I JST (2013) 37A3 (Special issue-Mathematics): 379-388

Iranian Journal of Science & Technology
http://ijsts.shirazu.ac.ir

An optimal control approach for arbitrary order
singularly perturbed boundary value problems

M. Zarepour and G. B. Loghmani*

Department of Mathematics, Yazd University, P.O. Box: 89195-741 Yazd, Iran
E-mail: mazyar_z@hotmail.com & loghmani @yazduni.ac.ir

Abstract

The aim of this paper is to introduce a new approach for obtaining the numerical solution of singulary perturbed
boundary value problems based on an optimal control technique. In the proposed method, first the mentioned
equations are converted to an optimal control problem. Then, control and state variables are approximated by
Chebychev series. Therefore, the optimal control problem is reduced to a parametric optimal control problem
(POC) subject to agebric constraints. Finally, the obtained POC is solved numerically using an iterative
optimization technique. In this method, a new idea is proposed which enables us to apply the new technique for
amost all kinds of singularly perturbed boundary value problems. Some numerical examples are solved to

highlight the advantages of the proposed technique.
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1. Introduction

Various dow-fast systems naturaly apear in the
modelling of rea world-processes. Typica
examples involve climate systems, celestial
mechanics, enzyme kinetics and etc. These systems
have to be formulated by means of singularly
perturbed boundary value problems.

Here, we consider the optima solution of the

general form of m™ order linear and non-linear
singularly perturbed differential equations

&™) = &y, YO),....y" @), ast<b, 0<e<<1, (1)

subject to the separated boundary conditions

m-1
Dy (t,e)=C,, 1<i<m, @

j=0

where a<t <t,<-.-<t <t <b  For

different kinds of boundary conditions (2) we refer
to [1]. Up to now, a great dead of effort has been
spent on the development of numerical techniques
for obtaining a suitable approximate solution of (1)
and (2). Some of these techniques use basis
functions to represent the solution in analytical
forms, while some others produce a solution in the form
of an array that contains the value of the solution at a
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selected group of points. Lately, many
computational techniques have been introduced for
solving optimal control problems [2-6]. By using
the mentioned techniques, new numerical methods
have been developed for solving different kinds of
ordinary differential equations, partial differential
equations, integral and integro-differential
equations by converting them into optimal control
problems [1, 7-10]. The aim of this paper is to
apply an optimal control technique for solving (1)
and (2). To do so, first an optimal control problem
must be defined using (1) and (2). The approximate
solution of (1) and (2) is considered as state
function and the boundary conditions (2) are used
as control. Now, many computational techniques
are available for solving the so-called conjugate
problem, mostly using Bellman's dynamic
programming [2, 6] and Pontryagin's maximum
principle method [6, 11]. Here, by extending the
work of El-kady et al. [8] an aternative general
algorithm is presented to solve the obtained optimal
control problem(conjugate problem) by
parameterizing both state and control variables. In
fact, our approach is based upon the expansion of
both state and control functions in terms of
Chebychev series with unknown coefficients.
Therefore the conjugate problem is converted into a
parametric optimization problem (POC) which
consists of the minimization of the performance
index subject to equality algebric constraints. The
obtained POC can then be replaced by an
unconstrained minimization problem by applying
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the method of Lagrange [12, 13] or a penalty
function technique [14]. Eventualy, unknown
system parameters which have to be optimized can
be determined within this procedure. In this
research, by proposing a new idea, the previous
methods are generalized. Furthermore, the
mentioned idea enables us to apply the proposed
method to arbitrary order singularly perturbed
equations of the form (1) with different kinds of
boundary conditions. The technique has been tested
on problems of al kinds, and shows very
promissing results. The remainder of this paper is
organised as follows. In Section 2, the
mathematical description of the method will be
presented. Analysis of convergence of the proposed
method will be investigated in Section 3. Later, in
Section 4, different kinds of test problems will be
solved to illustrate the accuracy and efficiency of
the method. Finally, in the last section, the paper is
concluded by summarizing the main points of the
presented method.

