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Abstract– This paper investigates the performance of a multiple-deme genetic algorithm (GA) 
with modified reproduction operators, in optimal design of planar steel frames according to the 
AISC-LRFD specification. The design objective is to minimise the weight of frame subject to 
strength, displacement and constructability constraints. A number of new crossover and mutation 
operators, used alongside the standard operators are utilised in optimum design of a number of 
steel frames subjected to the constraints of the AISC-LRFD specification, with and without 
considering the second order effects, as set out by the code requirements. This modified GA 
(MGA) is shown to have a very fast convergence and to produce relatively high-quality designs. 
This paper also utilizes the concept of multiple-deme in the GA, as it has been used successfully 
for other metaheuristic population-based methods. The multiple-deme GA is used alongside the 
modified GA operators and the algorithm is named the modified multiple-deme GA (MMDGA). 
The modified GA (MGA) and modified multiple-deme GA (MMDGA) are applied to three 
benchmark problems and the results are compared to those obtained by other metaheuristic 
methods. In the majority of cases, the results of comparisons suggest the superiority of the 
MMDGA in terms of the quality of final design and the total number of performed finite elements 
analyses.           
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1. INTRODUCTION 
 

For more than two decades genetic algorithms (GA) have been successfully utilised in optimal design of 
structures. Amongst the more recent applications, Kaveh and Kalatjari [1], Toğan and Daloğlu [2, 3], and 
DEDE et al. [4] used GA for design of planar and space trusses. Also, Camp et al. [5], Pezeshk et al. [6], 
Hayalioglu [7], Lagaros et al. [8], Sarma and Adeli [9], Prendes Gero et al. [10, 11], Degertekin [12], and 
Degertekin et al. [13] employed GA for design of planar and space frames. Furthermore, Foley and 
Schinler [14], Hayalioglu and Degertekin [15, 16], Yun and Kim [17], and Hadj Ali et al. [18] used GA to 
obtain optimum design of nonlinear steel frames with or without semi-rigid connections. 

More recently other metaheuristic methods, such as Simulated Annealing (SA), Tabu Search (TS), 
Ant Colony Optimization (ACO), Differential Evolution (DE), Particle Swarm Optimization (PSO), 
Harmony Search (HS), Imperialist Competitive Algorithm (ICA), and Charged System Search Algorithm 
(CSSA) have been developed and employed for structural design optimisation. Amongst them Li et al. 
(PSO) [19], Wu and Tseng (DE) [20], Kaveh and Talatahari (ICA) [21], Kaveh and Laknejadi [22] and 
Kaveh and Malakouti Rad [23] used the metaheuristics for design of planar and space trusses. Also, Camp 
et al. (ACO) [24], Kargahi et al. (TS) [25],  Degertekin (HS) [26], Saka (HS) [27], Kaveh and Talatahari 
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(ACO) [28], Kaveh and Talatahari (ICA) [21], Kaveh and Talatahari (CSSA) [29], Hasançebi et al. (SA) 
[30] and Hasançebi et al. (HS) [31] used the metaheuristics for design of linear planar and space frames 
and Degertekin (SA) [12] and Degertekin et al. (TS) [13] used the metaheuristics for design of nonlinear 
space frames. 

A major drawback of standard GA is that this algorithm needs a significant number of objective and 
constraint evaluations during the optimisation process. Recent studies on GAs have had the tendency to 
focus on reducing the computation time through modification of the algorithm (e.g. see Lagaros [8], Foley 
and Schinler [14], Prendes Gero et al. [10, 11], Toğan and Daloğlu [3] and Safari and Maheri [32]). These 
newer versions of GAs are referred to by different names in the literature including the modified, 
enhanced, improved or intelligent GAs. Recently a multiple-deme genetic algorithm, utilising modified 
reproduction operators was developed and used by the authors for allowable stress design of steel frames 
according to AISC specification (AISC-ASD) and its performance was evaluated against standard GA and 
Tabu Search solutions [32]. The aim of the present study is to investigate the performance of this modified 
GA algorithm, tailored for optimal LRFD design of steel frames, compared to other metaheuristic 
optimisation methods such as: ant colony, harmony search, improved ant colony and imperialist 
competitive algorithms, taken from the current literature. 
 

2. OPTIMIZATION PROBLEM FORMULATION 
 
The discrete optimum design problem of steel frames, in which the minimum weight is considered as the 
objective, can be stated as follows: 

ng mi

i i j
i 1 j 1

Minimize W( x ) A L
 

    (1)

subjected to the strength (or stress) constraints of AISC–LRFD [33] and the displacement and 
constructability constraints. In Eq. (1), mi and ng are the total number of members in the i-th group and the 
total number of groups in the frame, respectively. Also, Ai and γi are cross-sectional area and the material 
unit weight of i-th member group and Lj is the length of j-th member. Design variables (x) are the element 
section sizes from the available W-shapes of a standard list.  

All constraints are given in normalized forms which are suitable for GA so that the objective function 
can be arranged in an unconstrained manner. The displacement constraint is: 

i
i u

i

g ( x ) 1 0 i 1,...,ns



     (2)

Where, Δi is relative interstorey drift in storey i, while Δi
u is its limit (storey height/300 in the numerical 

examples) and ns is the total number of storeys. 
The strength (or stress) constraints are taken from the AISC-LRFD [33]. For members subjected to 

bending moments and axial force, these constraints are expressed in terms of the following interaction 
formulas: 

uyu u ux
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                 
 (4)

Where, nm is the total number of members in the frame; Pu is the required axial strength (tension or 
compression); Pn is the nominal axial strength (tension or compression);   is the resistance factor 
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( t   0.90 for tension, c   0.85 for compression); Mux and Muy are the required flexural strengths 
about the x and y axes, respectively (for plane frames, Muy = 0); Mnx and Mny are the nominal flexural 
strengths about, respectively, the x and y axes and b  is the flexural resistance factor ( b  0.90). The 
nominal tensile strength of a member is computed as: 
 

n g yP A F  (5)

and the nominal compressive strength of a member is computed as: 

n g crP A F  (6)

 2
c
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In the above relations, Ag is the cross-sectional area of the member; K is the effective length factor; E is 
the modulus of elasticity; r is the radius of gyration; L is the member length, and Fy is the yield stress of 
steel. Also, c should be calculated about each of the two main axes and the maximum value will be the 
governing value for calculating Fcr. The effective length factor K, for braced and unbraced frames is 
calculated from the following approximate equations given by Dumonteil [34]: 

For unbraced members: 
 

A B A B

A B

1.6G G 4( G G ) 7.5
K

G G 7.5

  


 
(10)

For braced members: 
 

A B A B

A B A B

3G G 1.4( G G ) 0.64
K

3G G 2.0( G G ) 1.28

  


   (11)

 
where, GA and GB refer to stiffness ratio or relative stiffness of a column at its two ends. 

