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Abstract 

The aim of this paper is to introduce a new approach for obtaining the numerical solution of singulary perturbed 
boundary value problems based on an optimal control technique. In the proposed method, first the mentioned 
equations are converted to an optimal control problem. Then, control and state variables are approximated by 
Chebychev series. Therefore, the optimal control problem is reduced to a parametric optimal control problem 
(POC) subject to algebric constraints. Finally, the obtained POC is solved numerically using an iterative 
optimization technique. In this method, a new idea is proposed which enables us to apply the new technique for 
almost all kinds of singularly perturbed boundary value problems. Some numerical examples are solved to 
highlight the advantages of the proposed technique. 
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1. Introduction 

Various slow-fast systems naturally apear in the 
modelling of real world-processes. Typical 
examples involve climate systems, celestial 
mechanics, enzyme kinetics and etc. These systems 
have to be formulated by means of singularly 
perturbed boundary value problems.  

Here, we consider the optimal solution of the 

general form of thm  order linear and non-linear 
singularly perturbed differential equations 
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subject to the separated boundary conditions 
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where .121 btttta mm    For 

different kinds of boundary conditions (2) we refer 
to [1]. Up to now, a great deal of effort has been 
spent on the development of numerical techniques 
for obtaining a suitable approximate solution of (1) 
and (2). Some of these techniques use basis 
functions to represent the solution in analytical 
forms, while some others produce a solution in the form 
of an array that contains the value of the solution at a 
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selected group of points. Lately, many 
computational techniques have been introduced for 
solving optimal control problems [2-6]. By using 
the mentioned techniques, new numerical methods 
have been developed for solving different kinds of 
ordinary differential equations, partial differential 
equations, integral and integro-differential 
equations by converting them into optimal control 
problems [1, 7-10]. The aim of this paper is to 
apply an optimal control technique for solving (1) 
and (2). To do so, first an optimal control problem 
must be defined using (1) and (2). The approximate 
solution of (1) and (2) is considered as state 
function and the boundary conditions (2) are used 
as control. Now, many computational techniques 
are available for solving the so-called conjugate 
problem, mostly using Bellman’s dynamic 
programming [2, 6] and Pontryagin’s maximum 
principle method [6, 11]. Here, by extending the 
work of El-kady et al. [8] an alternative general 
algorithm is presented to solve the obtained optimal 
control problem(conjugate problem) by 
parameterizing both state and control variables. In 
fact, our approach is based upon the expansion of 
both state and control functions in terms of 
Chebychev series with unknown coefficients. 
Therefore the conjugate problem is converted into a 
parametric optimization problem (POC) which 
consists of the minimization of the performance 
index subject to equality algebric constraints. The 
obtained POC can then be replaced by an 
unconstrained minimization problem by applying 
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the method of Lagrange [12, 13] or a penalty 
function technique [14]. Eventually, unknown 
system parameters which have to be optimized can 
be determined within this procedure. In this 
research, by proposing a new idea, the previous 
methods are generalized. Furthermore, the 
mentioned idea enables us to apply the proposed 
method to arbitrary order singularly perturbed 
equations of the form (1) with different kinds of 
boundary conditions. The technique has been tested 
on problems of all kinds, and shows very 
promissing results. The remainder of this paper is 
organised as follows. In Section 2, the 
mathematical description of the method will be 
presented. Analysis of convergence of the proposed 
method will be investigated in Section 3. Later, in 
Section 4, different kinds of test problems will be 
solved to illustrate the accuracy and efficiency of 
the method. Finally, in the last section, the paper is 
concluded by summarizing the main points of the 
presented method.  

