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Abstract

In this paper, we study spacelike dual biharmonic curves. We characterize spacelike dual biharmonic curves in
terms of their curvature and torsion in the Lorentzian dual Heisenberg group D? ,- We give necessary and
Heis

sufficient conditions for spacelike dual biharmonic curves in the Lorentzian dual Heisenberg group D3
Hei:

s3

Therefore, we prove that all spacelike dual biharmonic curves are spacelike dual helix. Moreover, we give their
explicit parametrizations of spacelike dual biharmonic curves. Finally, we illustrate our main results in Figs. 1 and

2.
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1. Introduction

Dual numbers had been introduced by W.K.
Clifford (1849-1879) as a tool for his geometrical
investigations. After him, E. Study used dual
numbers and dual vectors in his research on line
geometry and kinematics. He devoted special
attention to the representation of oriented lines by
dual unit vectors and defined the famous mapping:
The set of oriented lines in an Euclidean three-
dimension space E’ is one to one correspondence
with the points of a dual space D’ of triples of dual
numbers [1-9].

The theory of relativity opened a door to the use
of degenerate submanifolds, and researchers have
treated some topics of classical differential
geometry extended to Lorentz manifolds [6, 10]. In
light of the existing literature, we study dual
biharmonic curves in Lorentzian Heisenberg group

.3
Heis ™.
Let (M™,g) and (N",h) be two Riemannian

manifolds, the energy functional of a map ¢

eCl(Mm,N") is defined by

E(g)= [ Jaof av,. 1)
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where |d¢| is the Hilbert--Schmidt norm of the

differential d¢ and dv, is the volume element on

M. A map ¢ ECZ(M'",N") is called
harmonic if it is a critical point of the energy

functional, that is, if it is a solution of the Euler--
Lagrange equation associated to (1)

7(¢)="Tr,Vdg =0, ()

T(¢) is called the tension field of ¢. Harmonic

maps are solutions of a second order nonlinear
elliptic system and they play a very important role
in many branches of mathematics and physics
where they may serve as a model for liquid crystal.
One can refer to [11] for background on harmonic
maps.

A natural generalization of harmonic maps is
given by integrating the square of the norm of the
tension field. More precisely, the bi-energy

functional of a map ¢ € C’ (Mm,Nn) is defined
by

@WF%LMMV@, 3)

amap § € c! (Mm,Nn) is called biharmonic if
it is a critical point of the bi-energy functional, that
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is, if it is a solution of the Euler-Lagrange equation
associated to (3)

7,(¢) =T, (V* f e(4)-Tr,R" (c(g). dg)dg = 0, 4)

where
LV =3 Vive v, 5)

for an orthonormal frame {el,ez,..,em}, is the
Laplacian on sections of the pull-back bundle

@ 'TN and R" is the curvature operator on N .
Clearly, harmonic maps are biharmonic. Jiang [12,
13] proved that if M is compact without boundary

and the sectional curvature Riem <0, then any

biharmonic map @:(M",g) > (N",h) is
harmonic. So it is interesting to construct non-
harmonic biharmonic curves [14-22].

Biharmonic functions are utilized in many
physical situations, particularly in fluid dynamics
and elasticity problems. Most important
applications of the theory of functions of a complex
variable were obtained in the plane theory of
elasticity and in the approximate theory of plates
subject to normal loading. That is, in cases when
the solutions are biharmonic functions or functions
associated with them. In linear elasticity, if the
equations are formulated in terms of displacements
for two-dimensional problems then the introduction
of a stress function leads to a fourth-order equation
of biharmonic type. For instance, the stress function
is proved to be biharmonic for an elastically
isotropic crystal undergoing phase transition, which
follows spontaneous dilatation.  Biharmonic
functions also arise when dealing with transverse
displacements of plates and shells. They can
describe the deflection of a thin plate subjected to
uniform loading over its surface with fixed edges.
Biharmonic functions arise in fluid dynamics,
particularly in Stokes flow problems (i.e., low-
Reynolds-number  flows). There are many
applications for Stokes flow such as in engineering
and biological transport phenomena (for details, see
[23]). Fluid flow through a narrow pipe or channel,
such as that used in micro-fluidics, involves low
Reynolds number. Seepage flow through cracks and
pulmonary alveolar blood flow can also be
approximated by Stokes flow. Stokes flow also
arises in flow through porous media, which have
been long applied by civil engineers to groundwater
movement. The industrial applications include the
fabrication of microelectronic components, the
effect of surface roughness on lubrication, the
design of polymer dies and the development of

peristaltic pumps for sensitive viscous materials. In
natural systems, creeping flows are important in
biomedical applications and studies of animal
locomotion.