The required flexural strength of beams and columns considering second order effects is computed 
from the following relationship [33]: 
 

u 1 nt 2 ltM B M B M  (12) 
 
where, Mnt is the required flexural strength in a member assuming there is no lateral translation (nt) in the 
frame, and Mlt is the required flexural strength in a member as a result of lateral translation (lt) of the 
frame only. Also, the term B1 accounts for the amplification of the first-order nt moment associated with 
member curvature effects. B1 is defined by: 
 

m
1

u

e1

C
B

P
1

P


  (13) 

 
where, Cm is the equivalent moment factor. For compression members subjected to transverse loading only 
at their ends this factor is given by m 1 2C 0.4 0.6( M / M )  , where M1 / M2 is the ratio of the smaller to 
larger end moments in the non-sway case. Also, Pu is the required axial compressive strength for the 
member under consideration and Pe1 is the Euler buckling load [33]. 
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In Eq. 12, B2 accounts for the amplification of the member end moments associated with lateral 
translation of the storey as expressed by any of the following equations: 
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where, Pu is the required axial strength of all columns in a storey; Δ0h is the lateral interstorey drift; H is 

the sum of all storey horizontal forces producing  Δ0h and  L is the storey height. Also, 
2

e2 2
2
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
 , 

where K2 is in the plane of bending assuming that side-sway is allowed. 
When the required axial compressive strength of a column exceeds the Euler load limit, in cases 

when side-sway is prevented (Pe1), Eqs. (3) and (4) are no longer valid and the following constraint must 
be used instead: 

u
i i

e1

P
g ( x ) ( ) 1.0 0 i 1,...,nc

P
    (15)

where, nc is the total number of column members in the frame and the other terms are as before. 
The constructability constraint for the requirement that the selected W-shapes decrease in size as the 

columns extend from the base upwards is given as: 
 

cu
i i

cl

d
g ( x ) ( ) 1.0 0 i 1,...,nj

d
    (16)

where, nj is the total number of column to column joints and dcu and dcl are depths of steel sections 
selected for the upper and lower floor columns, respectively. 

After calculating the objective function and the constraints, the unconstrained (or penalized) objective 
function F(x) can be written according to the static penalty function method [35] as: 
 

njnm ns
W cons.

1 i 2 i 3 i
i 1 i 1 i 1

F( x ) f C C C   
  

      (17)
 
where Wf  is the normalized objective function relative to the maximum possible weight of the frame and 
is defined as W

maxf W( x ) / W . Also, αi are the penalty coefficients used to tune the intensity of 
penalization as a whole. In the numerical examples of the present study these coefficients are set to 

1  1/3 and 2 3   1. Also, Ci
σ, Ci

Δ, and Ci
cons. are constraint violations for, respectively, the interaction 

formula (or the Euler load limit, whichever is applicable), interstorey drift, and the constructability 
requirements. The constraint violation Ci is expressed as [6]: 
 

i

i i i
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0 if g ( x ) 0

C g ( x ) if 0 g ( x ) 1.0

g ( x ) if g ( x ) 1.0


  
   

(18)

 
where, gi(x) are normalized constraints as defined in this section. 
 

3. MODIFIED MULTIPLE-DEME GENETIC ALGORITHM 
 

This section provides a brief description of the main features of the MMDGA. More details on this new 
method can be found in Reference [32].  
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- Reproduction operators: The MMDGA incorporates three special types of crossover operators, referred 
to as the ‘boosted’, ‘geometric’, and ‘boosted geometric’ as well as a special mutation operator called 
‘enhancing’ mutation, along with the standard crossover, the standard mutation and the sorting mutation of 
Foley and Schinler [14].  

A boosted crossover forms a child with the best genes from two parents. First, for every gene of each 
of the two parents a penalized fitness value, as given by Eq. (19) is accounted. Then the best gene (the 
gene with the lowest penalized fitness value) will be the corresponding gene of the offspring chromosome. 
The penalized fitness value of member i is defined as: 
 

1
W

i i iF f C    (19) 
 
where, fi

W is the normalized weight of the i-th member, i.e. the ratio of the element weight relative to the 
maximum possible weight of that member according to the available profile list. If a gene in a 
chromosome indicates a group of columns or a group of beams (when section grouping is utilized for 
reducing the size of a problem), the penalized fitness value of that gene will be the sum of the 
corresponding values for all members in the group. 

A geometric crossover is similar to the classical crossover operator but it exchanges physically 
meaningful groups of genes between parents. In a chromosome representing a 2D frame, the union of 
columns on one axis, members of a storey, and members of a bay can form physically meaningful groups 
of genes. 

A boosted geometric crossover is a combination of the geometric and the boosted crossover in which 
the exchange between two parents is at group level, while for each group of genes a partial fitness has 
been assigned. The type of members group to be crossed is selected randomly for each pair of parents. For 
crossover in the storey level, for every storey i of each of the two parents, a penalized fitness value is 
determined using Eq. (20) and the winner storey will be the corresponding storey of the offspring 
chromosome. 

 1 2

nm,i
W

i j j i
j 1

F f C C  


   (20)

 
In Eq. (20), nm,i denotes the total number of members in i-th storey. Other terms are as described 
previously. 