2. Matheatical formulation

In this section, first some definitions of optimal
control problems are presented briefly. Then, the
above-mentioned  procedure is  formulated
mathematically step by step. Let us consider the
following optimal control problem [15] with state
conditions. Minimize the continuous-time cost
functional

J =¢(x(a),a, x(b),b)+I:F(x(t),u(t),t)dt, 3

subject to the dynamic constraints

X (t) = £(x(t),u(t),1), @
the algebric constraints

g(x(t),u(t),t) <0, ®)
and the boundary conditions

h(x(a), a, x(b),b) = 0. (6)

Here the function f:R"xR*xR— R" describes
the system dynamics. g:R"xR*xR— R® and
h:R"xR“xR— RY describe the inequality
mixed constraints and equality boundary conditions
respectively. Also, F:R"xR*xR—> R and
¢:R"xRxR"xR—> R ae caled cost and

Lagrangian functions. We assume that all above-
mentioned functions are continuously differentiable
with respect to al their arguments. Here, we are

looking for X:[a,b] > R", the state function

which is an absolutely continuous function and
u:[a,b] > R¥, the measurable control function,

such that congtraints (4)-(6) are satisfied and the
objective functional (3) takes its minimum value.
Wecal {x(.),u(.)} afeasible pair. If this feasible
pair minimizes (3) globally then it will be called an
optimal pair. For the optimal control theory and
analytical background one can see [15-18]. Also, it
must be noted that, neccessary conditions of
optimality for these kinds of optima control
problems have been the focus of attention since the
work of Pontryagin and his associates [11] and their
applicabality has been extended by a number of
authors [2, 4, 15]. First, we start our method by
converting (1) and (2) to a conjugate optimal
control problem. Therefore, an appropriate
performance index should be defined which has to
be relevant to the given equation [11]. Now, (1) and
(2) play the role of state and control equations. In
fact we have the following control problem

MinimizeJ := _[:F(y(t),u(t),t)dt, @

subject to ey ™ (t) = f (t, y(t), Y ()..... Y" (1)), (g)
a<t<b, O<g<<l,

1

3

u(a,e)=C, 1<i<m ©

1

1l
o

Obviously, an optimal control problem subject to
equality constraints is obtained. It must be noted

that, in the above control problem Y(t) isthe exact
solution of (1) and (2) and plays the role of state
function. Also, u(t) is the control trajectory. We

remark that the main difference of our method with
existing similiar methods [8] is the way that we
treat the boundary conditions (2). In the presented
method, by proposing a new idea, al kinds of
boundary conditions can be easily handled. We will
explain this matter later. Different options for
choosing the performance index (7) are available.
To see these options we refer to [1, 7-10]. Here we
choose

3=[IyO-uOF o, (10

as our performance index. Clearly, the objective
function (10) plays the role of least square error
which has to be minimized by finding the state
function and control trajectory y(t) and u(t)
[10].

Now the conjugate optimal control problem is
reduced to a parametric  optimization
probelm(POC) using Chebychev polynomias. To
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do S0, the Chebychev polynomials
{T_(t) = cos(ncos *(t))} defined on the interval
(-1,1) is introduced. Also, by letting

b;aHbLza, the interval [a,b] in (7)-(9)

istransformed to [—1,1] . Now, if we let

t=

y™(7) = o(7), (11)

then we are able to approximate Y™ (7) in the

obtained optimal control problem by using the
Chebychev approximation of ¢(z). It should be
noted that M is the maximum degree of derivatives
appearing in the given equation and ¢(zr) is an
unknown function. In fact, we have

o) =2 'aT.(7)

r=0
in which
2 N
& =2 rT() 1=0.. N
and
7 .
= COS(—-), =0,...,N.
(N) j

A summation symbol with double primes denotes
a sum with first and last terms halved. Simply, by

successive integration from (12),
y(2),Y'(7),..., Y™ (z) can be approximated

in terms of polynomials. Fortunately, by using the
famous Khalifa theorem [6], we can see that the
successive integration of the Chebychev
polynomial can be expressed in terms of
Chebychev polynomials.

