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Abstract 

In this paper, we study spacelike dual biharmonic curves. We characterize spacelike dual biharmonic curves in 
terms of their curvature and torsion in the Lorentzian dual Heisenberg group 3

3Heis
D . We give necessary and 

sufficient conditions for spacelike dual biharmonic curves in the Lorentzian dual Heisenberg group 3
3Heis

D . 

Therefore, we prove that all spacelike dual biharmonic curves are spacelike dual helix. Moreover, we give their 
explicit parametrizations of spacelike dual biharmonic curves. Finally, we illustrate our main results in Figs. 1 and 
2. 
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1. Introduction 

Dual numbers had been introduced by W.K. 
Clifford (1849-1879) as a tool for his geometrical 
investigations. After him, E. Study used dual 
numbers and dual vectors in his research on line 
geometry and kinematics. He devoted special 
attention to the representation of oriented lines by 
dual unit vectors and defined the famous mapping: 
The set of oriented lines in an Euclidean three-

dimension space 3E  is one to one correspondence 

with the points of a dual space 3D  of triples of dual 
numbers [1-9]. 

The theory of relativity opened a door to the use 
of degenerate submanifolds, and researchers have 
treated some topics of classical differential 
geometry extended to Lorentz manifolds [6, 10]. In 
light of the existing literature, we study dual 
biharmonic curves in Lorentzian Heisenberg group 

Heis 3 . 

Let ),( gM m
 and ),( hN n

 be two Riemannian 

manifolds, the energy functional of a map   

 nm NMC ,1  is defined by 
 

  ,
2

1
=

2

gM
dvdE  

                                            
(1) 
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where d  is the Hilbert--Schmidt norm of the 

differential d  and gdv  is the volume element on 

M . A map    nm NMC ,2  is called 

harmonic if it is a critical point of the energy 
functional, that is, if it is a solution of the Euler--
Lagrange equation associated to (1) 
 
  0,=Tr=  dg                                              (2) 

 
   is called the tension field of  . Harmonic 

maps are solutions of a second order nonlinear 
elliptic system and they play a very important rôle 
in many branches of mathematics and physics 
where they may serve as a model for liquid crystal. 
One can refer to [11] for background on harmonic 
maps. 

A natural generalization of harmonic maps is 
given by integrating the square of the norm of the 
tension field. More precisely, the bi-energy 

functional of a map  nm NMC ,2  is defined 

by 
 

    ,
2

1
=

2

2 gM
dvE                                           (3) 

 

a map    nm NMC ,4  is called biharmonic if 

it is a critical point of the bi-energy functional, that 
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is, if it is a solution of the Euler-Lagrange equation 
associated to (3) 
 
         0,=,TrTr=

2

2   ddRN
gg             

(4) 
 
where  
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(5) 

 

for an orthonormal frame  meee ,..,, 21 , is the 

Laplacian on sections of the pull-back bundle 

TN1  and NR  is the curvature operator on N . 

Clearly, harmonic maps are biharmonic. Jiang [12, 
13] proved that if M  is compact without boundary 

and the sectional curvature Riem 0N , then any 

biharmonic map ),(),(: hNgM nm   is 

harmonic. So it is interesting to construct non-
harmonic biharmonic curves [14-22]. 

Biharmonic functions are utilized in many 
physical situations, particularly in fluid dynamics 
and elasticity problems. Most important 
applications of the theory of functions of a complex 
variable were obtained in the plane theory of 
elasticity and in the approximate theory of plates 
subject to normal loading. That is, in cases when 
the solutions are biharmonic functions or functions 
associated with them. In linear elasticity, if the 
equations are formulated in terms of displacements 
for two-dimensional problems then the introduction 
of a stress function leads to a fourth-order equation 
of biharmonic type. For instance, the stress function 
is proved to be biharmonic for an elastically 
isotropic crystal undergoing phase transition, which 
follows spontaneous dilatation. Biharmonic 
functions also arise when dealing with transverse 
displacements of plates and shells. They can 
describe the deflection of a thin plate subjected to 
uniform loading over its surface with fixed edges. 
Biharmonic functions arise in fluid dynamics, 
particularly in Stokes flow problems (i.e., low-
Reynolds-number flows). There are many 
applications for Stokes flow such as in engineering 
and biological transport phenomena (for details, see 
[23]). Fluid flow through a narrow pipe or channel, 
such as that used in micro-fluidics, involves low 
Reynolds number. Seepage flow through cracks and 
pulmonary alveolar blood flow can also be 
approximated by Stokes flow. Stokes flow also 
arises in flow through porous media, which have 
been long applied by civil engineers to groundwater 
movement. The industrial applications include the 
fabrication of microelectronic components, the 
effect of surface roughness on lubrication, the 
design of polymer dies and the development of 