For crossover in the axis level, for every axis i of each of the two parents, a penalized fitness value is 
calculated according to Eq. (21) and the winner axis will be the corresponding axis of the child 
chromosome, while the other genes of the child chromosome (beam sections) are chosen from the better 
parent (parent with the better penalized objective function). i.e.: 
 

 1 3

nj ,inc,i
W cons.

i j j k
j 1 k 1

F f C C 
 

    (21) 

 
where, nc,i and nj,i denote the total number of columns and the number of column to column joints in i-th 
axis, respectively. 

Similarly, for crossover in the bay level, for any bay i of each of the two parents, a penalized fitness 
value is calculated ( Eq. 22) and the winner bay will be the corresponding bay of the child chromosome, 
while the other genes of the child chromosome (column sections) are chosen from the better parent. 
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nb,i
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i j j
j 1
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where, nb,i  denotes the total number of beams in the i-th bay. 

In a sorting mutation all columns in each axis and all beams in each bay will be sorted from the 

lowest storey upwards, while an enhancing mutation checks every gene of a parent and improves any 

defects that may exist and, when possible, lightens the frame by reducing the size of members. 

These operators are used in conjunction with the multiple-deme (multi-population) genetic algorithm 

in which the population is divided into several subpopulations, each of which has its own controlling 

parameters. The multiple-deme GA increases population diversity and enhances search performance. In 

this algorithm, after a certain number of generations, the migration is executed by which a number of best 

individuals from the source subpopulations are sent to replace the worst individuals of the destination 

subpopulations. The migration mechanism for exchanging beneficial genetic information among the 

subpopulations is applied to encourage the proliferation of good traits throughout the whole population. 

Three main parameters of multiple-deme GA in need of appropriate tuning includes: (i) migration rate; (ii) 

migration interval; and (iii) migration policy. More details on this subject can be found in reference [30]. 

In this study an integer encoding (a type of real valued encoding) is used instead of binary encoding 

for chromosome representation. Each chromosome has a length of nm, the total number of the frame’s 

members or groups, in which each gene can take an integer number corresponding to the code of section 

in the profile list. The arrangement of the genes in the chromosome is shown in Fig. 1. In this figure, as an 

example, it is assumed that the beam sections can be selected from the entire 267 W-shape standard 

sections of AISC list while column sections can only be selected from 36, W14 standard sections. Also in 

this study, a rank scaling approach is used for fitness scaling of the penalized objective functions in order 

to remove the defect of tuning good penalty coefficient in the static penalty function method [32]. 

Based on the above descriptions an algorithm is coded in MATLAB programming space. The 

analysis of each frame is conducted using a displacement based finite element method. The pseudo-code 

presented in Fig. 2 shows the process sequence of the MMDGA with forward migration. 

 
4. DESIGN EXAMPLES 

 
Utilizing the developed program, optimal design of three benchmark problems is performed. Each 

problem is solved in two different cases; one without considering the second order effects, i.e. assuming a 

linear elastic analysis while B1=B2=1 (case 1), and another conducting a linear elastic analysis followed by 

enforcing the AISC-LRFD specification requirements in considering the P-δ and P-Δ effects; i.e. taking 

into account B1 and B2 multipliers (case 2). The GA with modified operators (MGA) and the modified 

multiple-deme GA (MMDGA) are applied to these problems and the results are compared to solutions 

carried out by others and reported in literature. Due to the stochastic nature of the optimization methods 

and also to avoid the effect of initial solutions on the final results, each example is solved 30 times. For 

every set of these 30 runs, the best, the worst and the average results are reported. Also, the standard 

deviation and the coefficient of variation of results, showing the robustness of each algorithm, are 

presented. In all design examples, the in-plane effective length factors of the column members are 

calculated as Kx > 0 while the out-of-plane effective length factor is specified as Ky = 1.0. Each column is 

considered as non-braced along its length while the unbraced length for beam members is specified in 

each problem separately. Also, in line with other works, the shear deformations are ignored. 
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Fig. 1. Constructing a chromosome in the used GA 

 
 
Initialize P subpopulations of size ni (i=1:P) 
Generation = 1 
for (max. Generation) do 

for each subpopulation do in parallel 
Evaluate unconstrained objective function for each individual from F.E.A. 
Do fitness scaling of individuals 
Select the parents 
if Generation mod (migration interval) = 0 then 

Send (k×ni) best individuals of ith deme to (i+1)th deme 
Replace (k×ni) individuals in the (i+1)th deme 

end if 
Produce the next generation: 

Send elites to the next generation without any modification 
Produce the crossover children by standard and modified crossover operators 
Produce the mutation children by standard and modified mutation operators 

end parallel for 
Generation = Generation + 1 

end for 
Note:  k= migration rate;  F.E.A.= Finite Element Analysis  

Fig. 2. The pseudo-code for MMDGA with forward migration 
 

 
 

Profile List 

Chromosome Representation 
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a) Two-bay, three-storey frame 
 
The first benchmark problem originally presented by Wood et al. [36] is a two-bay, three-storey frame 

undergoing a single-load case as shown in Fig. 3. This frame was optimized by Hall et al. [37] in 
accordance with the AISC-LRFD specification using an OC method. It was also designed subject to the 
same specification by Pezeshk et al. [6] using a GA and by Camp et al. [24] using an ACO method. The 
values of the uniform and the point loads in Fig. 3 are factored loads appropriate for direct application of 
the strength/stability provisions of the AISC-LRFD specification. Displacement constraints were not 
imposed for the design. A modulus of elasticity of E = 200 GPa (29,000 ksi), a yield stress of Fy = 248.2 
MPa (36 ksi) and a material unit weight of γ = 77.08 kN/m3 (2.84×10-4 kip/in3) were used. The unbraced 
length factor for each beam member was specified to be 0.167. Imposed fabrication conditions require that 
all six beams be of the same W-shape and that all nine columns have identical sections. The beam group 
section may be chosen from the entire 267 W-shapes of AISC standard list, however, the column group 
section is limited to W10 sections (18 W-shapes). Therefore, the resulting search space has a size of 4,806 
designs. 