Theorem 2.1. ([5]) The successive integration of
Chebychev polynomials is expressed in terms of
Chebychev polynomials as follows:

I,)(l_[,t:_lj,t:_z o _EETn (tp)dt,dt, ---dt, ,dt, ,

e [m]
=Y — e (0, n>k

m=0 2k X

m

§kmn(x) n+k 2m(x)_z77|Tn(Jlr)k 2m( 1)

and

[E=h

By using the above theorem, Y(zr) can be

fomulated in terms of Chebychev polynomias as
follows

y(z) = ia““]ﬁ (2), (12)

inwhich a™ shows the coefficients of Chebychev

approximation after M successive integration. We
can also determine the following approximation for
the control function

) = 31T 0) w

We also note that 81[ " s are expressible in terms

of unknowns ¢(z;). Now by substituting the

approximations for the state and control functions
from (12) and (13) into (7)-(9), the following POC
is obtained

minimize J = le (iai[m]'l'i (r),imi (2),7), (14)

M M
subject to &> aT (z) = f(z, Y &™T,(7),
i=0 i=0

(15)
M M
DA™ (7),..., ) AT (r)) —1<7 <1,
i=0 i=0
m-1 M )
ZZQ,quk(l)(Ti,E):Ci, 1<i<m (16)
1=0k=0

Clearly, in the above POC, the same degree of
expansion is used for the state and control. In fact,
the choice of M depends on the required accuracy.
If we incresse the number of terms, the
approximation will improve and will tend to the
exact solution. However there is a certain limit
beyond which increasing M will not result in any
improvement. On the contrary, this will cause
degradation of performance due to roundoff errors.

Also, by defining a = (¢(t,),...,o(t,,)) ad
£ =(b,...,b, ), we may write (14)-(16) in the
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following form

Minimize J := J(e, f), (17)

Subject to G(a, p) = 0. (18)
The performance index (14) can be aso

approximated by Chebychev polynomials. As we

mentioned before, our performance index is

characterized by equation (10). In fact, we consider
the expression

3 ) = [ (FA™ ) - YT ) et
Let

(Za[m]T (7) - ZbT ()T, ()

1- 12

B, () =2 [ 1=

represent  the Chebychev  coefficients  of

(Z“:\:Oai[m]'l'i (r)- z:\iob,Tl (7))?, then according
to a well-known theorem for the integration of
Chebychev serieq[6], one has

1+( l)

J(a, ) = By(a, f) - Z[ 1 1Bi(@. /). (19)

The computation of Chebychev coefficients
B,(a, ) divenin (19) is carried out as follows.
Putting 7 =C0S(d) and using the property
T,(cos@) = cos(nfh) , the Chebychev

coefficients B,(«, ), n=0,1,...,M; can be
computed by the following approximation formula

(6]

N M
B (e, ) = 2> [>°(@l" cos ¢ b cos )] cosné,

i=1 j=0
@-OH«
2N

n=01...,M;,, N>M,, 6 =

Obviously, the optimal control problem is now
reduced to a parametric optimization problem
subject to equality constraints which may be written

in the form (17)-(18). In most cases, J is non-
linear in @ and f . Clearly, equation (10) is a
quadratic performance index. If (1) and (2) are
linear, then G(«, £) will belinear in & and S,

otherwise G(et, ) will be non-linear.

