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Abstract

This article examines statistical inference for R = P(Y< X) where X and Y are independent but not

identically distributed Pareto of the first kind (Pareto (I)) random variables with same scale parameter but different
shape parameters. The Maximum likelihood, uniformly minimum variance unbiased and Bayes estimators with
Gamma prior are used for this purpose. Simulation studies which compare the estimators are presented. Moreover,
sensitivity of Bayes estimator to the prior parameters is considered.

Keywords: Bayesian estimator; Maximum likelihood estimator (MLE); Pareto of first kind; uniformly minimum
variance unbiased estimator (UMVUE)); stress-strength model

1. Introduction

The problem of estimating R=P (Y < X) arises

in the context of mechanical reliability of a system
with strength X and stress Y, then reliability R is
chosen as a measure of system reliability. In a
stress- strength model, the system fails if and only
if X <Y, at any time. This model, first considered

by Birnbaum [1], is commonly used in many
engineering applications such as civil, mechanical
and aerospace. Recently, a number of papers have
dealt with the stress-strength reliability problem.
Several distributions have been used in the
literature as failure models. For references see the
book of Kotz et al. [2] and the articles [3-18].

The main aim of this paper is to discuss the
inference of R=P(Y < X), when X and Y

are two independent, but not identically random
variables belonging to Pareto (I) distribution with
two parameters.

The Pareto distribution is a power law probability
distribution that coincides with social, scientific,
geophysical and many other types of observable
phenomena. Recently it has been used to study ozone
levels in the upper atmosphere and tensile strength of
nylon carpet fibers. It has played a very important role
in the investigation of city population occurrence of
natural resources, insurance risk, and business failures.
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The probability density functions ( pdf ’s) of X

and Y are given, respectively, by

f(x)=6, bOx (@)
Xx>D, 0,050 ()

g(y)=0,b0%y @2+1)
y>b, 0,050 . @

Then, it can be shown that

R=P(Y < X)= ﬂ f(x,y)dxdy=—2— (3)
b 6, +6,
<Y<X

in which R is free of .

The paper is organized as follows: In Section 2,
MLE, UMVUE , and Bayesian estimators of R
are obtained. In Section 3, simulation studies are
done to compare the different estimates of R
together with sensitivity of the Bayes estimators to
the parameter of the prior distribution represented
in Section 2.

2. Estimation of Reliability

2.1. Maximum Likelihood Estimation

Let X; X5,...,X, and Y} Y,,...,Y,;,, be the two
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independent random samples taken from the Pareto m

distribution with parameters (6;,b) and (6,,b), nQZZIOg(yjb‘l)

respectively, and let b be known. Then, likelihood 02 1 1l= j=1 E

and log-likelihood functions based on the above ? RT_ - n ~T@am.2n)-
P mé, > log(x;b™)

samples are given by
L(X, y; 91, 92, b) =

—(61+1 —(61+1
Qilggnbneﬁmez H?:1xi (61+1) l—[j;nlyj( 1+ )’ 4)

I(x,y; 61,6,,b) =nlogh; + mlog6,+
n
(n; + m8,)log b — (6, + 1) z log x;
i=1

—(0; + 1) XjLlogy;. %)

Using (5), the MLE’s for 6, and 6, are,
respectively,

6, = n/zn: log (x,b™"). (©)
i=1

6, =m/> log (y,b). ™)
=1

Hence |£31 ,the MLE of R, is written as follows

D>

R =—2—. (8)
0 +0,

2.2. Some properties of IQ,

Since D is known, R can be expressed as

m
nzlog(yjb)
R=1/1+1 | ©9)
leog(Xib)
i=1

Since
26, Zn: log(xi b ) ~ X3,
i
and
20, Zmllog(yj b‘l) ~ X3
=

So

i=1

From this fact we shall study some properties of
R, (Lindley [19]) and it could be shown that

5\ ‘92(”_1)
E<R’)_«92(n—l)+01n'

L+ n+m-1 - 6,(n-1) a0
m(n-2){  6,(n-1)+4n

Note that if M is fixed,
lim, ,, E(R )= R[Him(l— R)Z] an

and

lim E(Iil): R, (12)

m,n—w

A

R, is asymptotically unbiased,

V(R) n+m—1[l 6,(n-1) j( 6,(n-1) j’ (13)

“mn-2)U 6,(n-n+6n) (6,(n-D+6n
then
1 o, Y[ o, )
hmn%V(FA\’l)z— 1-—=2 2|, (14
m 0,+6,)\6,+6,
and
lim,,, ., V(R)=0, (15)

A

i.e. R is consistent estimator for R.