 

 
Fig. 3. Two-bay, three-storey problem 

 
This problem is solved here again using the MGA and MMDGA methods. The parameter settings of 

the MGA and MMDGA for this problem are listed in Table 1. These parameters were determined through 
numerical experiments through multiple simulation runs. In each generation, the total number of offspring 
created by crossover and mutation operators is equal to the population size minus the number of elites. In 
this table the ‘crossover fraction’ denotes the fraction of the offspring from the remaining population, 
which must be produced by the crossover operator. The rest of the children will be produced by the 
mutation operator. Also, each crossover and mutation operator type creates a percentage of the operator’s 
offspring as specified in Table 1. It is noted that because in this example beam sections are identical for all 
beam elements as are all column elements, the geometric and the boosted geometric crossover operators, 
as well as the sorting mutation operator, have no meaning; therefore, their percentage values are set to 
zero. Also, as there are only two design variables (the chromosome length is equal to two), only one point 
crossover from the three standard crossover types is usable. Moreover, for comparability of the results, a 
total population size of 40 over 30 generations is used for both MGA and MMDGA methods. All other 
parameters are kept the same. 

The problem was run 30 times for each of the two cases using the two GA-based algorithm totalling 
120 runs (2×2×30=120). The following is a summary of the findings. 
 
Case 1. Ignoring the second order effects 
 

Table 2 shows the best designs and a statistical report of the results obtained for each of the MGA 
and MMDGA solutions over 30 runs. In this table, it can be observed that both algorithms produced a best 
design with W1060 for columns and W2462 for beams, corresponding to a weight of 83.591 kN. Hall et 



On the performance of a modified multiple-deme… 
 

August 2013                                                                                IJST, Transactions of Civil Engineering, Volume 37, Number C2      

177

al. [37], Pezeshk et al. [6] and Camp et al. [24] all reported the same optimal design for this frame. It is 
worth mentioning that an exhaustive search has revealed no better solution for this problem [6]. 
 

Table 1. GA parameters used for two-bay, three-storey problem 
 

 MGA MMDGA 
Population size 40 10 
Number of demes 1 4 
Number of elites 2 1 
Crossover fraction 60% 60% 
Standard crossover percentage 60% 60% 
Geometric crossover percentage 0% 0% 
Boosted crossover percentage 40% 40% 
Boosted geometric crossover percentage 0% 0% 
Standard mutation percentage 60% 60% 
Sorting mutation percentage 0% 0% 
Enhancing mutation percentage 40% 40% 
Standard mutation probability 0.2 0.2 
Migration rate - 10% 
Migration interval - 5 
Migration direction - Forward 

 
Table 2 also compares the results provided by MGA and MMDGA solutions with those obtained by 

others. The GA and ACO respectively required an average of approximately 1,800 and 3,000 frame 
analyses to converge and terminate. These are substantially more than the 230 and 220 frame analyses 
required by the MGA and MMDGA methods, respectively. Thus, our proposed algorithms have improved 
the standard GA’s performance and resulted in a significant reduction in computational effort. This is 
while the robustness of the GA has also improved. Also, as we can observe in Table 2, in over 30 runs of 
the MGA and MMDGA solutions, we have reached a coefficient of variation of 3.9% and 2.8% 
respectively. These are also appreciably better than the values of 26.3% and 8.8%, obtained respectively in 
GA and ACO solutions, indicating the robustness of the two former algorithms. However, the MGA and 
MMDGA have found the best solution in 53% and 63% of the runs, which is less than the 84% obtained 
by ACO. Nevertheless, when we consider the substantial difference between the required number of frame 
analyses by ACO with those of the MGA and MMDGA, the superiority of the latter algorithms is 
revealed. Moreover, comparing the results of the MGA and MMDGA methods, Table 2 shows that the 
MMDGA has produced better results. 
 

Table 2. Design results for two-bay, three-storey frame; case 1 
 

 Hall et al. 
[37] (OC) 

Pezeshk et al. 
[6] (GA) 

Camp et al. 
[24] (ACO)

This study 
MGA MMDGA 

Best design, column section W1060 W1060 W1060 W1060 W1060 
Best design, beam section W2462 W2462 W2462 W2462 W2462 
Best weight (kN) 83.591 83.591 83.591 83.591 83.591 
Worst weight (kN) - 157.654 N.R. 94.774 87.253 
Average weight (kN) - 98.217 85.241 85.301 84.658 
Standard deviation (kN) - 25.880 7.531 3.327 2.370 
Coefficient of variation - 26.3% 8.8% 3.9% 2.8% 
Average no. of F.E.A. N.R. 1,800 3,000 230 220 
Average no. of F.E.A. for initially best design N.R. 900 880 160 175 
Percentage of the best design in different runs - 20% 84% 53 % 63% 
Note: 1 N=0.225 lb; N.R.= Not Reported; F.E.A.= Finite Element Analysis 

 
It is noted that MMDGA is sensitive to the number of designated demes. The problem was run with 

different number of demes to observe its effect on the quality of solution. The number of demes 
investigated varied as 2, 4 and 8 with the corresponding subpopulation sizes of 20, 10 and 5, respectively, 
resulting in a total population size of 40. In all the runs, migration direction was set to ‘forward’. For the 
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number of demes equal to 2, the solution reached the frame weight of 85.281 kN with a 3.8% coefficient 
of variation in the 30 runs. These values are 84.658 kN and 2.8%, respectively, when the number of demes 
is set equal to 4; and 85.024 kN and 6.5%, respectively, when the number of demes is considered to be 8. 
Therefore, the number of demes equal to 4 has produced the best results. Also, when the number of demes 
is very large (say equal to 8 in this problem), the worst results are obtained. This may be attributed to the 
small size of the subpopulations resulting in a reduced search space and therefore low diversity.  

The solution’s quality is also sensitive to the direction of migration. The problem was solved again 
using the previous number of demes, while the migration was allowed in ‘both’ directions. In this case, 
only when the number of demes is set equal to 8 has the algorithm produced a better result compared to 
the forward migration case, while for the other two number of demes (2 and 4), the forward migration 
direction has produced better results. Therefore, a number of demes equal to 4 and a migration in forward 
direction are found to be the best parameter settings for MMDGA in this problem. 

Figure 4 shows a typical convergence history for a best design in each of the MGA and MMDGA 
methods. This figure highlights the rapid convergence associated with both proposed algorithms, due to 
utilizing the modified GA reproduction operators. Also, Fig. 5a shows that all members of the optimum 
design satisfy the relevant strength constraints. The maximum value of the strength (stress) ratio is 
obtained as 91.13% for all members. 
 