peristaltic pumps for sensitive viscous materials. In 
natural systems, creeping flows are important in 
biomedical applications and studies of animal 
locomotion. 

In this paper, we study spacelike dual biharmonic 
curves. We characterize spacelike dual biharmonic 
curves in terms of their curvature and torsion in the 

Lorentzian dual Heisenberg group 3
3Heis

D . We give 

necessary and sufficient conditions for spacelike 
dual biharmonic curves in the Lorentzian dual 

Heisenberg group 3
3Heis

D . Therefore, we prove that 

all spacelike dual biharmonic curves are spacelike 
dual helix. Moreover, we give their explicit 
parametrizations of spacelike dual biharmonic 
curves. Finally, we illustrate our main results in 
Figs. 1 & 2. 

2. Lorentzian dual heisenberg group 3
3Heis

D  

The Heisenberg group Heis 3  is a Lie group which 

is diffeomorphic to 3R  and the group operation is 
defined as 
 

).
2

1

2

1
,,(=),,(),,( yxyxzzyyxxzyxzyx   

 
The identity of the group is (0,0,0)  and the 

inverse of ),,( zyx  is given by ),,( zyx  . 

The left-invariant  Lorentz metric on Heis 3  is 
 

.)(= 222 dzxdydydxg   
 

The following set of left-invariant vector fields 
forms an orthonormal basis for the corresponding 
Lie algebra [24]: 
 

.=,=,= 321





















xz
x

yz
eee                            (6) 

 
The characterising properties of this algebra are 

the following commutation relations: 
 

0,=],[0,=],[,=],[ 1213132 eeeeeee  
 

with 
 

1.=)(1,=)(=)( 332211 e,ee,ee,e ggg                     
(7) 

 
Proposition 2.1. For the covariant derivatives of 
the Levi-Civita connection of the left-invariant 
metric g , defined above, the following is true: 
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ee

                                          

(8) 

 
where the ),( ji -element in the table above equals 

jie e  for our basis 

 
}.{=1,2,3}=,{ 321 e,e,ee kk

 
 

We adopt the following notation and sign 
convention for Riemannian curvature operator [25-
27]: 
 

.=),( ],[ ZZZZYXR YXXYYX   
 

The Riemannian curvature tensor is given by 
 

).,),((=),,,( ZWYXRgWZYXR  
 

Moreover, we put 
 

),(=,(= dcbaabcdcbaabc RRRR e,e,e,e)ee,e  
 

where the indices cba ,,  and d  take the values 

1,2  and 3 . 

Then the non-zero components of the Riemannian 
curvature tensor field and of the Riemannian 
curvature tensor are, respectively, 
 

,
4

3
=,

4

1
=,

4

1
= 323231312121 eee RRR  

 
and 
 

.
4

3
=,

4

1
=,

4

1
= 232313131212  RRR                          (9) 

 
The set D  of dual numbers is a commutative ring 

with the operations (+) and (.). 
The set 
 

 33
3 ,,=ˆ:ˆ= Heisxxxxxx  

Heis
D  

 
is a module over the ring D . 
Let us set 
 

,

100

10

1

==ˆ



















 



 yy
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The left-invariant Lorentz metric on 3
3Heis

D  is 

 

 .),(),(),(=)ˆ,ˆ( yxgyxgyxgyxg                  (10) 
 

A dual vector x̂  with norm 1 is called a dual unit 
vector. 