In this paper, we study spacelike dual biharmonic
curves. We characterize spacelike dual biharmonic
curves in terms of their curvature and torsion in the

. . 3 .
Lorentzian dual Heisenberg group DHeis3 . We give

necessary and sufficient conditions for spacelike
dual biharmonic curves in the Lorentzian dual

Heisenberg group Di{ _5 - Therefore, we prove that
€e1s

all spacelike dual biharmonic curves are spacelike
dual helix. Moreover, we give their explicit
parametrizations of spacelike dual biharmonic
curves. Finally, we illustrate our main results in
Figs. 1 & 2.

0 2 3
2. Lorentzian dual heisenberg group D Heis?

The Heisenberg group Heis” is a Lie group which

is diffeomorphic to R’ and the group operation is
defined as

(63,2 (3 7.2) = (V4 Xy 3,242 =X 4 0)
The identity of the group is (0,0,0) and the
inverse of (x,y,z) is given by (—x,—y,—z).
The left-invariant Lorentz metric on Heis” is
g=—dx* +dy’ +(xdy +dz)’.

The following set of left-invariant vector fields
forms an orthonormal basis for the corresponding
Lie algebra [24]:

o0 o0 0 0] ©)
oz oy 0Oz Ox

The characterising properties of this algebra are
the following commutation relations:

[e,.e;]=e,,[e;.e,]=0,[e,,e,]=0,
with
gle,e)=gl(e,,e,)=1, g(e;,e;)=—1. (7

Proposition 2.1. For the covariant derivatives of
the Levi-Civita connection of the left-invariant
metric g , defined above, the following is true:
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. 0 e e
=—|le; 0 e ®)
2
e, —e 0

where the (i, j) -element in the table above equals
V.e, for our basis

{ek’k = 19253} = {el7e27e3}'

We adopt the following notation and sign
convention for Riemannian curvature operator [25-
271

R(X.Y)Z=V,V,Z-V,V, Z-V ,,Z.
The Riemannian curvature tensor is given by
R(X.,Y,ZW)=gR(X,Y)W,Z).
Moreover, we put
R,.=R(e,e)e. R, =R(,e,e.e,),

where the indices a,b,c and d take the values
1,2 and 3.

Then the non-zero components of the Riemannian
curvature tensor field and of the Riemannian
curvature tensor are, respectively,

1 1 3
R, =—e,,R; =—¢;, R,,=——e,,
1217 0 M T 6 faw 3
and
1 1 3
R, = _Za Ry :Zs Ryppy = _Z- ©)

The set D of dual numbers is a commutative ring
with the operations (+) and (.).
The set
D .= {fc:fc =x+e’,x,x € Heis3}
Heis
is a module over the ring D .
Let us set

. . . 3 .
The left-invariant Lorentz metric on DH 4 18
els

g3, 9) = g(x ) +&lg(r,y) +g(x", ) (10)

A dual vector X with norm 1 is called a dual unit
vector.

S = {fc =x+a”:|§ = (1,0, x,x" € Heis'andthevectorr is spacelik%

is called the dual Lorentzian unit sphere in D’ 5

ers

H = {fc =x+a :[§]=(1.0).x,x" € Heis’and the vector x is timelike}

is called the dual hyperbolic unit sphere in Di] 5

ets

3. Spacelike dual biharmonic curves in the
lorentzian dual heisenberg group D; 3
€l

1S
An arbitrary curve =y 4 57*;1_>D;eis3 is
spacelike, timelike or null, if all of its velocity
vectors 7'(s) are, respectively, spacelike, timelike

or null, foreach s e/ cR. Let 7?;[—>D;.3 be a
unit speed spacelike curve with timelike normal and

{f,ﬁ,f)} being Frenet vector fields, then Frenet
formulas are as follows:

V.t = &,
V.n=it+b, (11)
Vb=,

where K, T are dual curvature functions and

glt.t)=1,2(.7)=-1,¢(.b)=1, (12)

We suppose that the dual torsion 7 is never pure-
dual.
We write frenet frame {t,n,b} of ¥ with respect

to the orthonormal basis {€,,€,,€,} as:

t=te +te,+te,,
n=ne, +n,e, +n,e,, (13)
b=txn=>be, +b,e, +bse,.