The mean square error (MSE) of él is given as

MER )=V(R )+[R-ER )
_n+m—1[l_ 0,(n-1) H 0,(n-1) Jz
" mhn-2) 6,(n-n+6,n) | 6,(n-1)+6,n
6, _ ‘92(”_1)
6,+6, 6,(n-1)+6n




337

1JST (2013) 37A3 (Special issue-Mathematics): 335-342

[Hn+m—l[1 6,(n-1) j} . 16)
m(n-2){ 6,(n-1)+6n

this tends to zero as M, N — co.

2.3. Uniformly Minimum Variance Unbiased
Estimator (UMVUE) of R

Let X,, X, ..., X be a random sample
from Pareto (6, b ) where b is known. Set
=log (X, b™"), i=12,..,n, then W is

n
Expo (9 ! ), and hence Z:V\/I is sufficient
i=l
statistic for@, . Similarly, if Y,,Y, ..., Y is
a random sample from Pareto (9 5 b ) where D
is known and

V, =log(Y; b™), j=12,..m then

m
ZVJ is sufficient statistic for@ ,
=1

n m

(ZV\/”ZVJ-] is jointly sufficient statistic for
= =

©..0,).

. Moreover,

Let
1 |f V1 <W1
T = .
0 |f V1 ZWl °
Then
E(T)=P(V, <W) = P(log(yb™) <log(xp™))
=P(y,<x)=P(y<x)=R. (17)

Therefore, T is an unbiased estimator for R . By
using either Rao-Blackwell and Lehmann-Scheffe's
Theorems, or Tong’s results [20, 21], we obtain

UMVUE for R as
R,=ET|[D>W,;.>V))
i=1 =l
n-1 X
2. aQ"
i=0

=¥ ¢ Qi if Q<L (18)

i=0

it Q>1

where
Sw
Q=
2V,
and
oy (=1 (m=1)
% =) (n—i—1)t (m+i-1)
e —( 1) (n—1)r (m-1)!
e vy Ty

To find the MSE of I% which is given by

MR, )=ER -Rf =ER f -RrR*, (19)
we proceed to get
E[(R) |- g:_;aakE(Q‘i‘leZI)P(QZI)
+P(Q<1)—2n:cj EQ'|Q<1)PQ<1)

<
+?i;m§cjcsE(Q“s|Q<1)P(Q<1), (20)

Equation (20) depends on the evaluation of
EQ'|[Q<)HP@Q<1) and EQ7Q=
1)P(Q = 1). For this purpose, we first obtain the

n m

pdf of Q. Since ZV\/I, ZV]_ have respectively
=1 i=1

the independent distributions

n
r'(n,6,) and (M8, ), then E?NF(zm,zn)

where,

“n —(n+m)
f(q)= P q”1(1+qj , g>0. (1)
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Then, for | >0
E(Q'|Q<1)P(Q<1)

—-n 1
— 'B(pn m) J'ql+n—1(1+q/p)—(n+m) dq

’ 0
__ 21
_(|+n),6'(n,m)F2‘l(|+n’n+m’|+n+1’ pj'

(22)

Interchanging N with M and replacing p by

— in (22), we have

E(Q'[Q=DP(Q=1]=

m

P

_ — ). 23)
(+m) A (nm) F,(l+mn+ml+m+1,-p).

We let | =0in (22), P(Q < 1) has the form

-n

PQ <1)=m&l (n,n+m,n+l,—/1)j, (24)

where  F,,(.,.,.,.) is the  generalized

hypergeometric function, [22]. Substituting (22)-
(24) in (20), we then show that, using (19), the

MSE of FAQZ is represented by hypergeometric
function.

