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Abstract 

This article examines statistical inference for  XYPR   where X and Y are independent but not 

identically distributed Pareto of the first kind (Pareto (I)) random variables with same scale parameter but different 
shape parameters. The Maximum likelihood, uniformly minimum variance unbiased and Bayes estimators with 
Gamma prior are used for this purpose. Simulation studies which compare the estimators are presented. Moreover, 
sensitivity of Bayes estimator to the prior parameters is considered. 
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1. Introduction 

The problem of estimating  XYPR   arises 

in the context of mechanical reliability of a system 
with strength X and stress Y, then reliability R is 
chosen as a measure of system reliability. In a 
stress- strength model, the system fails if and only 
if YX  , at any time. This model, first considered 

by Birnbaum [1], is commonly used in many 
engineering applications such as civil, mechanical 
and aerospace. Recently, a number of papers have 
dealt with the stress-strength reliability problem. 
Several distributions have been used in the 
literature as failure models. For references see the 
book of Kotz et al. [2] and the articles [3-18]. 

The main aim of this paper is to discuss the 
inference of )( XYPR  , when X  and Y  

are two independent, but not identically random 
variables belonging to  Pareto (I) distribution with 
two parameters. 

The Pareto distribution is a power law probability 
distribution that coincides with social, scientific, 
geophysical and many other types of observable 
phenomena. Recently it has been used to study ozone 
levels in the upper atmosphere and tensile strength of 
nylon carpet fibers. It has played a very important role 
in the investigation of city population occurrence of 
natural resources, insurance risk, and business failures. 
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The probability density functions ( pdf ’s) of X  

and Y  are given, respectively, by 
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Then, it can be shown that 
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in which R  is free of b . 

The paper is organized as follows: In Section 2,
UMVUEMLE , , and Bayesian estimators of R  

are obtained. In Section 3, simulation studies are 
done to compare the different estimates of R  
together with sensitivity of the Bayes estimators to 
the parameter of the prior distribution represented 
in Section 2. 

2. Estimation of Reliability 

2.1. Maximum Likelihood Estimation 

Let ଵܺ,	ܺଶ, … , ܺ and ଵܻ,	 ଶܻ, … , ܻ be the two 
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independent random samples taken from the Pareto 
distribution with parameters ሺߠଵ, ܾሻ and ሺߠଶ, ܾሻ, 
respectively, and let ܾ be known. Then, likelihood 
and log-likelihood functions based on the above 
samples are given by  
 
,ݔሺܮ													 ,ଵߠ	;ݕ ,ଶߠ ܾሻ ൌ
ଵߠ
ߠଶ

ܾఏభାఏమ 	∏ ݔ
ିሺఏభାଵሻ

ୀଵ 	∏ ݕ
ିሺఏభାଵሻ				

	ୀଵ ,    (4) 
 
݈ሺݔ, ,ଵߠ	;ݕ ,ଶߠ ܾሻ ൌ ݊ log ଵߠ  ݉ logߠଶ+ 

ሺ݊ߠଵ  ܾ	ଶሻlogߠ݉ െ ሺߠଵ  1ሻlog ݔ



ୀଵ

 

െሺߠଶ  1ሻ∑ log ݕ

ୀଵ .                                          (5) 

 
Using (5), the MLE’s for ߠଵ and 	ߠଶ are, 

respectively, 
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Hence 1R̂ , the MLE  of R , is written as follows 
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2.2. Some properties of 1R̂  

Since b  is known, 1R̂  can be expressed as  
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From this fact we shall study some properties of 
ܴଵ (Lindley [19]) and it could be shown that 
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Note that if m  is fixed,  

 

    



 

2
1 1

1
1ˆlim R

m
RREn ,           (11) 

 
and 
 

  RREnm  1,
ˆlim ,                                      (12) 

 

1R̂  is asymptotically unbiased, 
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then 
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and 
 

  0ˆlim 1,  RVnm ,                                       (15) 
 

i.e. 1R̂  is consistent estimator for R. 