Similarly, we write frenet frame {t*,n*,b*} of
}/* with respect to the orthonormal basis

{e,,e,,e,} as follows:

t =te +1e,+te,,

n =ne +n,e,+n,e,, (14)
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b*=t"xn"=b'e +b,e, +b,e,. Using K = K+ &K, we get
If the formula (11) is separated into the real and x = constantand x* = constant. (23)
dual part, we have
Then, (20) becomes
V£t=1<n+g(1m*+rc*n), o
£ +#2 = —R(t.h,10) (24)

Vii=xt+b+s(t +x't+h +7'b) (15)
Vif)=m+s(m*+r’n).

Also, using ¢* =0 in (3.2), we obtain
g(t,t)=1,g(n,n)=-1,g(b,b)=1,
g(t,t')=0,g(nn")=0,g(b,b")=0, (16)
g(t.n)=g(t.b)=g(n,b)=0,
g(t*,t*)= tg,g(n*,n*)= ng,g(b*,b*)= by,

where ¢, ng, b, are fixed constants.

Lemma 3.1. Let 7:7 »D° | be a non-geodesic
Heis

spacelike dual curve parametrized by arc length. 77

is a non-geodesic spacelike dual biharmonic curve
if and only if

x = constant = 0,

k" = constant # 0,

Kuﬁzzw_%, 17

k' +r7° =0,

= nb,,

" =R,

where R = R(t,n,t,b*)+ R(t,n*,t,b).

Proof: From (4), we get the biharmonic equation of

A

/4

57 =Vi-REVik=0. (18)

Next, using the Frenet equations (11) we obtain
Vit=(f% i+ (& + & + 20+ 2R 2+ 28D, (19)
Thus, (18) and (19) imply
(3k o+ (& + & + 20+ 28 2+ 0 b+ aR[EAR =0, (20)
hence, we have
K = 0. (1)
Also, from (21) we get

K = constant. (22)

Also, using z = x +ex* and # =7+ ¢7* We obtain
K2+12+g(2m(*+2ﬂ*):—R(t+a*,n+m*,t+st*,n+m*), (25)
T +er” :R(t+gt*,n+en*,t+a*,b+eh*)

Besides, using the formulae of the curvature, we
express

R(t+at‘,n+en’,t+at’,n+en'): R(t,n,t,n)+gR(t,n,t,n') (26)
+ sR(t,n,t’,n)+ gR(t,n’,t,n)+ sR(t*,n,t,n)

Also, we can obtain

R(t,n,t*,n)= —R(t*,n,t,n), 27
R(t, n',t, n): —R(t, n,t,n" )

Substituting the system of (27) into (26) we
obtain

R(t+5t*,n+en*,t+et*,n+m*)=R(t,n,t,n). (28)

A direct computation using (9) yields
R@mnﬂ=%—w, (29)

Substituting (29) in (28), we obtain
R(t+gt*,n+en*,t+et*,n+€n*):%—blz. (30)

Similarly, using the formulae of the curvature, we
express

Rlt+et’ ,n+an’,t+at’ b+eb’)=R(t,n,t,b)+eR(tn,t,b")
+ gR(t,n,t*,b)+ gR(t,n*,t,b)+ gR(t*,n,t,b) (€29)

Also, we can obtain
R(€',m,t,b)=—R(t,n,t",b) 32)
Substituting (32) into (31), we obtain

R(t+et",n+em" t+et",b+eb’ )= R(t,n,t,b) (33)
+8R(t,n,t,b*)+ 8R(t,n*,t,b)
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Additionally, direct computations using (9) yields

R(t,n,t,b)=nb, (34)
and we put
R=R(t,n,t,b" )+ R(t,n",t,b) (35)

then, substituting (34) and (35) in (33), we have
R(t+at*,n+m*,t+a*,b+ab*):nlbl+R. (36)
This concludes the proof of lemma.

Theorem 3.2. Let 7.7 »D? | be a non-geodesic
Heis

spacelike dual curve parametrized by arc length. If

¥ is non-geodesic spacelike dual biharmonic

curve, then ]9 is a spacelike dual helix.

Proof: Suppose that }7 is not a dual helix
parametrized by arc length. We shall derive a
contradiction by showing that ]9 must be a dual

helix.
Using Frenet formulas (11), (12) and (13), we get
the following:

t,=n,
n, +t,n, —tn, = kt, +1b,, (37
b, +t,b, —t;b, = m,
Differentiating the third equation of (17), we have
T =bb,.
Using the fifth equation of (17), we obtain

mb, = bb, . (38)
We substitute B, in (38), we find

- nl(l—‘r). (39)

n
Thus (39) becomes

7T = — = constant.

N | =

Thus, we find that 7 =constant. Therefore, we

have a contradiction. Now we show that 7° is
constant.
Also, using (17) we have

T

o KK (40)

From the above proof and (17), we have

K = constant,
k" = constant, 41)
7 = constant.