 
  spacelikeisvectortheand,,1,0=ˆ:=ˆ= 32

1 xHeisxxxxxx  S  
 

is called the dual Lorentzian unit sphere in .3
3Heis

D  

 
   timelikeis vector theand,,1,0=ˆ:=ˆ= 32

1 xHeisxxxxxx  H  
 

is called the dual hyperbolic unit sphere in .3
3Heis

D  

3. Spacelike dual biharmonic curves in the 

lorentzian dual heisenberg group 3
3Heis

D  

An arbitrary curve 3
3:=ˆ

Heis
D  I  is 

spacelike, timelike or null, if all of its velocity 
vectors )(ˆ s'  are, respectively, spacelike, timelike 

or null, for each R Is . Let 3
3:ˆ

Heis
DI  be a 

unit speed spacelike curve with timelike normal and 

 b,n,t ˆˆˆ  being Frenet vector fields, then Frenet 

formulas are as follows: 
 

,nt
t

ˆˆ=ˆ
ˆ   

,btnt
ˆˆˆ̂=                                                        (11) 

,ˆˆ= nbt   
 

where ̂ , ̂  are dual curvature functions and 
 
      1,=ˆ,ˆ1,=ˆ,ˆ1,=ˆ,ˆ bbnntt ggg                    (12) 

      0.=ˆ,ˆ=ˆ,ˆ=ˆ,ˆ bnbtnt ggg  
 

We suppose that the dual torsion ̂  is never pure-
dual. 

We write frenet frame  bn,t,  of   with respect 

to the orthonormal basis }{ 321 e,e,e  as: 
 

,= 332211 eeet ttt   

,= 332211 eeen nnn                                      (13) 

.= 332211 eeent=b bbb   
 

Similarly, we write frenet frame   b,n,t  of 
  with respect to the orthonormal basis 

}{ 321 e,e,e  as follows: 
 

,= 332211 eeet   ttt  

,= 332211 eeen   nnn                              (14) 
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.= 332211 eeent=b   bbb  
 

If the formula (11) is separated into the real and 
dual part, we have 
 

 ,nnn=t
t

  ˆ
ˆ  

 ,bbttbt=n
t

  ˆˆ
              (15) 

 .nnεn=b
t

  ˆ
ˆ

 
 

Also, using 0=2  in (3.2), we obtain  

       1,=,1,=,1,=, bbnntt ggg   

      0,=,0,=,0,=,  bbnntt ggg               (16) 

      0,=,=,=, bnbtnt ggg  

      ,=,,=,,=, 000
 bgngtg bbnntt  

 
where ,0

t  ,0
n  

0b  are fixed constants. 

 
Lemma 3.1. Let 3

3:ˆ
Heis

DI  be a non-geodesic 

spacelike dual curve parametrized by arc length. ̂  

is a non-geodesic spacelike dual biharmonic curve 
if and only if 
 

,0constant=   

0,constant=   

,
4

1
= 2

1
22  b

                                                 
(17) 

0,=   

,= 11bn'  

,= R'  

where    btntbtnt ,,,,,,=   RRR . 

 
Proof: From (4), we get the biharmonic equation of 

̂  
 

  0.=ˆˆ,ˆˆ=)ˆ( ˆ
3
ˆ2 tttt

tt
 R

                            
(18) 

 
 

Next, using the Frenet equations (11) we obtain 
 

      .ˆˆˆˆˆ2ˆˆˆˆˆˆˆˆ3=ˆ 233
ˆ bntt
t

 '''''           
(19) 

 
Thus, (18) and (19) imply 

 
        0,=ˆˆ,ˆˆˆˆˆˆˆ2ˆˆˆˆˆˆˆˆ3 23 tntbnt R'''''      (20) 
 
hence, we have 
 

0.=ˆˆ '                                                                (21) 
 

Also, from (21) we get 
 

constant.=̂                                                       (22) 
 

Using ,=ˆ   we get 
 

constant.=andconstant=                                (23) 
 

Then, (20) becomes 
 

 ,ˆ,ˆ,ˆ,ˆ=ˆˆ 22 ntntR                                          (24) 

 .ˆ,ˆ,ˆ,ˆ=ˆ btntR'  
 

By virtue of the above we have the following: 
 