 
Fig. 4. Convergence history of two-bay, three-storey frame (case 1) 

 
Fig. 5. Stress ratios of two-bay, three-storey frame: (a) Case 1 (b) Case 2 
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Case 2. Considering the second order effects  
 

In this case the linear analysis was followed by the second order effects considerations of the AISC-
LRFD specification. The best designs, also the statistical report of each of the MGA and MMDGA 
methods over 30 runs are summarized in Table 3. From this table it can be deduced that the optimal design 
consists of W1060 sections for columns and W2462 sections for beams, with a total frame weight of 
83.591 kN; a weight similar to the case where the second order effects were ignored. This may be 
attributed to the low level of gravity loads on the columns resulting in small values for the moment 
amplification factors. This is deduced from checking the B1 and B2 factors of the best design where B1 
equals 1.000 for all columns and B2 has a maximum value of 1.027 for all storeys. Fig. 5b also shows that 
all members of the optimum design satisfy the strength constraints. The maximum value of the strength 
(stress) ratio, in all members, is 91.44%. This figure is very close to the corresponding figure obtained for 
the Case 1 solution, evidently due to the minor effects of the B1 and B2 multipliers in this problem. 

 
Table 3. Design results for two-bay, three-storey frame; case 2 

 
 Pezeshk et al. 

[6] (GA) 
This study 

 MGA MMDGA 
Best design, beam section W2462 W2462 W2462 
Best design, column section W1060 W1060 W1060 
Best weight (kN) 83.591 83.591 83.591 
Worst weight (kN) 138.998 110.340 89.379 
Average weight (kN) 89.337 88.542 83.963 
Standard deviation (kN) 10.262 2.910 1.478 
Coefficient of variation 11.5% 2.6% 1.7% 
Average no. of F.E.A. 1,800 235 250 
Average no. of F.E.A. for initially best design N.R. 160 160 
Percentage of the best design in different runs 43% 47% 67% 
Note:  1 N=0.225 lb;  N.R.= Not Reported;  F.E.A.= Finite Element Analysis 

 
Table 3 also compares the MGA and MMDGA results with those obtained by Pezeshk et al. [6] using 

a standard GA. Both MGA and MMDGA algorithms have produced better results compared to the GA 
developed by Pezeshk et al. in terms of the worst weight, average weight, coefficient of variation, average 
number of finite element analysis, as well as the percentage of obtaining the best design in 30 runs; the 
MMDGA algorithm again fares better than the MGA. 

 
b) One-bay, ten-storey frame 

 
A one-bay, ten-storey frame consisting of 30 members, originally presented by Pezeshk et al. [6], is 

selected as the second benchmark problem (see Fig. 6). This frame was designed by Pezeshk et al. [6] 
using a standard GA. The same frame was also designed by Camp et al. [24] using an ACO, by Degertekin 
[26] using an HS, and by Kaveh and Talatahari [28] using an improved ACO (IACO). The frame was 
designed according to the AISC-LRFD specification [33] and a displacement constraint; interstorey drift < 
storey height/300, was imposed. The modulus of elasticity was assumed to be E = 200 GPa and a yield 
stress of Fy = 248.2 MPa was used. Fabrication conditions requiring the same beam section be used for 
every three consecutive storeys, beginning at the foundation, as well as the same column section to be 
used in every two consecutive storeys were implemented. The element grouping resulted in four beam 
sections and five column sections for a total of nine design variables. Each of the four beam element 
groups could be chosen from the entire 267 W-shapes of the AISC standard list, and the five column 
element groups were limited to the W12 and W14 sections (66 W-shapes). Therefore, the resulting search 
space had a size of approximately 6.36(1018) designs. For each beam member, the unbraced length was 
specified to be one-fifth of the span. 
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Fig. 6. One-bay, ten-storey problem 

 
Similar to the previous example, 30 runs were conducted for each of the two design procedures and 

for each of the two cases, totalling 120 runs. Each run was limited to 60 generations. The parameter 
settings of MGA and MMDGA for this problem are listed in Table 4. It is noted that all the GA 
parameters are identical for both MGA and MMDGA procedures, except for the number of demes and the 
population size of each deme. However, the total population size was assumed to be the same for both 
algorithms so that the results could be compared. Also, because the frame has only one bay, the geometric 
and boosted geometric crossover in the level of bay would be redundant. The following is a summary of 
results for this problem. 

 
Table 4. GA parameters used for one-bay, ten-storey problem 

 
 MGA MMDGA 

Population size 60 20 
Number of demes 1 3 
Number of elites 2 2 
Crossover fraction 60% 60% 
Standard crossover percentage 30% 30% 
Geometric crossover percentage 20% 20% 
Boosted crossover percentage 30% 30% 
Boosted geometric crossover percentage 20% 20% 
Standard mutation percentage 30% 30% 
Sorting mutation percentage 10% 10% 
Enhancing mutation percentage 60% 60% 
Standard mutation probability 0.2 0.2 
Migration rate - 10% 
Migration interval - 10 
Migration direction - Both 
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Case 1. Ignoring the second order effects 
 
Table 5 lists the optimum design details developed by the MGA and MMDGA and compares the 

results with those obtained through other metaheuristic algorithms. The best MGA design yielded a frame 
4.1% lighter than the one obtained by the standard GA. It also improved by 0.25% on the optimum 
solution by ACO. However, the MGA design was heavier than the designs obtained by HS and IACO 
algorithms. On the other hand, MMDGA showed much better results. The best MMDGA design resulted 
in a frame that weighs 272.877 kN. This is 5.8% lighter than the design of the standard GA, 2.0% lighter 
than the design of ACO, 0.84% lighter than the design of HS and 0.76% lighter than the design obtained 
by IACO. Both modified GA algorithms have improved on the standard GA’s performance, indicating the 
effectiveness of the proposed modifications to the GA’s operators in enhancing the results. 