2.4. Bayes Estimation for R

It is remarkable that most of the Bayesian
inference procedures have been developed under
the usual squared error (SE) loss function
(quadratic loss), which is symmetrical and
associates equal importance to the losses due to
overestimation and underestimation of equal
magnitude. However, such a restriction may be
impractical. For example, in the estimation of
reliability and failure rate functions, an
overestimate is usually much more serious than an
underestimate; in this case the use of a symmetrical
loss function might be inappropriate, as has been
recognized by Basu and Ebrahimi [23] and Canfield
[24]. Feynman [25] states that in the disaster of a
space shuttle, the management overestimated the
average life or reliability of the solid fuel rocket
booster. This is an example of an asymmetrical loss
function.

A useful asymmetric loss known as the LINEX
(linear-exponential) loss function was introduced in
[26], and was widely used in several papers [23, 27-
29].  This  function rises  approximately
exponentially on one side of zero, and

approximately linearly on the other side. Under the
assumption that the minimal loss occurs at & = u,
the LINEX loss function can be expressed as

L(A) x e®—cA—1; c#0, (25)

where A= (ii — u), 1l is an estimate of u.

The sign and magnitude of ‘c’ represent the
direction and degree of symmetry, respectively.
(c > 0 means overestimation is more serious than
underestimation, and ¢ < 0 means the opposite).
For ‘¢’ closed to zero, the LINEX loss function is
approximately the Squared Error (SE) loss, and
therefore almost symmetric. The posterior s-
expectation of the LINEX loss function of (25) is

E,((L(@ —w)) « exp(cw) . E, (exp(—cu)) —
c(t—-E,@) -1 (26)

E, is equivalent to the posterior s-expectation
with respect to the posterior pdf. The Bayes
estimator 1ig; of u under the LINEX loss function
is the value #, which minimizes (26).

g, = —= log(Ey [exp(—cu)]). @7

provided that E,, [exp(—cu)] exists, and is finite.
Another useful asymmetric loss function is the
General Entropy (GE) loss

L,(@,u) « (g)q —qlog (%) -1, (28)

whose minimum occurs at @ =u. This loss
function is a generalization of the Entropy-loss used
in several papers where q = 1,see [30] and [31].
When g > 0, a positive error (@i > u) causes more
serious consequences than a negative error. The
Bayes estimate g of u under GE loss (28) is

e = (Eu[u="])7, 29)

provided that E,, [u™9] exists, and is finite.
Bayes estimation of R can be obtained if 8, and

92 are assumed to be random variables which have

independent gamma prior distributions with
probability density functions

B i ,
hi(6;) = r—(piei(p texp(—B:i6) .6, 01 B; > 0,i=1,2.  (30)

It can be shown that the posterior density of
(6,,b) given X is, from (4) and (30),

h(6,,b|x)ec 67 exp(-6,4,), G1)

where 6; =n+ ¢, and
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A =p —nlogb+2‘10gxi :

i1
Similarly, the posterior density of (6,,D) can be

written as
h(@z,b‘z)oc 0! exp(— 192/12), (32)
where 8, =n + ¢, and
A, = f, —mlogbh+ Zmllog Y-
=

The joint posterior density function of (491 ,(92)
is then

8 76,
h,.6, ‘i(’l’) - /11—226,151_10252_1

I'(6)r'(5,)
exp(=64, —6,4,). (33)
Put R= , and using standard procedure
0, +0,

of transformations of random variables we obtain
the density of R as

1"(5l +52)
%)= )T ()

((l—r)/11+r/12)_(§'+§2), 0<r<lI.