2. Matheatical formulation 

In this section, first some definitions of optimal 
control problems are presented briefly. Then, the 
above-mentioned procedure is formulated 
mathematically step by step. Let us consider the 
following optimal control problem [15] with state 
conditions. Minimize the continuous-time cost 
functional 
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subject to the dynamic constraints 
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the algebric constraints 
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and the boundary conditions 
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Here the function nkn RRRRf :  describes 

the system dynamics. skn RRRRg :  and 
qkn RRRRh :  describe the inequality 

mixed constraints and equality boundary conditions 

respectively. Also, RRRRF kn :  and 

RRRRR nn :  are called cost and 

Lagrangian functions. We assume that all above-
mentioned functions are continuously differentiable 
with respect to all their arguments. Here, we are 

looking for nRbax ],[: , the state function 

which is an absolutely continuous function and 
kRbau ],[: , the measurable control function, 

such that constraints (4)-(6) are satisfied and the 
objective functional (3) takes its minimum value. 
We call (.)}(.),{ ux  a feasible pair. If this feasible 

pair minimizes (3) globally then it will be called an 
optimal pair. For the optimal control theory and 
analytical background one can see [15-18]. Also, it 
must be noted that, neccessary conditions of 
optimality for these kinds of optimal control 
problems have been the focus of attention since the 
work of Pontryagin and his associates [11] and their 
applicabality has been extended by a number of 
authors [2, 4, 15]. First, we start our method by 
converting (1) and (2) to a conjugate optimal 
control problem. Therefore, an appropriate 
performance index should be defined which has to 
be relevant to the given equation [11]. Now, (1) and 
(2) play the role of state and control equations. In 
fact we have the following control problem 
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Obviously, an optimal control problem subject to 

equality constraints is obtained. It must be noted 
that, in the above control problem )(ty  is the exact 

solution of (1) and (2) and plays the role of state 
function. Also, )(tu  is the control trajectory. We 

remark that the main difference of our method with 
existing similiar methods [8] is the way that we 
treat the boundary conditions (2). In the presented 
method, by proposing a new idea, all kinds of 
boundary conditions can be easily handled. We will 
explain this matter later. Different options for 
choosing the performance index (7) are available. 
To see these options we refer to [1, 7-10]. Here we 
choose 
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as our performance index. Clearly, the objective 
function (10) plays the role of least square error 
which has to be minimized by finding the state 
function and control trajectory )(ty  and )(tu  

[10].  
Now the conjugate optimal control problem is 

reduced to a parametric optimization 
probelm(POC) using Chebychev polynomials. To 
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do so, the Chebychev polynomials 
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1,1)(  is introduced. Also, by letting 
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is transformed to 1,1][ . Now, if we let 
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then we are able to approximate )()( my  in the 

obtained optimal control problem by using the 
Chebychev approximation of )( . It should be 

noted that m  is the maximum degree of derivatives 
appearing in the given equation and )(  is an 

unknown function. In fact, we have 
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A summation symbol with double primes denotes 

a sum with first and last terms halved. Simply, by 
successive integration from (11), 

)(,),(),( )1(   myyy   can be approximated 

in terms of polynomials. Fortunately, by using the 
famous Khalifa theorem [6], we can see that the 
successive integration of the Chebychev 
polynomial can be expressed in terms of 
Chebychev polynomials.  
 
Theorem 2.1. ([5]) The successive integration of 
Chebychev polynomials is expressed in terms of 
Chebychev polynomials as follows: 
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By using the above theorem, )(y  can be 

fomulated in terms of Chebychev polynomials as 
follows  
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in which ][m
ia  shows the coefficients of Chebychev 

approximation after m  successive integration. We 
can also determine the following approximation for 
the control function  
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We also note that ][m
ia ’s are expressible in terms 

of unknowns )( j . Now by substituting the 

approximations for the state and control functions 
from (12) and (13) into (7)-(9), the following POC 
is obtained 
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Clearly, in the above POC, the same degree of 

expansion is used for the state and control. In fact, 
the choice of M  depends on the required accuracy. 
If we increase the number of terms, the 
approximation will improve and will tend to the 
exact solution. However there is a certain limit 
beyond which increasing M  will not result in any 
improvement. On the contrary, this will cause 
degradation of performance due to roundoff errors. 
Also, by defining ))(,),((= 0 Mtt    and 