 
Table 5. Design details comparison of one-bay, ten-storey frame; case 1 

 
Element group AISC W-shapes 

Pezeshk et al.  
[6] (GA) 

Camp et al. 
[24] (ACO) 

Degertekin 
[26] (HS) 

Kaveh & Talatahari 
[28] (IACO)  

This study 
MGA MMDGA 

Beam 1-3S W33118 W30108 W33118 W33118 W36135 W33118 
Beam 4-6S W3090 W3090 W3099 W3090 W3099 W30108 
Beam 7-9S W2784 W2784 W2476 W2476 W3090 W2476 
Beam 10S W2455 W2144 W1846 W1430 W1840 W1640 
Column 1-2S W14233 W14233 W14211 W14233 W14211 W12230 
Column 3-4S W14176 W14176 W14176 W14176 W14159 W14159 
Column 5-6S W14159 W14145 W14145 W14145 W14132 W14120 
Column 7-8S W1499 W1499 W1490 W1490 W1287 W1490 
Column 9-10S W1279 W1265 W1461 W1265 W1253 W1258 
       
Weight (kN) 289.739 278.503 275.185 274.990 277.819 272.877 
Note:  1 N=0.225 lb;  S=Storey 
 
Table 6 gives a statistical report on the 30 runs of both the MGA and MMDGA solutions and 

compares the results with those obtained using other solutions. As can be observed, the heaviest frame 
weight in the 30 runs for both the MGA and MMDGA solutions is 285.458 kN. This is still lighter than 
the best design obtained by the standard GA, reported by Pezeshk et al. [6] as weighing 289.739 kN. Also, 
the MMDGA algorithm has produced better results in terms of average weight, standard deviation, and 
coefficient of variation compared to not only the standard GA, but also the MGA, ACO, HS and IACO 
methods. Moreover, in a series of 30 runs, the MMDGA produced its best solution in 43% of the runs 
which is better than both the ACO and MGA algorithms with corresponding values of 37% and 33%, 
respectively.  

 
Table 6. Design results for one-bay, ten-storey frame; case 1 

 
 Pezeshk et al.  

[6] (GA) 
Camp et al. 
[24] (ACO) 

Degertekin 
[26] (HS) 

Kaveh & 
Talatahari 
[28] (IACO)  

This study 
MGA MMDGA 

Best weight (kN) 289.739 278.503 275.185 274.990 277.819 272.877 
Worst weight (kN) N.R. N.R. N.R. 285.870 285.458 284.078 
Average weight (kN) N.R. 281.608 279.895 278.040 280.378 279.487 
Standard deviation (kN) N.R. 3.042 7.740 2.740 3.103 2.860 
Coefficient of variation N.R. 1.1% 2.8% 1.0% 1.1% 1.0% 
Average no. of F.E.A. 3,000 8,300 3,600 2,500 2,400 2,550 
Average no. of F.E.A. for initially 
best design 

2,400 5,100 2,600 N.R. 1,600 1,800 

Percentage of the best design in 
different runs 

N.R. 37% N.R. N.R. 33% 43% 

Note:  1 N=0.225 lb;  N.R.= Not Reported;  F.E.A.= Finite Element Analysis 
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Regarding the level of computational effort, the MGA and MMDGA produced their optimum designs 
with averages of 2,400 and 2,550 frame analyses, respectively. These are not only less than the 3,000 
analyses required by the standard GA solution, but are also much less than the 8,300 and 3,600 analyses 
required by the ACO and HS algorithms, respectively and are in par with the number of analyses required 
by IACO. 

Figure 7 shows a typical convergence history for a best design of the one-bay, ten-storey frame in the 
MGA and MMDGA solution. In this figure, the vertical axis is in logarithmic scale. A rapid convergence 
for both the MGA and MMDGA solutions can be seen in this figure. This is attributed to the performance 
of the proposed modified GA reproduction operators. 
 

 
Fig. 7. Convergence history of one-bay, ten-storey frame (case 1) 

 
Moreover, another advantage of the MMDGA algorithm in solving this problem can be seen in the 

fact that the combined strength constraint has a maximum ratio of 100.00% in all the members and the 
interstorey drift constraint has a maximum ratio of 98.86% in all the storeys as shown in Figs. 8a and 8b, 
respectively. Therefore, in this frame both the element strength (stress) ratio and the interstorey drift 
constraints dominate the optimum design. 
 

 
Fig. 8. (a) Stress ratios (b) Drift ratios; of one-bay, ten-storey frame (case 1) 

 
In order that the effects of the number of demes on the quality of solution could be ascertained, 

similar to the previous example, the problem was run with 2, 3 and 6 demes corresponding to 
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subpopulation sizes of 30, 20 and 10, respectively. It is observed that, although all three cases were 
capable of producing the optimum solution, the 3 demes solution with migration in both directions 
resulted in better average weight, standard deviation and coefficient of variation.  

 
Case 2. Considering the second order effects  

 
Table 7 shows details of the best designs reached in the MGA and MMDGA solutions, as well as the  

results obtained by Pezeshk et al. [6] utilizing a standard GA. The MGA and MMDGA algorithms yielded 
respectively 7.6% and 8.0%, lighter frames compared to the one obtained by the standard GA. The 
average weight of the MGA and MMDGA designs are respectively 288.345 kN and 286.227 kN with 
coefficients of variation of 1.3% and 1.0%. Pezeshk et al [6] have not reported a corresponding value; 
therefore, comparisons cannot be made. Also, the MGA and MMDGA algorithms produced optimum 
designs at approximately 1,500 and 1,750 frame analyses, respectively; both less than the 2,400 frame 
analyses required by the standard GA to reach the first best solution. The MGA and MMDGA algorithms 
also terminated the search process after around 2,250 and 2,400 frame analyses, respectively. These are, 
again, less than the 3,000 frame analyses required by the standard GA to terminate the optimization 
process. 