The mean square error ( MSE ) of 1R̂  is given as  

      2111
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this tends to zero as ., nm  

2.3. Uniformly Minimum Variance Unbiased 
Estimator )(UMVUE  of R  

Let nXXX ....,, 21 be a random sample 

from Pareto ( b,1 ) where b  is known. Set 

,...,,2,1,)(log 1 nibXW ii    then iW  is 

Expo  1 , and hence 
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statistic for 1 . Similarly, if mYYY ....,, 21 is 

a random sample from Pareto  b,2  where b  

is known and  
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Then  
 

   1 1P y x P y x R     .                    (17) 
 

Therefore, T  is an unbiased estimator for R . By 
using either Rao-Blackwell and Lehmann-Scheffe's 
Theorems, or Tong’s results [20, 21], we obtain 
UMVUE  for R  as  
 

2
1 1

ˆ ( , )
n m

i j
i j

R E T W V
 

    

1

0
1

0

1

1 1,

n
i

i
i
m

j
j

j

a Q if Q

c Q if Q











 






 


                       (18) 

 

where 
 








m

j
j

n

i
i

V

W
Q

1

1  

 
and  
 

     
    ,

!1!1

!1!1
1





imin

mn
a i

i  

 

     
   !1!1

!1!1
1





jmjn

mn
c j

j . 

 

To find the MSE  of 2R̂  which is given by  
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Equation (20) depends on the evaluation of 

( 1) ( 1)lE Q Q P Q   and 	ܧሺܳି|ܳ 

1ሻܲሺܳ  1ሻ. For this purpose, we first obtain the 

pdf  of Q . Since 
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Then, for 0l   
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Interchanging n  with m  and replacing   by 


1

 in (22), we have  
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We let 0l in (22), )1( QP  has the form  
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where .).,.,(.,1:2F  is the generalized 

hypergeometric function, [22]. Substituting (22)-
(24) in (20), we then show that, using (19), the 

MSE  of 2R̂  is represented by hypergeometric 

function. 

2.4. Bayes Estimation for R  

It is remarkable that most of the Bayesian 
inference procedures have been developed under 
the usual squared error (SE) loss function 
(quadratic loss), which is symmetrical and 
associates equal importance to the losses due to 
overestimation and underestimation of equal 
magnitude. However, such a restriction may be 
impractical. For example, in the estimation of 
reliability and failure rate functions, an 
overestimate is usually much more serious than an 
underestimate; in this case the use of a symmetrical 
loss function might be inappropriate, as has been 
recognized by Basu and Ebrahimi [23] and Canfield 
[24]. Feynman [25] states that in the disaster of a 
space shuttle, the management overestimated the 
average life or reliability of the solid fuel rocket 
booster. This is an example of an asymmetrical loss 
function.  

A useful asymmetric loss known as the LINEX 
(linear-exponential) loss function was introduced in 
[26], and was widely used in several papers [23, 27-
29]. This function rises approximately 
exponentially on one side of zero, and 

approximately linearly on the other side. Under the 
assumption that the minimal loss occurs at ݑ ൌ  ,ݑ
the LINEX loss function  can be expressed as 
 
ሺ∆ሻܮ ן 	 ݁∆ െ ܿ∆ െ 1; 				ܿ ് 0,                          (25) 
 
where ∆ൌ ሺݑ െ ,ሻݑ ݑ  is an estimate of ݑ. 

The sign and magnitude of ‘ܿ’ represent the 
direction and degree of symmetry, respectively. 
(ܿ  0 means overestimation is more serious than 
underestimation, and ܿ ൏ 0 means the opposite). 
For ‘ܿ’ closed to zero, the LINEX loss function is 
approximately the Squared Error (SE) loss, and 
therefore almost symmetric. The posterior ݏ-
expectation of the LINEX loss function of (25) is 
 
ොݑሺܮ௨ሺ൫ܧ െ ሻ൯ݑ ן expሺܿݑሻ . ሻሻݑ௨ሺexpሺെܿܧ െ
												ܿ. ൫ݑො െ ሻ൯ݑ௨ሺܧ െ 1.                                  (26) 
 
 ௨ is equivalent to the posterior s-expectationܧ

with respect to the posterior pdf. The Bayes 
estimator ݑො of ݑ under the LINEX loss function 
is the value ݑො , which minimizes (26). 
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provided that ܧ௨ሾexpሺെܿݑሻሿ exists, and is finite. 
Another useful asymmetric loss function is the 
General Entropy (GE) loss 
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whose minimum occurs at ݑො ൌ  This loss .ݑ
function is a generalization of the Entropy-loss used 
in several papers where ݍ ൌ 1,	see [30] and [31]. 
When ݍ  0, a positive error ሺݑො   ሻ causes moreݑ
serious consequences than a negative error. The 
Bayes estimate ݑොீ of ݑ under GE loss (28) is 
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provided that ܧ௨ሾିݑሿ		exists, and is finite. 