A0 A% (=)

A. Symmetric Bayes Estimation
Under the squared error (SE) loss function, the
Bayes estimator of R is

[(6,+6,)

(dﬁ()

r)g‘_lr‘%[l 2“2122 J dr. (34

B. Asymmetric Bayes Estimation
LINEX Loss:
If in (27), u = r, then the Bayes estimator of R is

R =E(R|x y,b)= A A

o —_
—~
—_—

1“(51 +52)
“T(6)r(s,)

1
J'e—cr 3| -1 &l
0 ((

General Entropy Loss: Set u = r in (29), then the
Bayes estimate Rs of R relative to the general
Entropy loss function (28) is

|

R4=_ ﬂaf‘lﬂ«gz-

(8,+6,)

(A +r4,) " dr. (35)

(s, +,)
r(8,)r(s,)

Uy =0 (o) een, ) arye . (36)

By =1{ AN A%

2.5. Two-Sided Confidence Intervals

To determine the confidence interval for the

reliability R, we first note that L has an F -

A

P
distribution with 2mM, 2N degrees of freedom,

where R may be written as

R=Pw<m0=wg<px

where W = Z:V\/I , V= ZV andg Fo.2)-

i=l
Then R = Fr(p, 2,2), where Fe (., 2, 2) is the
cumulative distribution function of an F random
variable with 2,2 degrees of freedom.

The MLE'S of 6, and 8,, by (6), (7), are

él =£andé2 =m,
W \%

If Iil isthe MLE of R, then

respectively.

R X . 0,
Ry, = Fr(p,2,2), where p = —
0,
s0
p 0,6, no,v
p 0 éz mo,W (2m,2n)
with l-a=1-(a, +a,) confidence

coefficient, where Fm1 has 1—a | confidence
coefficient and Fa2 has 1—a , confidence

coefficient with 2m, 2N degrees of freedom. We
can obtain the desired interval by

l—a= P(F;f <P< Fazj
D

=P(pF'<p<pF,)
= P(F(PF;;',2,2) <R < F(pF,,, 2,2)),

so the two- sided (l—a)lOO% confidence
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interval for R is given by

[F(pF,2.2),F(pF, 2.2 ],

ie.,

1 1

1

p

1 .
/_’)\ Fa_zl +1

F, +1

(94 .
If a=q, ZE, then the confidence interval

1
takes the form [———, ——|,
5Fa/2+1 5Fa/2+1

where F_ ' denotes the inverse function of F with

1 — & confidence coefficient and 2N,2M
degrees of freedom.

3. Simulation Study for the Different Estimators

It is clear that, the computations of R;,i = 1,...,5
and their mean square errors are very complicated.
Therefore, Mathematical 7 is used to evaluate

R; and the MSE *s of R, R, and R, . as shown in

the following tables. Table (1) shows the simulation
results for the MSE s of the MLE, UMVUE and
Bayes estimators for R, for different values of the
sample sizes. It is observed that the MSE of Bayes
is smaller than the MSE of maximum likelihood.
Table (2) illustrates the sensitivity of the Bayes
estimators relative to asymmetric loss functions
(LINEX and General Entropy) R, and Rs for the
values of the shape parameters ¢ and q. Table (3)
simplifies the sensitivity of R; to the prior

parameters @;,®,, 5, and f,. It is clear first that,
the Bayes estimator is sensitive to the prior
parameters, and secondly, on keeping /, constant,

MSE is increasing as f3, .

Table 1. Maximum Likelihood Estimator, Uniformly Minimum Variance Unbiased and Bayes Estimator with Empirical
Estimators for the Prior Parameters (The effect of changing two sample sizes over the MSE for theM LE )

