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Abstract 

In this paper, we propose a new method for solving the stochastic advection-diffusion equation of Ito type. In this 
work, we use a compact finite difference approximation for discretizing spatial derivatives of the mentioned 
equation and semi-implicit Milstein scheme for the resulting linear stochastic system of differential equation. The 
main purpose of this paper is the stability investigation of the applied method. Finally, some numerical examples 
are provided to show the accuracy and efficiency of the proposed technique. 
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1. Introduction 

In recent years, there has been interest regarding the 
study of stochastic partial differential equations 
(SPDEs). SPDEs can describe the dynamics of 
stochastic processes defined on space-time 
continuum. These equations have been widely used 
to model many applications in engineering and 
mathematical sciences. 

Analytical solution can be obtained for very few 
SPDEs and some authors have studied them 
theoretically [1-4]. One hope is that using 
numerical methods to generate solutions to such 
equations will lead to better understanding of the 
equations. For numerical simulation of solution of 
SPDEs, some authors have used the finite element 
approximation [5-7] and others have used finite 
difference scheme for approximation solution of 
SPDE's. Roth used an explicit finite difference 
method to approximate the solution of some 
stochastic hyperbolic equations [8]. Soheili et al. 
presented two methods for solving linear parabolic 
SPDE's based on the Saul'yev method and a high 
order finite difference scheme [9]. 

Kamrani and Hosseini reported explicit and 
implicit finite difference method for general SPDE 
[10]. Some authors used spectral method for spatial 
variable discertization and solved the resulting 
system of SODE via the Crank-Nicolson scheme or 
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stochastic Runge-Kuttamethod [11, 12]. The 
Wiener Chaos expansion is another method that we 
can use for the solution of SPDEs [13]. 

In this paper, we consider the one dimensional 
stochastic advection-diffusion equation:  
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where .],0[,],[ 0 XxTtt  In Eq(1)  , , 0> 

are constants and )(tW  is a random noise which is 

related to the Brownian motion )(tW . 

Equation(1) can be rewritten as: 
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The stochastic integral is the Ito-integral with 

respect to 1 -valued Wiener process 

][0,)),(( TttFtW   defined on a complete probability 

space ),,( PF , adapted to the standard filtration 
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][0,)( TttF  . 

The outline of this paper is as follows: in section 
2, we state a compact finite difference scheme for 
discretizing spatial derivatives of stochastic partial 
differential equation and a stochastic differential 
system is obtained. In section 3, the semi-implicit 
Milstein method is applied for this system. In this 
section we investigate stability of this method under 
an important theorem. Finally, in the last section, 
numerical examples are presented. 

2. Compact finite difference for stochastic 
advection-diffusion equation 

In this section, we introduce the standard compact 
approximations for the spatial derivatives of Eq(1). 
Consider the following differential equation:  
 

( ) = ( )  , [0, ].xx xu u uW t f x x X    
  

(2) 
 

If we denote the central difference scheme of 
order two for second and first order derivatives of 
u as 
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respectively, then we obtain the following 

approximation for Eq(2) at point ix : 
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In order to obtain a higher order scheme, the 

fourth and third derivatives of u  can be 
approximated [14, 15]: 
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We substitute the above implications in Eq (3) : 
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Eq(4) can be rewritten as:  
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For an integer positive M , if  =
M

X
x and 

t  denote the spatial step size and time step size, 
respectively, so we define:
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In order derivative of high-order difference 

algorithm, we must discrete Eq(1) in space at point 

ix  according to Eq(5) to obtain a system of 

stochastic differential equation as follows:  
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Let the boundary conditions be homogeneous, then 
our system can be written as: 
 

= ( ) ,AU B WA U  
                               (7) 
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in which A  and B  are tridiagonal matrices as 
follows: 
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Theorem 1. The matrix A  is invertible.  
 
proof: see [14]. 
 

Therefore we can have the following stochastic 
system: 
 

1= ( ) ( )U A B U W t U   .                             (8) 
 

Before proving the main theorem, we state the 
following lemma: 
 

Lemma 1. If 
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proof: see [14]. 
 