Bayes estimation of R  can be obtained if 1  and 

2  are assumed to be random variables which have 

independent gamma prior distributions with 
probability density functions  
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It can be shown that the posterior density of 
 b,1  given X is, from (4) and (30),  
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of transformations of random variables we obtain 
the density of R  as  
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A. Symmetric Bayes Estimation 
Under the squared error (SE) loss function, the 
Bayes estimator of R is 
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B. Asymmetric Bayes Estimation 
LINEX Loss:  
If in (27), ݑ ൌ  then the Bayes estimator of R is ,ݎ
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General Entropy Loss: Set ݑ ൌ  in (29), then the ݎ
Bayes estimate ܴହ of R  relative to the general 
Entropy loss function (28) is 
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2.5. Two-Sided Confidence Intervals  

To determine the confidence interval for the 

reliability R , we first note that 


ˆ

 has an F - 

distribution with nm 2,2  degrees of freedom, 

where R  may be written as 
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interval for R  is given by 
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where 1
F  denotes the inverse function of F with 

1  confidence coefficient and mn 2,2   

degrees of freedom. 

3. Simulation Study for the Different Estimators 

It is clear that, the computations of ܴ , ݅ ൌ 1,… , 5 
and their mean square errors are very complicated. 
Therefore, Mathematical 7 is used to evaluate 

ܴ	and the MSE ’s of 21
ˆ,ˆ RR and 3R̂ , as shown in 

the following tables. Table (1) shows the simulation 
results for the MSE ’s of the MLE, UMVUE and 
Bayes estimators for R, for different values of the 
sample sizes. It is observed that the MSE of Bayes 
is smaller than the MSE of maximum likelihood. 
Table (2) illustrates the sensitivity of the Bayes 
estimators relative to asymmetric loss functions 
(LINEX and General Entropy) ܴସ and ܴହ for the 
values of the shape parameters c and q. Table (3) 
simplifies the sensitivity of ܴଷ to the prior 

parameters 1 2 1, ,    and ߚଶ. It is clear first that, 

the Bayes estimator is sensitive to the prior 
parameters, and secondly, on keeping 2  constant, 

MSE is increasing as 1 . 
 

 
Table 1. Maximum Likelihood Estimator, Uniformly Minimum Variance Unbiased and Bayes Estimator with Empirical 

Estimators for the Prior Parameters (The effect of changing two sample sizes over the MSE  for theM L E ) 
 

ଵߠ ൌ1, ߠଶ= 2, b= .2, R = .66667 

n m ܴଵ ܧܵܯ ܴଵ ܴଶ ܧܵܯ ܴଶ ܴଷ ܧܵܯ ܴଷ 

10 
10 0.528 0.012 0.689 0.010 0.696 0.0044 
40 0.610 0.008 0.654 0.007 0.671 0.0003 
60 0.727 0.008 0.592 0.007 0.597 0.0004 

20 
10 0.834 0.008 0.714 0.006 0.528 0.0064 
20 0.673 0.005 0.708 0.004 0.637 0.0015 
60 0.560 0.004 0.658 0.003 0.706 0.0001 

30 
10 0.655 0.007 0.772 0.004 0.522 0.0070 
30 0.672 0.003 0.629 0.004 0.573 0.0008 
60 0.667 0.003 0.705 0.002 0.655 0.0001 

40 
10 0.650 0.006 0.746 0.005 0.588 0.0075 
40 0.597 0.003 0.610 0.003 0.592 0.0005 
60 0.710 0.002 0.635 0.002 0.653 0.0002 

50 
10 0.759 0.006 0.649 0.006 0.579 0.0078 
50 0.732 0.002 0.635 0.002 0.658 0.0003 
60 0.660 0.002 0.676 0.002 0.644 0.0002 