If we substitute the equation (41) in the (40), we
have

7" = constant.

Therefore, 7 is a spacelike dual helix. This
completes the proof of the theorem.

As an immediate consequence we have

Corollary 3.3. Let 7:/ D’ be a non-

Heis
geodesic spacelike dual curve parametrized by arc

3

length. ]7 is a non-geodesic spacelike dual
biharmonic curve if and only if

Kk = constant # 0,

x" = constant # 0,

7 = constant # 0, (42)
7" = constant # 0,

1
K+ =bl——,
4

xkx"+17" =0.

Theorem 3.4. The parametric equations of
spacelike dual biharmonic curve in the dual

. . 3
Lorentzian Heisenberg group D are
Heis3

7,1(s)= %sin((p)cosh(ﬁs +A)+ &é(p* cos(p)cosh(Bs + 1)

—%sin((p)cosh(ﬁs + l)+%(ﬂ*s + 1 )sin(p)sinh(Bs + )]+ p,.

7,(s)= %sin({a)sinh(ﬁs +A)+ 5%% cos(p)sinh(fs + 1)

- %sin(go)sinh(ﬂs + /1)+ % (ﬂ*s + 1 )sin(go)cosh(ﬂs + /1)] +Dss
75(5) = cos(p)s — %sin(w)sinh(ﬁs +A)  (43)
- 4%2 sin®(@)2(fBs + A)+sinh 2(Bs + 1))

=" sinlp)s — 24 coslp)

=B sin(p))(@" cos(¢)+ fp;) cosh(fs + 2)
+sin(p) 12428 9" sin(p)s +125° (I‘ )2 sin(p)s
+128° 2B sin((p)s2 +4p5° sin(¢)(ﬂ*)2s
+6(By" cos(p)-24" sin((p))(ﬁ*s + A )cosh 2(Bs+A)
+6°(1°) sin(p)sinh 2(Bs + 2)+12/8 8" sin(p)sin(p)sinh 2(s + 1)
+68°(8° ) sin(p)s? sinh 2(s + A)]]+ p
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where P=ptep, b, =p2+“‘p;9 133 =DP3 T &ps,
A =A+&A are dual constants of integration and
'S —SianAJ)%

=f+ef.

sing

Proof: Since 7 is spacelike biharmonic curve, ¥

is a spacelike helix. So, without loss of generality,
we take the axis of y is parallel to the spacelike

vector €, . Then

gli.e,)= cos o, (44)
where =@+ ¢gp’ is dual constant angle.

So, substituting the components fl, fz and f3 in

t , we have the following equation
t = cos e, +sin ¢ cosh fie, +sin @sinh fe,. (45)
Using (8) and (45), we have
Vit= (&' sin @sinh g+ 2sin ¢ cos @sinh fi)e, +
(&' sin @ cosh f +2sin ¢ cos @ cosh f1)e,.
Since Wef |= £, We obtain
r2 A .
= (K sin 2qo)s +A (46)

sin @

where A is dual constant of integration.
Additionally, we put

D _ . A N
G20 g (47
sin @
Thus (45) and (46) imply
t= cos((o +ep” )el + sin((o +ep” )cosh(ﬁs + ﬂ:)ez (48)

+ sin(go +&¢" )sinh Bs + A -
and

= cos((p +ep" )e1 + sin(go +ep" )cosh(ﬁs +A+ g(ﬁ*s + 1 ))ez (49)
+ sin((p +ep” )sinh(ﬂs + A+ g(ﬂ*s + A )}:3

Using Maclaurine series expansion of dual
functions, we have

->

cos(go +&p" ) = cos(go)— e sin(go),

sin((p +&p" )= sin(g) + gp” cos(), (50)
sinh(fs+ 2 +&(8"s + 2" )) = sinh(Bs + 1)+ £(8"s + 2" Jcosh (s + ),
cosh(ﬂs +A+ s(ﬁ‘s +A4 )) = cosh(fs+ 1)+ 5(,8‘3 +A )sinh(ﬁs +A)

If we substitute the equations (50) in (49), we
have

t= [cos((o) —&p" sin((p)]e1 (51
+[sin(p)+eg" cos(p)][cosh(Bs + A)+ s(ﬁ*s + 2 )sinh(ﬂs +A)e,

+[sin(p)+ sp" cos(p)][sinh (Bs + 1)+ g(ﬂ*s + /V)cosh (Bs + A)le,.