),,(= 0 Mbb  , we may write (14)-(16) in the 
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following form 
 

),,(:=Minimize JJ                                (17) 
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The performance index (14) can be also 
approximated by Chebychev polynomials. As we 
mentioned before, our performance index is 
characterized by equation (10). In fact, we consider 
the expression  
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to a well-known theorem for the integration of 
Chebychev series[6], one has  
 

).,(]
1

1)(1
[),(=),(

2
2=

0  n

n

n

B
n

BJ






   (19) 

 
The computation of Chebychev coefficients 

),( nB  given in (19) is carried out as follows. 

Putting )cos(=   and using the property 

)cos(=)cos(  nTn , the Chebychev 

coefficients ),( nB , 1,0,1,= Mn   can be 

computed by the following approximation formula 
[6]  
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Obviously, the optimal control problem is now 

reduced to a parametric optimization problem 
subject to equality constraints which may be written 
in the form (17)-(18). In most cases, J  is non-
linear in   and  . Clearly, equation (10) is a 

quadratic performance index. If (1) and (2) are 
linear, then ),( G  will be linear in   and  , 

otherwise ),( G  will be non-linear.  

3. Anlysis of convergence 

Many computational techniques can be used to 
solve the obtained constrained minimization 
problem (17) and (18), such as Lagrange 
multipliers, penalty function, etc. The solution 
proposed by Lagrange is to form an unconstrained 
problem by appending the constraints to the 
performance index by means of Lagrange 
multipliers. To convert (17) and (18) to an 
uconstrained optimization problem, first we define 

)),(,),,(),,((=),( 10  mgggG  , 

where m  is the number of constraints and depends 
on the collocation points used in the POC. Now by 
introducing Lagrange multipliers ),,,( 10 m  , 

we can define our unconstrained optimization 
problem as follows  
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The necessary conditions for stationarity are 

given by 
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Hence the determining equations for the 

unknowns are  
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Sufficient conditions for a local minimum are the 

stationarity conditions (21)-(23) and the convexity 
condition expressing the positive (negative) 
definiteness of a certain quadratic form [8, 18]. 
Starting values for   and   can be chosen 

regarding some physical insight in the problem or 
by applying the proposed method for very low 
order. Once these initial values are given, starting 
values for   can be obtained by selecting any 

1m  equations from (21) and (22) and solving the 

resulting linear system for  . As we mentioned 
before, in our proposed method ),( J  turns out 



 
 
 
383                           IJST (2013) 37A3 (Special issue-Mathematics): 379-388 

to be a quadratic function. Also it should be noted 
again that, if a linear equation of (1) is transformed 
to a POC, then clearly ),( G  will be linear in 

  and  . Thus, (20) can be considered as a 

quadratic function  
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where ),( X  and Q  is symmetric and is 

called Hessian matrix. 
 
Theorem 3.1. (see [19]) If the eigenvalues of the 
Hessian matrix are all positive, then (24) is a 
strictly convex function and will have a single 
strong minimum. 

If the above theorem holds for (24), then it is 
guaranteed that different iteration methods such as 
steepest descent method, Newton’s method and etc, 
will converge to this strong minimum. This strong 
minimum can be directly found by setting 

0=)(XF . If we call this minimum point *X  

then it will satisfy bQX =* . In case of dealing 

with large scale problems, it is almost impossible to 
calculate the minimum point directly. Thus, we use 
the steepest descent iteration method to achieve the 
minimum point. This method is easy to implement. 
Also, this method is important from a theoretical 
view point, because it is simple to analyse and 
many developed techniques are proposed by 
modifying this method. We have to note that, the 
convergence properties of (24) are investigated 
based on steepest descent method. In order to start 
investigating the convergence properties of the 
proposed method, first we define the function 
 

).()(
2

1
=)( ** XXQXXXE T               (25) 

 
Also, the following relation holds for every X   
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Equations (25) and (26) show, that the difference 

between E  and F  is a constant value. Obviously, 
we are able to investigate the convergence 
properties by minimizing E  instead of F . 
Steepest descent method is defined by the following 
iteration algorithm  
 

),(=1 kkkk XgXX                                   (27) 
 
in which k  is a non-negative scalar.  