0, =1, 0,= 2, b= 2, R = .66667

n m R, MSER, R, MSER, R; MSER,
10 0.528 0.012 0.689 0.010 0.696 0.0044
10 40 0.610 0.008 0.654 0.007 0.671 0.0003
60 0.727 0.008 0.592 0.007 0.597 0.0004
10 0.834 0.008 0.714 0.006 0.528 0.0064
20 20 0.673 0.005 0.708 0.004 0.637 0.0015
60 0.560 0.004 0.658 0.003 0.706  0.0001
10 0.655 0.007 0.772  0.004 0.522  0.0070
30 30 0.672 0.003 0.629 0.004 0.573  0.0008
60 0.667 0.003 0.705 0.002 0.655 0.0001
10 0.650 0.006 0.746  0.005 0.588 0.0075
40 40 0.597 0.003 0.610 0.003 0.592  0.0005
60 0.710 0.002 0.635 0.002 0.653 0.0002
10 0.759 0.006 0.649  0.006 0.579 0.0078
50 50 0.732 0.002 0.635 0.002 0.658 0.0003
60 0.660 0.002 0.676  0.002 0.644 0.0002
60 10 0.634 0.006 0.650 0.007 0.685 0.0081
60 0.612 0.002 0.666 0.002 0.678 0.0002
Table 2. Bayes Estimates of the Reliability Function
Prior Parameters ¢,= 1, ¢,=2, f;=3, f,=4
6, =1,0,=2,b=.2, R=.66667
n m B P R, R
1 3 C=100 C=150 C=-50 C=-100 q=I q=3 =-5 =-2
20 10 0.638 0.329 0438 0466 0.699 0.563 0.580 0.638 0.539  0.553
60 10 0.666 0307 0456 0482 0.661 0.544 0.546 0.557 0.596  0.508
60 30 0.666 02083 0325 0375 0928 0.674 0.561 0.595 0.608 0.578
100 10 0.666 0.158 0.458 0.483 0.654 0.539 0.529 0.608 0.557  0.596
100 30 0.648 0.158 0351 0.398 0.876  0.645 0.569 0.629 0.594  0.595
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Table 3. Sensitivity of Bayes Estimator to the Prior Parameters

6, =1,6,=2,b=2,R =.66667, N =10, =20

@ » By B R; Bias MSE R;
2 0675807 | 0.009140 0.000540
3 4 0705948 | 0.039282 0.000792
) 6 0647106 |- 0.019560 0.003069
2 0799059 |0.132392 0.001352
5 4 0.678427 | 0.011760 0.000428
6 0.609685 |- 0.056980 0.001507
2 0.707073 | 0.040406 0.003145
3 4 0.597962 |- 0.068700 0.001105
y 6 0.637956 |- 0.028710 0.001108
1 2 0.676283 | 0.009617 0.005345
5 4 0.726487 | 0.059820 0.001917
6 0.714830 | 0.048163 0.001052
2 0.710516 | 0.043849 0.007151
3 4 0.738799 0072132 0.003222
] 6 0.705436 | 0.038770 0.001764
2 0.708526 | 0.041859 0.009894
5 4 0.683676 __ |0.017010 0.005639
6 0.755847 | 0.089180 0.002477
2 0.749162 | 0.082495 0.000802
3 4 0.599080 |- 0.067590 0.003771
) 6 0388317 |- 0.278350 0.008626
2 0.564465 |- 0.102200 0.000318
5 4 0.684025 | 0.017359 0.001810
6 0516416 |- 0.150250 0.005592
2 0.710881 | 0.044214 0.000932
3 4 0.618519 |- 0.048150 0.001211
X A 6 0.554267 |- 0.112400 0.003576
2 0.673980 | 0.007314 0.001707
5 4 0.643080 |- 0.023590 0.000811
6 0.618309 |- 0.048360 0.001815
2 0.681611 | 0.014944 0.002772
3 4 0.618714 |- 0.047950 0.001313
] 6 0.550589 |- 0.116080 0.001693
2 0.780480 | 0.113814 0.004810
5 4 0.709575 | 0.042909 0.002034
6 0.609194 |- 0.057470 0.001402
2 0.662994 |- 0.003670 0.003476
3 4 0.635475 |- 0.031190 0.008958
) 6 0490599 |- 0.176070 0.016216
2 0.618631 |- 0.048040 0.001596
5 4 0516726 |- 0.149940 0.005709
6 0435846 |- 0.230820 0.011371
2 0599962 |- 0.066700 0.000940
3 4 0707833 | 0.041166 0.003461
s A 6 0595427 |- 0.071240 0.008232
2 0.695973 | 0.029306 0.000726
5 4 0.579451 |- 0.087220 0.001940
6 0.533457 |- 0.133210 0.005283
2 0.567377 |- 0.099290 0.001239
3 4 0.633209 |- 0.033460 0.001638
] 6 0.624459 |- 0.042210 0.003994
2 0.635440 |- 0.031230 0.001992
5 4 0.673176 | 0.006510 0.001081
6 0.626982 |- 0.039680 0.002362
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