Thus, through (3.41), we have
t=[cos(p)—&p" sin(p)]e,

+[sin(¢)sinh(fs + 1)+ cos(¢)cosh(Fs + 1) 52)
+sin() (s + 4 Jsinh( & + A)]le,

+[sin(¢)cosh(fs + A)+£p” cos(¢p)sinh(fs + 1)
+sin(p)8°s + 4" )cosh(Bs + A)]Je,.

The formula (3.42) is separated into the real and
dual part, we have

t = cos(p)e, +sin(p)cosh(fs + A)e, + sin(p)sinh(Bs + A)e,, (53)

and

t"=—¢ sin(pe, +[¢" cos(¢)cosh(fs + 1)

+ sin(q))(ﬂ*s + 4 )sinh(ﬂs +A)e, 54
+[¢" cos(p)sinh(Bs + 1)

+sin(p)B's + A )cosh(ﬁs + 1)l

On the other hand, using our left-invariant vector
fields, we obtain

t = (sin(p)sinh(fs + A4),sin(¢)cosh(fs + 1), cos(p)
- (% sin(qo)cosh(ﬂs + /1)+ pl)sin(go)cosh(ﬂs + /1)), (55)

and

t" = ((¢" cos(p)sinh(fs + 1) +sin(p) s + )cosh(ﬂs +A)l,
[ cos(p)cosh(Bs + A)+ sin((p)(ﬂ's +A4 )sinh(ﬂs + )], (56)
—¢"sin(p)—[g" cos(p)cosh(fBs + 1)+ sin(go)(ﬁ*s + A4 )sinh(ﬁs +1)]

.[% " cos(p)cosh(fBs +2)— ”g—;sin(w)cosh(ﬂv +A)+ % (ﬁ's + l’)sin(w)sinh(ﬂx +2)+pi]).

Substituting (55) and (56) to t and integrating
both sides, we have (43) as desired.

Now, we illustrate theorem 3.4 in Figs. 1 & 2.
Spacelike dual biharmonic curve may be written by
the aid Mathematica program in Figs. 1 & 2:
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Fig. 1. Spacelike dual biharmonic curve in the dual
Lorentzian Heisenberg group

Fig. 2. Spacelike dual biharmonic curve in the dual
Lorentzian Heisenberg group

Therefore, Figs. 1 & 2 show that these curves are
parallel to each other.

Corollary 3.5. The parametric equations real part
of spacelike dual biharmonic curve in the dual

Lorentzian Heisenberg group D° , are
Hei

A= sinlp)eosh(fr+ )+,

72 (s) = %sin(go)sinh(ﬂs +2)+ p,, (57)
7() = cos{pls—Z.sin(p)sinh (s + )

*;sinz (@)2(Bs + A)+sinh 2(Bs + )]+ ps,

where p,, p,, Py, A are

constants of
integration and

&2 —sin2@ .
EE = prep
sin @

Proof: Using above Theorem we get (57). This
completes the proof.

Corollary 3.6. The parametric equations dual part
of spacelike dual biharmomic curve in the dual

. . 3
Lorentzian Heisenberg group D are
Heis3

*

§ > sin(g)cosh(fs + 1)

+;(/5'*s + 2 Jsin(p)sinh(Bs + 2)+ p;.

7 (s)= %gf cos((p)cosh(ﬂs + ﬂ) -

*

7,(s)= %(p* cos(g)sinh(Bs + A)— % sin(¢)sinh(fs + )
+ ,13 (,B*s + A )sin((o)cosh(ﬂs +A)+ ps,

N _; : ;
7i(s) = —¢ sin(g)s v [248(Be" cos(p)

' sinl))(@" cos(p)+ fp; ) cosh(fs + 2)

+sin(p) 12878 ¢’ sin(p)s +125° (/1* )2 sin(g)s
+128°0° B sin(p)s® +45° sin(w)(ﬁ* )2s

+68(Bp* cos(¢)— 2B sin((p)) (ﬂ*s + 1 )cosh Z(ﬁs + /1)
+248°(¢" cos(p)+ B )Bs + 7 )sinh(Bs + 1)
~948"¢" cos(p)sinh 2(s + A)+6(5" sin(p)sinh2(Fs + 2)
+62(7 ) sin(p)sinh 2(fs + 4)+128° " 4" sin(p)sin(p)sinh 2(As + 1)
+64° (ﬁ* )2 sin(¢)s sinh 2(Bs + A )]+ p3,

where p,, p,» pi» A, A are constants of
integration and

£’ —sin2¢

Y= pB+&B".

sin @

The proof of the Corollary 3.6. is similar to the
proof of the Corollary 3.5.
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