 

Lemma 3.2. (see [10]) If )(XF  is minimized 

along a line with respect to k  at each iteration, 

then steepest decsent formula (27) can be rewritten 
as  
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Lemma 3.3. (see [10])  The iteration formula (28) 
will result in the following relation: 
 

).(}
))((

)(
{1=)(

1

2

1 k
k

T
kk

T
k

k
T
k

k XE
gQgQgg

gg
XE       (29) 

 
Now using the Kantrovich inequality, a lower 

bound for (29) will be achieved. 
 
Lemma 3.4. ([19]) Let Q  be nn  symmetric and 

positive definite matrix. For all vector X  the 
following inequality holds:  
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in which a  and A  are the smallest and largest 
eigenvalues of Q  respectively. 

By combining Lemmas 3.3 and 3.4, the following 
fundamental theorem for the convergency of the 
steepest descent method will result.  
 

Theorem 3.5. ([19]) For every nRx 0  the 

steepest descent method (27) will converge to *x  
which is the unique minimum of L . Furthermore, 

for )()(
2

1
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we will have:  
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In all numerical examples, the Hessian matrix of 

the obtained POC is positive definite, which 
guarantees the convergence. Since the convexity 
conditions are satisfied in all test problems, this 
Chebychev approximation offers at least a local 
minimum. If we deal with nonlinear equations then 

),,( L  will be nonlinear, and can be simply 

approximated by a quadratic function using the 
Taylor series expansion and the proposed method 
becomes applicable for such equations. Here we 
summarize our proposed method as follows: 
Step 1. Convert (1) and (2) to an optimal control 
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problem which is known as conjugate problem.  
Step 2. Find and substitute the Chebychev 
expansions of )(ty  and )(tu . Boundary 

conditions are used as controls and are transformed 
to new constraints. In this step the conjugate 
problem will be reduced to an optimization 
problem.  
Step 3. Find the approximate solution of the 
reduced problem with an arbitrary method. If a 
tolerance   is given, then one of the following 
formulas can be used as the stop condition [5, 6, 
10]. 
 

,|<),(),(| 11  kkkk JJ   
 

,|<| 1 kK XX   
 
or  
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4. Test problems 

In this section different kinds of singularly 
perturbed equations are solved. In all treated cases, 
the obtained Hessian matrix (Q) is positive definite. 
The proposed algorithm is programmed using 
Maple 13. To measure the accuracy of the obtained 
numerical solutions, we use the following least 
square error formula(LSE)  
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for different values of M  and  . )(tyM  is the 

numerical solution of our proposed method and 
)(ty  is the exact solution of (1) and (2). In order to 

show how this method works and how we deal with 
boundary conditions, the first test problem is solved 
in more details. 
 
Test Problem 4.1. [1] Consider the linear boundary 
value problem  
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First, the above problem is formulated as an 

optimal control problem as follows. The aim is to 

find the control trajectory )(tu  that minimizes the 

functional J  for some positive [0,1],t  defined 

by  
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Now using Chebychev approximation for )(ty  

and )(tu , the above control problem will be 

reduced to a POC. Thus, we need to introduce the 
following transformation  
 

1).(
2

1
=12=   tt                           (35) 

 
By using (35), the interval [0,1]  will be 

transformed to 1,1].[  Also, we let  
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Successive integration from (37) results in )(ty  

and )(ty  in terms of Chebychev polynomials. We 

do the procedure step by step to illustrate how our 
new idea works on (1) with boundary conditions 
(2). By the first integration of (37) we have  
 

(0).)(=)(
0

ydttty
t

                                  (38) 