   ,,,,=ˆ,ˆ,ˆ,ˆ nnttnnttntnt  RR  
 

   .,,,=ˆ,ˆ,ˆ,ˆ bbttnnttbtnt  RR  
 

Also, using   =ˆ  and   =ˆ  we obtain 
 

   ,,,,=2222   nnttnntt  R  (25) 
 

 .,,,=   bbttnntt  R''  
 

Besides, using the formulae of the curvature, we 
express 
 
       ntntntntnnttnntt ,,,,,,=,,, RRR              (26) 

     .,,,,,,,,, ntntntntntnt   RRR   
 

Also, we can obtain 
 
   ,,,,=,,, ntntntnt  RR                                     (27) 

   .,,,=,,,   ntntntnt RR  
 

Substituting the system of (27) into (26) we 
obtain 
 
   .,,,=,,, ntntnnttnntt RR                    (28) 

 
A direct computation using (9) yields 

 

  ,
4

1
= 2

1bR nt,n,t,
                                              

(29) 

 
Substituting (29) in (28), we obtain 

 

  .
4

1
=,,, 2

1bR   nnttnntt 
                  

(30) 

 
Similarly, using the formulae of the curvature, we 

express 
 
       btntbtntbbttnntt ,,,,,,=,,, RRR   

     .,,,,,,,,, btntbtntbtnt   RRR                 (31) 
 

Also, we can obtain 
 
   .,,,=,,, btntbtnt  RR                                    (32) 

 
Substituting (32) into (31), we obtain 

 
   btntbbttnntt ,,,=,,, RR                 (33) 

   .,,,,,, btntbtnt   RR   
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Additionally, direct computations using (9) yields 

 
  .= 11bnR bt,n,t,                                                   (34) 

 
and we put 
 

   ,,,,,,,= btntbtnt   RRR                               (35) 
 

then, substituting (34) and (35) in (33), we have 
 
  .=,,, 11 R  bnR bbttnntt              (36) 

 
This concludes the proof of lemma. 

 
Theorem 3.2. Let 3

3:ˆ
Heis

DI  be a non-geodesic 

spacelike dual curve parametrized by arc length. If 

̂  is non-geodesic spacelike dual biharmonic 

curve, then ̂  is a spacelike dual helix. 

 

Proof: Suppose that ̂  is not a dual helix 

parametrized by arc length. We shall derive a 

contradiction by showing that ̂  must be a dual 

helix. 
Using Frenet formulas (11), (12) and (13), we get 

the following: 
 

,= 11 nt'  

,= 1123321 btntntn'                                (37) 

123321 = nbtbtb'   
 

Differentiating the third equation of (17), we have 
 

.= 11
'' bb  

 
Using the fifth equation of (17), we obtain 

 
.= 1111

'bbbn                                                         (38) 
 

We substitute 
'b1  in (38), we find 

 

.
)(1

=
1

1

n

n  

                                                       

(39) 

 
Thus (39) becomes 

 

constant.=
2

1
=  

 
Thus, we find that = constant. Therefore, we 

have a contradiction. Now we show that   is 
constant. 

Also, using (17) we have 
 

.=




                                                              (40) 

 

From the above proof and (17), we have 
 

constant,=  

constant,=                                                      (41) 

constant.=  
 

If we substitute the equation (41) in the (40), we 
have 
 

constant.=  
 

Therefore, ̂  is a spacelike dual helix. This 

completes the proof of the theorem. 
As an immediate consequence we have 
 
Corollary 3.3. Let 3

3:ˆ
Heis

DI  be a non-

geodesic spacelike dual curve parametrized by arc 

length. ̂  is a non-geodesic spacelike dual 

biharmonic curve if and only if 
 

0,constant=   

0,constant=   

0,constant=                                                  (42) 

0,constant=   

,
4

1
= 2

1
22  b  

0.=   
 
Theorem 3.4. The parametric equations of 
spacelike dual biharmonic curve in the dual 

Lorentzian Heisenberg group 3
3Heis

D  are 

 

       





   sss coshcos
1

coshsin
1

=)(1̂

          ,ˆ]sinhsin
1

coshsin 12
psss  








  