3. Anlysis of convergence

Many computational techniques can be used to
solve the obtained constrained minimization
problem (17) and (18), such as Lagrange
multipliers, penalty function, etc. The solution
proposed by Lagrange is to form an unconstrained
problem by appending the constraints to the
performance index by means of Lagrange
multipliers. To convert (17) and (18) to an
uconstrained optimization problem, first we define

G(a, f) = (9o, ), Gu(@, )., G, )

where M is the number of constraints and depends
on the collocation points used in the POC. Now by
introducing Lagrange multipliers 4 = (4, 4,,....4,,) »

we can define our unconstrained optimization
problem as follows

L@ p.2) =@ f)+ 340 (@h). @

The necessary conditions for stationarity are
given by

(@ f2) _y i
e 0, (j=0,...,M)
(@ f2) _ i

=0, (120, M)

J

9/(e,$)=0, (1=0,...,m).

Hence the determining equations for the
unknowns are

(e, f) I, 09 (a,B) _ L. o1
o0 +§ﬂ1 p =0, (j=0,..,M), (@)

i

&J(a ﬂ) z/l ag(a ﬂ) 0, (]:0,,M), (22)

9, (a,p)=0, (1=0,...,m). (23)

Sufficient conditions for alocal minimum are the
stationarity conditions (21)-(23) and the convexity
condition expressing the positive (negative)
definiteness of a certain quadratic form [8, 18].
Starting values for @ and £ can be chosen
regarding some physical insight in the problem or
by applying the proposed method for very low
order. Once these initial values are given, starting
values for A can be obtained by selecting any
M+ 1 equations from (21) and (22) and solving the
resulting linear system for A . As we mentioned
before, in our proposed method J(«, ) turns out
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to be a quadratic function. Also it should be noted
again that, if alinear equation of (1) is transformed
to a POC, then clearly G(«, ) will be linear in

a and f. Thus, (20) can be considered as a
quadratic function

F(X):%XTQX—XTb+C, (24)

where X =(a, ) and Q is symmetric and is
called Hessian matrix.

Theorem 3.1. (see [19]) If the eigenvalues of the
Hessian matrix are all positive, then (24) is a
strictly convex function and will have a single
strong minimum.

If the above theorem holds for (24), then it is
guaranteed that different iteration methods such as
steepest descent method, Newton's method and etc,
will converge to this strong minimum. This strong
minimum can be directly found by setting

VE(X)=0. If we call this minimum point X

then it will satisfy QX =D. In case of dedling

with large scale problems, it is almost impossible to
calculate the minimum point directly. Thus, we use
the steepest descent iteration method to achieve the
minimum point. This method is easy to implement.
Also, this method is important from a theoretical
view point, because it is simple to analyse and
many developed techniques are proposed by
modifying this method. We have to note that, the
convergence properties of (24) are investigated
based on steepest descent method. In order to start
investigating the convergence properties of the
proposed methaod, first we define the function

E()=2(X-X)QX-X). @

Also, the following relation holds for every X
1.1 .

E(X)= F(X)+EX QX -c. (26)

Equations (25) and (26) show, that the difference
between E and F isa constant value. Obviously,
we are able to investigate the convergence
properties by minimizing E instead of F.
Steepest descent method is defined by the following
iteration algorithm

Xy = X = 9(Xy), (27)

inwhich ¢, isanon-negative scalar.

Lemma 3.2. (see [10]) If F(X) is minimized
along a line with respect to ¢, at each iteration,

then steepest decsent formula (27) can be rewritten
as

_ Ok Ok
X1 = Xy = (=) 9, (28)
“ T M glQue

Lemma 3.3. (see [10]) The iteration formula (28)
will result in the following relation:

(9¢90)°
E(Xp) ={1-——2 — 1E(X,). (29
) = (9, Q9)(9Q gk)} X

Now using the Kantrovich inequality, a lower
bound for (29) will be achieved.

Lemma 3.4. ([19]) Let Q be NxN symmetric and
positive definite matrix. For all vector X the
following inequality holds:

(XTX)? . 4aA
(XTQX)(X'QX) ~ (a+ A

(30)

in which @ and A are the smallest and largest
eigenvaluesof Q respectively.
By combining Lemmas 3.3 and 3.4, the following

fundamental theorem for the convergency of the
steepest descent method will result.