 
Since the value of (0)y  is unknown, we define 

a new parameter A  and we let Ay =(0) . This 

parameter will be added to the optimal control 
problem as a new unknown. By another integration 
from (38), )(ty  appears to be  
 

(0).)(=)(
00

yAtdtdttty
tt

                    (39) 

 
From the boundary conditions of the given test 

problem one can easily verify that 1=(0)y . Now 

let  
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),(=)(
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tTat rr

N

r
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then by (37) we have  
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Clearly using (38) yields  
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  (40) 

 
in which, by applying theorem 2.1, the coefficients 

rC  can be simply obtained as follows  
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By inserting the obtained expressions for rC  in 

(40) and doing certain arrangements, the elements 
of matrix L  defined in the relation  
 

],[=])([
0

 Ldtt
t

  

 
where L  is a square matrix of order 1N  are 
obtained. The elements of the column matrix ][  

are given by .,0,1,=),(= Njt jj   By 

continuing this procedure, the following system of 
equations results:  
 

1,=)( (2)

0=

 ijij

N

j
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where  
 

.,0,1,=,and2,3,=,
1)!(

)(
=

1
)( Njirl

r

tt
l ij

r
jir

ij 


 

 

 
Note that ijl ’s are the elements of L  matrix. By 

substituting the Chebychev epxpansions of )(tu , 

)(ty  and )(ty  from (36),(40) and (41) into (31)-

(34), the optimal control problem is then reduced to 
the following POC  
 

,))()((=minimize 2
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2
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1

0
dttTbtTaJ ii

M

i
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  (42) 

 

,,1,=0,=1)(tosubject (2)

0=

2 NiAtlt ijij

N

j
i   (43) 

 

0,=
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Al jNj
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 ii

M

i
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0.=1(1)
0=

 ii

M

i

Tb                                             (46) 

 
As is obvious, the boundary conditions of any 

given differential equation are transformed into new 
constraints in three different ways. A group of 
boundary conditions appear during the successive 
integration process. These boundary conditions can 
be handled in two different ways. The values of 
some of these boundaries can be substituted directly 
from the initial form of the given equation. For 
instance, in the above procedure (0)y  appear in 

(39) and then its value is substituted from the 
boundary condition 1=(0)y . On the other hand, 

the value of some other boundary conditions 
appearing in the integration process is unknown. 
Therefore, we add these boundaries as new 
parameters to the control problem. In the above 
example, (0)y  appears in (38) and is substituted 

by parameter A . The last group of boundary 
conditions which do not appear in the successive 
integration process will be approximated and 
replaced by their Chebychev expansions. Here, 

1=(1)y  does not appear in the integration 

process and it is converted to equation (44) using its 
Chebychev expansion. This new idea results in the 
ability of solving different kinds of differential 
equations such as (1) with arbitrary boundary 
conditions. Finally, by compeleting the above 
procedure a new quadratic performance index (42) 
with linear constraints (43)-(46) is encountered. 
Also, as mentioned before (42) can be rewritten in 
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terms of Chebychev polynomials using (19). Now, 
the obtained problem can be converted to an 
unconstrained optimization problem and is solved 
by any optimization technique such as steepest 
descent method. The LSE achieved in [10] with 

102

1
=  for this test problem is 13109.58  . 

Numerical results of this test problem are listed in 
Table 1.  
 
Test Problem 4.2. [1] Consider the linear boundary 
value problem  
 

1,0),(=)())(1(1)(2  ttftyttty
 

0,=(1)=(0) yy  
 
where  
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with the exact solution  
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The LSE achieved in [1] with 
102

1
=  for this test 

problem is 12101.10  . Numerical results are 
listed in Table 1. 
 
Test Problem 4.3. [1] Consider the linear boundary 
value problem  
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with the exact solution  
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The LSE achieved in [1] with 
102

1
=  for this 

test problem is 10105.78  . Numerical results are 
listed in Table 2. 
 
