?
[ (A 2) 2)( )
1 2 3 *\3
+-ajb i (t-t)" +..,
2 (41)

Figure 5 shows the comparison between the
MSHAM solution when 7 = —1 and the numerical
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integration results obtained by RK4 method for the
displacement and phase diagram of nonlinear
equation (36). From Fig. 5, it is obvious that the
solution obtained by the present method is nearly
identical with that given by RK4 method.
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Fig. 5. The displacement and phase plane for Example
3.5: MSHAM solution (Solid ling), Runge-Kutta method
solution (Dotted line)

4, Conclusions

In this work, we proposed an efficient modification
of the HAM which introduces an efficient tool for
solving linear and nonlinear oscillatory equations.
Comparisons of the results obtained by using the
MSHAM with that obtained by the fourth-order
Runge-Kutta method reveal that the approximate
solutions obtained by HAM are only valid for a
small time, while the ones obtained by MSHAM
are highly accurate and valid for a long time.
Finally, we can see that the method considered here
isvery simple in its principle and we think that the
method has great potential and can be applied to
other strongly nonlinear oscillators.
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