Theorem 35. ([19]) For every X, €R" the

steepest descent method (27) will converge to X
which is the unique minimum of L . Furthermore,

for E(x)=%(x—x*)TQ(x—x*), at stage K
wewill have:

A_a 2
E(x ).
A+a) (%)

E(Xk+1) < (

In al numerical examples, the Hessian matrix of
the obtained POC is positive definite, which
guarantees the convergence. Since the convexity
conditions are satisfied in al test problems, this
Chebychev approximation offers at least a loca
minimum. If we deal with nonlinear equations then
L(«, ,4) will be nonlinear, and can be simply
approximated by a quadratic function using the
Taylor series expansion and the proposed method
becomes applicable for such equations. Here we
summarize our proposed method as follows:

Step 1. Convert (1) and (2) to an optimal control
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problem which is known as conjugate problem.

Step 2. Find and substitute the Chebychev
expansions of Yy(t) and u(t). Boundary
conditions are used as controls and are transformed
to new constraints. In this step the conjugate
problem will be reduced to an optimization
problem.

Step 3. Find the approximate solution of the
reduced problem with an arbitrary method. If a
tolerance & is given, then one of the following
formulas can be used as the stop condition [5, 6,
10].

| I(1: Ben) — I, B) I< &,
| Xk — X I< &,
or

|y (1) = You (D) [< &

4, Test problems

In this section different kinds of singularly
perturbed equations are solved. In al treated cases,
the obtained Hessian matrix (Q) is positive definite.
The proposed algorithm is programmed using
Maple 13. To measure the accuracy of the obtained
numerical solutions, we use the following least
square error formula(L SE)

[y - y®)2ct, tefabl,

for different values of M and €. Y, (t) isthe
numerical solution of our proposed method and
y(t) isthe exact solution of (1) and (2). In order to

show how this method works and how we deal with
boundary conditions, the first test problem is solved
in more details.

Test Problem 4.1. [1] Consider the linear boundary
value problem

g’y'()-y(t)=0, 0<t<1
y(0) =y(1)=1

with the exact solution

e )
y=L0-e e re <)
1-e¢

First, the above problem is formulated as an
optimal control problem as follows. The aim is to

find the control trajectory u(t) that minimizes the
functional J for some positive t €[0,1], defined
by

MinimizeJ = [ (y(t)-u(t))’, (31)
g?y"(t) - y(t) =0, (32)
u(0) =1, (33)
u(l) =1. (34)

Now using Chebychev approximation for y(t)
and u(t), the above control problem will be

reduced to a POC. Thus, we need to introduce the
following transformation

z'=2t—1:>t=%(z'+l). (35)

By using (35), the interval [0,1] will be
transformed to [—1,1]. Also, we let

ut) = ShT0), @)
V') = olt).
(37)

Successive integration from (37) resultsin y'(t)
and y(t) in terms of Chebychev polynomials. We

do the procedure step by step to illustrate how our
new idea works on (1) with boundary conditions
(2). By thefirst integration of (37) we have

Y = [p)dt+y(0). (@)

Since the value of y'(0) is unknown, we define

a new parameter A and we let y'(0) = A. This

parameter will be added to the optimal control
problem as a new unknown. By another integration

from (38), y(t) appearsto be

y(t) = j; j;(p(t)dtdt + At+y(0). (39)

From the boundary conditions of the given test
problem one can easily verify that y(0) =1. Now
let
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o= YaT,0)
then by (37) we have
V0= AT 0,
Clearly using (38) yields
y(t) = iaT [T 0dt+y () = NZ:CrT, t)+A (40

in which, by applying theorem 2.1, the coefficients
C, can besimply obtained as follows

N ( 1)J+l 1
C, = Z %
Ck:%,kzl,Z,...,N—Z
1
aNfz_EaN
NTTO(N-D)
a, _
Cy :—ZNNl,
1a
2(N+1)

By inserting the obtained expressions for C,
(40) and doing certain arrangements, the elements
of matrix L defined in the relation

[[p(tdt] = Lig],

where L is a square matrix of order N+1 are
obtained. The elements of the column matrix [¢]

are given by ¢, =¢(t;),j=01,...,N. By

continuing this procedure, the following system of
equations results:

y(t) = ZI P, + At +1, (41)

where

(r) (t —t )r 1I

ij |]vr=2.3."'andi,j=O,l,...,N
(r-1!