       





   sss sinhcos
1

sinhsin
1

=)(ˆ2

          ,ˆ]coshsin
1

sinhsin 22
psss  








  

     


  s
p

ss sinhsincos=)(ˆ 1
3

      (43) 

     ]2sinh[2sin
4

1 2
2




 ss  

   


 cos([24
24

1
sin

4
  s  

        sp cosh)cos)(sin 1  

       ss  sin12sin[12sin
232      

     ss
2323 sin4sin12     

          ss 2cosh)sin2cos(6

              ss 2sinhsinsin122sinhsin6 222

      ,ˆ]]2sinhsin6 3
222 pss     
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where ,=ˆ 111
 ppp   ,=ˆ 222

 ppp   ,=ˆ 333
 ppp   

  =ˆ  are dual constants of integration and  
 

.=)
ˆsin

ˆ2sinˆ
( 2

12


 


  

 

Proof: Since ̂  is spacelike biharmonic curve,   

is a spacelike helix. So, without loss of generality, 
we take the axis of   is parallel to the spacelike 

vector 1e . Then 
 
  ,ˆcos=,ˆ 1 etg                                                    (44) 

 
where   =ˆ  is dual constant angle. 

So, substituting the components ,1̂t  2̂t  and 3̂t  in 

t̂ , we have the following equation 
 

.ˆsinhˆsinˆcoshˆsinˆcos=ˆ
321 eeet                 

(45) 
 

Using (8) and (45), we have 
 2ˆ )ˆsinhˆcosˆsin2ˆsinhˆsinˆ(=ˆ et

t
 '

 
.e3)ˆcoshˆcosˆsin2ˆcoshˆsinˆ(  '  

Since ,ˆ|=ˆ| ˆ t
t

  we obtain 

,ˆ)
ˆsin

ˆ2sinˆ
(=ˆ

2




 


s                                         (46) 

 

where ̂  is dual constant of integration. 
Additionally, we put 
 

.=ˆ=)
ˆsin

ˆ2sinˆ
(

2


 




                              

(47) 

 
Thus (45) and (46) imply 

 
      21

ˆˆcoshsincos=ˆ eet    s    (48) 

    .ˆˆsinhsin 3es     
 
and 
 

       21 coshsincos=ˆ eet    ss   (49) 

     .sinhsin 3e   ss  
 

Using Maclaurine series expansion of dual 
functions, we have 
 

     ,sincos=cos     

     ,cossin=sin                        (50) 
 

        ,coshsinh=sinh    sssss

        .sinhcosh=cosh    sssss  
 

If we substitute the equations (50) in (49), we 
have 

 
    1]sincos[=ˆ et                                         (51) 

 
          2]sinhcosh][cossin[ e   sss

          .]coshsinh][cossin[ 3e   sss  
 

Thus, through (3.41), we have 
 

    1]sincos[=ˆ et    
 

       
      2]] sinh sin

 cosh cos sinh sin[

e










ss

ss
 (52) 

 
       
     .]]coshsin

sinhcoscoshsin[

3e










ss

ss  

 
The formula (3.42) is separated into the real and 

dual part, we have 
 

          ,sinhsincoshsincos 321 eee=t   ss (53) 
 
and 
 

        scoshcos[sin 1e=t  

     2]sinhsin e   ss                          (54) 

      ssinhcos[

     .]coshsin 3e   ss  
 

On the other hand, using our left-invariant vector 
fields, we obtain 
 

          cos,coshsin,sinhsin  ss(=t

       ),coshsin)coshsin
1

( 1 


 sps (55) 

 
and 
 

        ],coshsinsinhcos[    sss(=t

        ],sinhsincoshcos[    sss            (56)
          ]sinhsincoshcos[sin    sss

              ]).sinhsin
1

coshsincoshcos
1

.[ 12



  pssss 









 

 

Substituting (55) and (56) to t̂  and integrating 
both sides, we have (43) as desired. 

Now, we illustrate theorem 3.4 in Figs. 1 & 2. 
Spacelike dual biharmonic curve may be written by 
the aid Mathematica program in Figs. 1 & 2: 
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