Theorem 2. All eigenvalues of BAC 1=   have 
negative real-parts.  
 
proof: Let   and   be eigenvalue and 

correspondingeigenvector of C , respectively. So 

we have  =1BA
 or  AB = . We 

rewrite this implication as follows:  
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If 0=42 acb  , then (via the Mathematica 

software) we have: 
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2  has negative real part for each possible value of 

x, ,  . If  012 2246  x then 1  has 

negative real part. For 012 2246  x , we 

have:  
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so, 1  is negative. 

Now consider that  0.42  acb In this 
situation let 
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be roots of equation 0=2 cbrar  , then 

ii
i rcrc 2211=   is solution of difference equation 

Eq(9). We need to have 0==0 M , since 

 0=0 then 21 = cc  , but we need 0=M , 
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from the previous lemma, it is sufficient to have 
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then by solving the 1] , [0  ,  0=42  tactb , 

we will have:  
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Obviously, 2  has negative real part for each 

possible value of  , . If 02  , then 1 has 

negative real part. But if it is positive, then we have 
(via the Mathematica software):  
 

, 0))(212)

144)()((1100)(4(

  0

22244

42224

2
1221







txx

ttxtx



  

 

therefore 1  is negative. 

According to the above theorem each eigenvalue 
of  C  is in the left-half complex plane and similar 
to deterministic case, it is useful for stability.  

3. Semi-implicit Milstein method and its stability 

Consider the n dimensional SDE of Ito type 
given by:  
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where  : nnf   and  : nng   , and 

)(tW  is a scalar wiener process[16]. The semi-

implicit Milstein scheme for computing 

approximations )( nn tXX   takes the form: 
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where nV  is an independent standard Normal 

(0,1)  random variable [17], and   is a free 

parameter (usually 10  ). 
The above scheme is called trapezoidal 

particularly if  ,
2

1
= and backward Euler scheme 

if 1= . We note that in the deterministic case,  

0g , Eq(10) is called the Theta method [17, 18]. 

Semi-implicit Milstein method for stochastic 
system Eq (8) takes the form: 
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In component form, we have:  
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in which 11,...,= Mk . 

Before proving the following theorem, we define 
that | |= | | sup kj mjk j j

G G  and 
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Higham [17] and Saito [19] applied the semi-

implicit Milstein method on the test equation:  
 

,=(0) ,  )()( )( =)( 0yytdWtydttytdy  
 

 
and obtained  useful properties about it's stability. 

For stability, we need a norm, hence for sequence 

},,,,{= 101  xxxx  , sup-norm is defined 

2||sup=|| kk xx  [8]. We refer to the paper of 
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Roth [8] for the following definition.  
 
Definition 1. (Stability of a stochastic difference 
scheme) A stochastic difference scheme is said to 
be stable with respect to a norm in mean square if 

there exist some positive constants 0x  and 0t  

and constants K  and   such that 
 

,2021 |||||||| uEKeuE tn                           (14) 
 
For all 
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Remark 1. One interpretation of stability of a 
difference scheme is that for stable difference 
schemes small errors in the initial conditions cause 
small errors in the solutions. The definition allows 
the errors to grow, but limits them from 
growingless quickly than exponentially. Numerical 
solution can keep a similar property as n  tends to 
infinity when it is applied to the stable SDE in 
mean-square. 
 
Remark 2. For the proposed scheme the increments 
of Wiener process are independent of the state k

nU .  
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This hold for every k , so  
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Therefore, according to definition1, our scheme is 
stable. 

But there is an essential question: when is 
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observed that the stability condition  1)( SC  holds 
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Example 3. Consider the following stochastic 
advection-diffusion equation:  
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In Table3, we see the results for ))5.0,5.0((uE  are 
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Table 3. Investigation of stability condition and 
))5.0,5.0((uE  for different values of   
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0 61 NaN 
0.1 7.8571 NaN 
0.2 3.7692 -4.5047 e+262 
0.3 2.2631 -8.7938 e+150 
0.4 1.4800 -5.8375 e+56 
0.45 1.2142 -6.9331 e+12 
0.5 1 0.017684 
0.6 0.6756 0.01777 
0.7 0.4418 0.017860 
0.8 0.2653 0.01794 
0.9 0.1272 0.01803 
1 0.0164 0.01810 

5. Conclusion 

In this paper, we approximate the stochastic 
advection-diffusion equation using the compact 
finite difference technique and semi-implicit 
Milstein method and studied the stability condition, 
theoretically and numerically. Numerical 
experiments show that the proposed scheme is 

unconditionally stable for 
2

1 . 
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