Note that |;;'s are the elements of L matrix. By

substituting the Chebychev epxpansions of u(t),
y'(t) and y(t) from (36),(40) and (41) into (31)-

(34), the optimal control problem is then reduced to
the following POC

minimize J =I:(§q[2]ﬁ t)- i T, (t)%dt, (42)

subjectto £2p(t) - S1P, + At +1=0, i=1,..,N, (43)

j=0

N

Z(?Nj(pj +A=0, (44)
<
M
> bT,(0)-1=0, (45)
i=0
M
dhT.(1)-1=0. (46)

i=0

As is obvious, the boundary conditions of any
given differential equation are transformed into new
congtraints in three different ways. A group of
boundary conditions appear during the successive
integration process. These boundary conditions can
be handled in two different ways. The vaues of
some of these boundaries can be substituted directly
from the initial form of the given equation. For
instance, in the above procedure Y(0) appear in
(39) and then its value is subgtituted from the
boundary condition y(0) =1. On the other hand,

the value of some other boundary conditions
appearing in the integration process is unknown.
Therefore, we add these boundaries as new
parameters to the control problem. In the above

example, y'(0) appears in (38) and is substituted

by parameter A. The last group of boundary
conditions which do not appear in the successive
integration process will be approximated and
replaced by their Chebychev expansions. Here,
y(1) =1 does not appear in the integration

process and it is converted to equation (44) using its
Chebychev expansion. This new idea results in the
ability of solving different kinds of differential
equations such as (1) with arbitrary boundary
conditions. Finaly, by compeleting the above
procedure a new quadratic performance index (42)
with linear constraints (43)-(46) is encountered.
Also, as mentioned before (42) can be rewritten in
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terms of Chebychev polynomials using (19). Now,
the obtained problem can be converted to an
unconstrained optimization problem and is solved
by any optimization technique such as steepest
descent method. The LSE achieved in [10] with

£ for this test problem is 9.58x10 7.

Numerical results of this test problem are listed in
Tablel.

Test Problem 4.2. [1] Consider the linear boundary
value problem

—e2y"(t) + (1+t(1-1)y(t) = f(t),0<t <1,
y(0) =y(1) =0,

where

-t

ft)=1+t(1-t)+ (Zs—t(l—t)z)e% +(2e-t*(1-t))e ¢

with the exact solution

—t —(1-1)

y(t) =1+ (t-1)e* —te ¢

1
The LSE achieved in [1] with & = F for this test

problem is 1.10x107". Numerica results are
listed in Table 1.

Test Problem 4.3. [1] Consider the linear boundary
value problem

-t

ey ry(t) - y(t) = —t—e',0<t<1

;]_

y(0) =1, y(1) =1+e’*,
;1

I 1 I e\/z
y'(0)==,y"(1)=—,
& &

with the exact solution
—t
y(t) =t+e's.

1
The LSE achieved in [1] with ¢ = F for this

test problemis 5.78x107%° . Numerical results are
listed in Table 2.

Test Problem 4.4. [1] Consider the linear boundary
value problem

-t
~ey () +y° () -y(t) =-t-e’,0<t<l,

;l
y(0) =1, y(1) =1+e’*,
;l
I 1 I e\/;
y'0)==,y'(1)= :
& &

1 e
4) _ 4 _
y()_?’y() —,
-1
1 e
6) — 6) —
y()—?,y“ -
with the exact solution
-t
y(t)=t+e'.