Test Problem 4.4. [1] Consider the linear boundary 
value problem  
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with the exact solution  
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t
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The LSE achieved in [1] with 
102

1
=  for this test 

problem is 2103.52  . Numerical results are 
listed in Table 2. 
 
Test Problem 4.5. [1] Consider the nonlinear 
boundary value problem  
 

1,0,)(=)())(()( 3232  teetytyty tt    
 

,=(1)1,=(0) eyy  
 
with the exact solution  
 

.=)( tety   
 

The LSE reported in [1] with 
152

1
=  for this 

test problem is 4101.06  . Numerical results are 
listed in Table 3. 
 
Test Problem 4.6. [1] Consider the nonlinear 
boundary value problem  
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with the exact solution  
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The LSE reported in [1] with 
152

1
=  for this 

test problem is 3107.58  . Numerical results are 
listed in Table 3. 
 

Table 1. Least square errors for test problems 1 and 2 
 
  TP1.   TP2.  

M       

4 9.95e-11 2.32e-4 3.41e-1 5.45e-10 2.66e-4 4.41e-1 
8 2.79e-23 6.92e-7 3.81e-4 1.76e-21 8.64e-7 7.31e-4 
16 4.81e-48 2.37e-14 5.48e-12 6.83e-46 3.92e-13 8.91e-11 
32 1.07e-102 4.95e-36 7.61e-24 1.20e-101 1.47e-31 1.51e-23 
 

Table 2. Least square errors for test problems 3 and 4 
 
  TP3.   TP4.  

M       

4 3.61e-6 4.51e-1 1.45e02 5.41e-5 2.13e-1 9.91e02 
8 5.81e-12 6.65e-5 8.84e-1 7.94e-11 1.18e-4 6.23e00 
16 1.08e-26 4.31e-12 9.85e-7 3.61e-25 3.36e-11 4.71e-6 
32 4.41e-42 1.67e-29 2.34e-21 7.31e-40 2.28e-28 1.15e-19 
 

Table 3. Least square errors for nonlinear  
test problems 5 and 6 

 
  TP5.   TP6.  

M       

4 2.41e-17 6.18e-3 3.912e01 1.02e-9 1.31e-10 1.03e-10 
8 3.54e-33 9.47e-7 2.27e-2 1.08e-17 2.34e-17 1.37e-17 
16 1.16e-49 3.72e-10 3.41e-5 1.61e-24 1.61e-24 6.43e-24 
32 7.31e-76 6.37e-13 4.22e-8 4.69e-31 4.96e-31 8.95e-31 

5. Conclusion 

  In this work, a new approach is proposed based on 
optimal control techniques for solving arbitirary 
order singularly perturbed differential equations. 
First, the given differential equation is transformed 
into a conjugate optimal control problem. Then a 
Chebychev expansion method is used to solve the 
obtained optimal control problem. To do so, state 
and control functions are approximated in terms of 
Chebychev polynomials with unknown 
coeffecients. The boundary conditions of the 
problem are used as controls. After substituting the 
Chebychev expansions of control and state 
functions, the conjugate problem is then reduced to 
a parametric optimization problem. Finally, by 
using a suitable optimization technique, the optimal 
solution is achieved with the desired accuracy. In 
spite of many techniques, the proposed method has 
no restriction for different kinds of boundary 
conditions. In fact, by proposing a new idea, any 
boundary condition can be easily handled and 
converted to a new constraint in the obtained 
optimization problem. The other advantage of this 
method is that, different kinds of linear test 
problems are converted to quadratic functions 
whose Hessian matrix is positive definite. This 

guarantees that after a certain number of iterations, 
the obtained approximate solution converges to 
optimal solution. We have to note that, the volume 
of computations for developing a general computer 
program, appears to be quite large compared to 
other methods. However, our solutions for standard 
examples are much more promising and the errors 
on the boundaries are insignificant. We also applied 
this method to nonlinear test problems. The 
accuracy of results is remarkable. Investigating a 
convergence theorem for this case can be the 
subject of future works. 
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