60 
10 0.634 0.006 0.650 0.007 0.685 0.0081 
60 0.612 0.002 0.666 0.002 0.678 0.0002 

 
Table 2. Bayes Estimates of the Reliability Function 

 
  Prior Parameters ߮ଵ= 1, ߮ଶ= 2, ߚଵ= 3, ߚଶ= 4 

n m 
ଵߠ ൌ1, ߠଶ= 2, b= .2, R = .66667 

ܴଵ ܴଷ 
ܴସ ܴହ 

C=100 C=150 C=-50 C=-100 q =1 q = 3 q = - .5 q = - 2 
20 10 0.638 0.329 0.438 0.466 0.699 0.563 0.580 0.638 0.539 0.553 
60 10 0.666 0.307 0.456 0.482 0.661 0.544 0.546 0.557 0.596 0.508 
60 30 0.666 0.2083 0.325 0.375 0.928 0.674 0.561 0.595 0.608 0.578 
100 10 0.666 0.158 0.458 0.483 0.654 0.539 0.529 0.608 0.557 0.596 
100 30 0.648 0.158 0.351 0.398 0.876 0.645 0.569 0.629 0.594 0.595 
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Table 3. Sensitivity of Bayes Estimator to the Prior Parameters 
 

1 21, 2, 2, .66667, 10, 20b R n m        

1  2  1  2  3R̂  Bias  3
ˆMSE R  

 
1 

2 

3 
2 0.675807 0.009140 0.000540 
4 0.705948 0.039282 0.000792 
6 0.647106 - 0.019560 0.003069 

5 
2 0.799059 0.132392 0.001352 
4 0.678427 0.011760 0.000428 
6 0.609685 - 0.056980 0.001507 

4 

3 
2 0.707073 0.040406 0.003145 
4 0.597962 - 0.068700 0.001105 
6 0.637956 - 0.028710 0.001108 

5 
2 0.676283 0.009617 0.005345 
4 0.726487 0.059820 0.001917 
6 0.714830 0.048163 0.001052 

6 

3 
2 0.710516 0.043849 0.007151 
4 0.738799 0.072132 0.003222 
6 0.705436 0.038770 0.001764 

5 
2 0.708526 0.041859 0.009894 
4 0.683676 0.017010 0.005639 
6 0.755847 0.089180 0.002477 

3 

2 

3 
2 0.749162 0.082495 0.000802 
4 0.599080 - 0.067590 0.003771 
6 0.388317 - 0.278350 0.008626 

5 
2 0.564465 - 0.102200 0.000318 
4 0.684025 0.017359 0.001810 
6 0.516416 - 0.150250 0.005592 

4 

3 
2 0.710881 0.044214 0.000932 
4 0.618519 - 0.048150 0.001211 
6 0.554267 - 0.112400 0.003576 

5 
2 0.673980 0.007314 0.001707 
4 0.643080 - 0.023590 0.000811 
6 0.618309 - 0.048360 0.001815 

6 

3 
2 0.681611 0.014944 0.002772 
4 0.618714 - 0.047950 0.001313 
6 0.550589 - 0.116080 0.001693 

5 
2 0.780480 0.113814 0.004810 
4 0.709575 0.042909 0.002034 
6 0.609194 - 0.057470 0.001402 

5 

2 

3 
2 0.662994 - 0.003670 0.003476 
4 0.635475 - 0.031190 0.008958 
6 0.490599 - 0.176070 0.016216 

5 
2 0.618631 - 0.048040 0.001596 
4 0.516726 - 0.149940 0.005709 
6 0.435846 - 0.230820 0.011371 

4 

3 
2 0.599962 - 0.066700 0.000940 
4 0.707833 0.041166 0.003461 
6 0.595427 - 0.071240 0.008232 

5 
2 0.695973 0.029306 0.000726 
4 0.579451 - 0.087220 0.001940 
6 0.533457 - 0.133210 0.005283 

6 

3 
2 0.567377 - 0.099290 0.001239 
4 0.633209 - 0.033460 0.001638 
6 0.624459 - 0.042210 0.003994 

5 
2 0.635440 - 0.031230 0.001992 
4 0.673176 0.006510 0.001081 
6 0.626982 - 0.039680 0.002362 
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