1
The LSE achieved in [1] with & = F for this test

problem is 3.52x1072. Numerica results are
listed in Table 2.

Test Problem 4.5. [1] Consider the nonlinear
boundary value problem

&) - (Y1) y(t) = %" —£*(e")®,0<t <1,
y(0) =1, y(1) = ¢,

with the exact solution
y(t) = e*.

1
The LSE reported in [1] with & =¥ for this

test problem is 1.06 x10™*. Numerical results are
listed in Table 3.

Test Problem 4.6. [1] Consider the nonlinear
boundary value problem

2¢e 3 1
(1+1)®  (A+1)°°

y(0) =0, ¥y'(0) =1, y(1) =In(2),

with the exact solution

y(t) = In(1+1).

y"O-(' W)’y =

0<t<1,
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1
The LSE reported in [1] with ¢ = ? for this

test problem is 7.58x10 2. Numerical results are
listed in Table 3.

Table 1. Least square errors for test problems 1 and 2

TPL TP2.
M 1 1 1 1 1 1
E:E s:? s:ﬁ g:i g:i g:ﬁ

4 9.95e-11 2.32e-4 34le-l 5.45e-10 2.66e-4 4.41e-1
8 2.79e-23 6.92e-7 3.8le-4 1.76e-21 8.64e-7 7.31e-4
16 4.81e-48 237e-14  5.48e-12 6.83e-46 3.92e-13  89lell
32 1076102 49536 7.6le24 120e-101  147e31 15le23

Table 2. Least square errors for test problems 3 and 4

TP3. TP4.
M 1 1 1 1 1 1
£=3 fTx  fTgm  fT3  ETpm fTgm
4 3.61le-6 451e-1 1.45e02 541e-5 2.13e-1 9.91e02
8 5.81e-12 6.65e-5 8.84e-1 7.94e-11 1.18e-4 6.23e00
16 1.08e-26 4.31e-12 9.85e-7 3.61e-25 3.36e-11 4.71e-6
32 44le42 16729  2.34e21 7.31e40  2.28e-28 1.15e-19
Table 3. Least square errors for nonlinear
test problems 5 and 6
TP5. TP6.
M 1 1 1 1 1 1
S:E g:i s:ﬁ SZE g:? g:ﬁ

4 241e-17 6.18e-3 3.912e01 1.02e-9 131e10  1.03e-10
8 3.54e-33 9.47e-7 227e-2 1.08e-17  234e-17  1.37e-17
16 116e49 3.72e-10 3.41e5 16le24 16le24 643e24
32  731e76  6.37e13 4.22e-8 46931  496e31 89531

5. Conclusion

In this work, a new approach is proposed based on
optimal control techniques for solving arbitirary
order singularly perturbed differential equations.
First, the given differential equation is transformed
into a conjugate optimal control problem. Then a
Chebychev expansion method is used to solve the
obtained optimal control problem. To do so, state
and control functions are approximated in terms of
Chebychev polynomials with unknown
coeffecients. The boundary conditions of the
problem are used as controls. After substituting the
Chebychev expansions of control and state
functions, the conjugate problem is then reduced to
a parametric optimization problem. Finally, by
using a suitable optimization technique, the optimal
solution is achieved with the desired accuracy. In
spite of many techniques, the proposed method has
no restriction for different kinds of boundary
conditions. In fact, by proposing a new idea, any
boundary condition can be easily handled and
converted to a new constraint in the obtained
optimization problem. The other advantage of this
method is that, different kinds of linear test
problems are converted to quadratic functions
whose Hessian matrix is positive definite. This

guarantees that after a certain number of iterations,
the obtained approximate solution converges to
optimal solution. We have to note that, the volume
of computations for developing a general computer
program, appears to be quite large compared to
other methods. However, our solutions for standard
examples are much more promising and the errors
on the boundaries are insignificant. We also applied
this method to nonlinear test problems. The
accuracy of results is remarkable. Investigating a
convergence theorem for this case can be the
subject of future works.
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