 
Table 7. Design details comparison of one-bay, ten-storey frame; case 2 

 
Element group AISC W-shapes 

Pezeshk et al. 
[6] (GA) 

This study 
MGA MMDGA

Beam 1-3S W36150 W36135 W33118
Beam 4-6S W3090 W30116 W3099 
Beam 7-9S W2784 W2794 W3099 
Beam 10S W1453 W2150 W1640 
Column 1-2S W14233 W14211 W14233
Column 3-4S W14211 W14145 W14159
Column 5-6S W12152 W14120 W14145
Column 7-8S W12106 W1490 W1287 
Column 9-10S W1068 W1258 W1253 
    
Weight (kN) 307.408 284.078 282.833 
Note:  1 N=0.225 lb;  S=Storey 

 
The best optimum design is evidently produced by the MMDGA method and has a maximum 

combined strength (stress) ratio of 100.20% in all members; this is at the boundary of the feasible region. 
Also, the interstorey drift constraint has a maximum ratio of 98.55% in all the storeys. 

 
c) Three-bay, 24-storey frame  

 
The last benchmark example is the three-bay, 24-storey steel frame, consisting of 168 members and 

undergoing a single load case as shown in Fig. 9. This frame was originally designed by Davison and 
Adams [38]. It was also designed by Camp et al. [24] using an ACO algorithm, by Degertekin [26] using 
an HS algorithm, by Kaveh and Talatahari [28] using an improved ACO (IACO) algorithm, and again by 
Kaveh and Talatahari [23] using an imperialist competitive algorithm (ICA). This frame was optimized 
according to the AISC-LRFD specification [33] subject to a displacement constraint of the form: 
interstorey drift < storey height/300. A modulus of elasticity of E = 205 GPa (29,732 ksi) and a yield 
stress of Fy = 230.3 MPa (33.4 ksi) were also used. The fabrication conditions required grouping the 
members as shown in Fig. 9, and resulted in 16 column sections and 4 beam sections for a total of 20 
design variables. Each of the 4 beam element groups could be chosen from all the 267 W-shapes listed in 
AISC standard list, while the 16 column element groups were limited to W14 sections (37 W-shapes). 
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Therefore, the size of the resulting search space was approximately 6.27(1034) designs. All beams and 
columns were considered unbraced along their lengths. 

 

 
 

Fig. 9 Three-bay, 24-storey problem 
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The parameter settings of the MGA and the MMDGA are the same as the previous problem (see 
Table 4) except that the population size for the MGA is set to 80 and the number of demes is set to 4, each 
deme having 20 individuals. Also, the runs were limited to 100 generations. The following is a summary 
of the results. 

 
Case 1. Ignoring the second order effects 

 
Table 8 lists design details developed by the MGA, the MMDGA, the ACO [24], the HS [26], the 

IACO [28] and the ICA [23]. The best MGA design resulted in a frame that weighs 907.769 kN. This is 
7.4% lighter than the design obtained by the ACO, 5.0% lighter than the result of the HS, 6.2% lighter 
than that of the IACO, and 4.1% lighter than the design obtained by ICA. The MMDGA has produced 
even better results. The best MMDGA design produced a frame that weighs 898.129 kN, which is 8.4% 
lighter than that of the ACO algorithm, 6.0% lighter than the design of the HS algorithm, 7.2% lighter than 
the IACO design and 5.1% lighter than the design obtained by the ICA. 

 
Table 8. Design details comparison of three-bay, 24-storey frame; case 1 

 
Element 
group no. 

AISC W-shapes 
Camp et al. 
[24] (ACO) 

Degertekin 
[26] (HS) 

Kaveh & Talatahari 
[28] (IACO)  

Kaveh & Talatahari
[23] (ICA)  

This study 
MGA MMDGA 

1 W3090 W30×90 W30×99 W30×90 W30×90 W30X90 
2 W818 W10×22 W16×26 W21×50 W8×18 W8X15 
3 W2455 W18×40 W18×35 W24×55 W21×44 W24X55 
4 W821 W12×16 W14×22 W8×28 W6×9 W10X15 
5 W14145 W14×176 W14×145 W14×109 W14×159 W14X159 
6 W14132 W14×176 W14×132 W14×159 W14×145 W14X132 
7 W14132 W14×132 W14×120 W14×120 W14×109 W14X90 
8 W14132 W14×109 W14×109 W14×90 W14×90 W14X90 
9 W1468 W14×82 W14×48 W14×74 W14×61 W14X61 
10 W1453 W14×74 W14×48 W14×68 W14×48 W14X48 
11 W1443 W14×34 W14×34 W14×30 W14×48 W14X48 
12 W1443 W14×22 W14×30 W14×38 W14×22 W14X22 
13 W14145 W14×145 W14×159 W14×159 W14×120 W14X109 
14 W14145 W14×132 W14×120 W14×132 W14×109 W14X99 
15 W14120 W14×109 W14×109 W14×99 W14×109 W14X99 
16 W1490 W14×82 W14×99 W14×82 W14×82 W14X74 
17 W1490 W14×61 W14×82 W14×68 W14×74 W14X68 
18 W1461 W14×48 W14×53 W14×48 W14×53 W14X53 
19 W1430 W14×30 W14×38 W14×34 W14×22 W14X26 
20 W1426 W14×22 W14×26 W14×22 W14×22 W14X22 
       
Weight (kN) 980.677 955.745 967.330 946.250 907.769 898.129 
Note:  1 N=0.225 lb 

 
The MGA and MMDGA solutions are further compared with those obtained by other metaheuristics 

in Table 9. It can be seen that both the MGA and MMDGA have produced either better or comparable 
results in terms of the average weight, standard deviation and coefficient of variation compared to the 
ACO, HS, IACO and ICA methods. In 30 runs, the MGA and MMDGA methods required approximately 
5,000 and 5,150 frame analyses, respectively, to terminate the evolution process; these are significantly 
less than the 15,500 analyses required by the ACO, the 14,651 analyses required by the HS, and the 7,500 
analyses performed by the ICA to termination. However, in this problem, on the number of required 
analyses the IACO algorithm appeared more efficient than both the MGA and MMDGA algorithms with 
only 3,500 frame analyses. 
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Table 9. Design results for three-bay, 24-storey frame; case 1 
 
 Camp et al. 

[24] (ACO)
Degertekin 
[26] (HS) 

Kaveh & 
Talatahari 
[28] (IACO) 

Kaveh & 
Talatahari 
[23] (ICA)  

This study 
MGA MMDGA

Best weight (kN) 980.677 955.745 967.330 946.250 907.769 898.129 
Worst weight (kN) N.R. N.R. N.R. N.R. 968.685 954.892 
Average weight (kN) 1,021.111 990.263 916.900 N.R. 922.817 919.925 
Standard deviation (kN) 20.288 25.800 12.59 N.R. 18.982 15.409 
Coefficient of variation 2.1% 3.6% 1.4% N.R. 2.1% 1.7% 
Average no. of F.E.A. 15,500 14,651 3,500 7,500 5,000 5,150 
Average no. of F.E.A. for 
initially best design 

12,500 9,924 N.R. N.R. 4,200 4,750 

Percentage of the best design in 
different runs 

N.R. N.R. N.R. N.R. 27% 37% 

Note:  1 N=0.225 lb;  N.R.= Not Reported;  F.E.A.= Finite Element Analysis 
 
Figure 10 shows typical convergence history for one of the best designs of both the MGA and 

MMDGA. In this figure, a rapid decrease in the MGA optimization process curve can be observed in the 
initial stages of the evolution. On the other hand, the MMDGA appears to follow a gradual approach 
towards its best solution, nevertheless it finally reaches a better solution. 

 

 
Fig. 10. Convergence history of three-bay, 24-storey frame (case 1) 

 
It should be noted that in the best design, obtained by the MMDGA, the interstorey drift controls the 

design process; the strength requirements for both the beams and the columns do not appear to be critical 
to the design. The interstorey drift constraint has a maximum ratio of 100.01% in all the storeys, whereas, 
the maximum combined strength (stress) ratio has a value of 80.80% as shown in Fig. 11. It is also 
interesting to note that in the best design the interstorey drift constraint is within 90% of its upper limit in 
17 storeys out of 24 as shown in Fig. 11b. 

 

 
Fig. 11. (a) Stress ratios (b) Drift ratios; of three-bay, 24-storey frame (case 1) 
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Case 2. Considering the second order effects 
 
For this case, also 30 runs were made in solutions by the MGA and MMDGA. It is interesting to 

observe that the best design in this case is the same design as that of the case 1. It was obtained when the 
second order effects were considered. This is because the AISC-LRFD code of practice magnifies the 
sway and non-sway moments through the B1 and B2 multipliers and the lateral displacement of the frame is 
not amplified. Also, the best design for this problem was found in the previous case to be governed by the 
interstorey drift which is not altered in this case. 

 
d) On the performance of each reproduction operator  

 
To investigate the performance of the different GA operators used, the percentage of the ‘successful 

children’ relative to the total children created by each operator in the one-bay, ten-storey frame (case 1) as 
a typical case, is shown in Fig. 12a. Here, the term ‘successful’ means that the child is better than, or at 
least has an equal score to that of its parent or parents. Also, Fig. 12b shows the percentage of the 
‘absolutely successful’ children for each operator. An ‘absolutely successful’ child means that the child 
has a better score compared to that of its parent or parents. This figure shows that the geometric, boosted 
and the boosted geometric crossover operators, as well as the sorting and enhancing mutation operators 
have better success compared to the standard GA operators. Moreover, Fig. 12c gives further information 
regarding the question of what is the contribution of each type of operator in creating the best or the worst 
child during the whole evolution process. This figure shows that the boosted crossover has created the 
highest percentage of best children while the standard mutation operator has created the highest 
percentage of worst children for this problem and for the selected run. However, this should not be 
considered as a general conclusion as the other modified operators have performed better in other runs or 
in other problems. 

 
Fig. 12. (a) Successful children (b) Absolutely successful children (c) New best and new 

 worst children; of one-bay, ten-storey frame (case 1) 
 

5. CONCLUSION 
 

In this paper a number of new crossover and mutation operators used previously alongside the standard 
operators for optimum allowable stress design of steel frames were utilised, again, to optimally design a 
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number of steel frames subjected to the constraints of the AISC-LRFD specification, with and without 
considering the second order effects, as set out by the code requirements. This modified GA (MGA) was 
shown to have a very fast convergence and to produce relatively high-quality designs. This paper also 
utilized the concept of multiple-deme in the GA, as it has been used successfully for other metaheuristic 
population-based methods. The multiple-deme GA was used alongside the modified GA operators and the 
algorithm is named the modified multiple-deme GA (MMDGA). The MGA and MMDGA were tested on 
three benchmark steel frame problems. These example problems demonstrated the efficiency and 
applicability of the modified GA methods to design steel frame structures satisfying AISC-LRFD 
specification and other constraints. More specific conclusions drawn from the results of this investigation 
may be summed up as follows: 

1) Regarding the optimum design solution, both the MGA and MMDGA produced much lighter 
designs compared to the standard GA; MMDGA fares better than the MGA. The MMDGA invariably 
produced lighter designs compared to all other metaheuristics. For the one-bay, ten-storey and the three-
bay, 24-storey problems without considering the second order effects, MMDGA produced, respectively, 
0.76%  and 5.1% lighter frames compared to the previous best designs. In the case of the one-bay, ten-
storey problem undergoing second order effects, the improvement on the previous best design increases to 
8.0%. 

2) Regarding the computational effort needed for analyses, both MGA and MMDGA required much 
smaller number of frame analyses compared to most other metaheuristic methods. In the two-bay, three-
storey problem, the two algorithms required less than one/tenth the number of frame analyses required by 
the best previously obtained results. For the one-bay, ten-storey problem with and without due 
consideration for second order effects, the numbers of frame analyses required by the MGA and MMDGA 
were comparable with that of the IACO but much smaller than that required for the GA, ACO and HS 
methods. The same is true for the three-bay, 24-storey problem except that the IACO algorithm required 
less computational effort. 

3) For the examples considered, in every run both the MGA and MMDGA produced frames with 
weights close to the weights of their optimum designs, showing consistency of the solutions. Standard 
deviations and coefficients of variation were also quite small in all the examples, proving the robustness of 
the two algorithms. 

4) For the examples solved, considering the second order effects as set out by the AISC-LRFD 
requirements, the optimum design solutions were not considerably changed. However, this may not be 
true when we carry out an actual geometrical second order analysis rather than the approximate method of 
the code of practice [6].  
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