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Abstract 

4-Dodecylbenzenesulfonic acid (DBSA) has been shown to be an efficient, mild, green, stable and chemoselective 
Brønsted acid catalyst for the synthesis of 1, 1-diacetates (acylals) of aldehydes under solvent-free conditions. The 
mild condition, eco-friendly, excellent yields, short reaction times and using an easily available, inexpensive and 
reusable catalyst are important features of this method. 
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1. Introduction 

Selective protection of the carbonyl group plays an 
important role in the multistep organic synthesis of 
complex compounds [1]. There are many available 
reagents for protection of aldehydes in organic 
synthesis. 1, 1-Diacetates are one useful carbonyl-
protecting group because of their stability under 
both neutral and basic media and under acidic 
conditions [2]. Furthermore, chemoselective 
preparations of the 1, 1-diacetates in the presence of 
ketones have been reported [3-4]. Acetals are also 
efficient chiral auxiliary groups for enantioselective 
synthesis [1, 5]. Due to stability of 1,1-diacetates 
toward a variety of reaction conditions, geminal 
diacetates have been used as important building 
blocks for aldehydes and have played important 
roles in organic synthesis[6-9]. The preparation of 
acylals has been achieved by the reaction of 
aldehydes with Ac2O under different acid catalysts 
such as FeCl3[2], PCl3 [10], SbCl3[11], ZnCl2 [12], 
FeCl3/SiO2 [13], CoCl2 [14], WCl6[15], InCl3 [16], 
Cu(OTf)2 [17], Bi(NO3)3 .5H2O[18], Sc(OTf)3 [19], 
Bi(OTf)3.xH2O [20], LiBF4[21], strong protic acids 
such as H2NSO3H [22], H3PO4, H2SO4, CH3SO3H 
[23] and other types of catalysts such as HY- [24], 
β-Zeolite (50 wt %) [25], PEG-Supported sulfonic 
acid [26], Saccharin sulfonic acid [27], Silica-
bonded S-sulfonic acid [28], Silica sulfuric acid 
[29], Silica Phosphoric Acid [30], H3PW12O40/MCM-
41 (20 wt %) [31] and Amberlyst-15 [32]. Although some 
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of these methods have convenient protocols with 
good to high yields, the majority of these methods 
are associated with drawbacks involving the use of 
halogenated solvents, low chemoselectivity, high 
temperature, strong acidic conditions, tedious 
procedure for the preparation of catalyst, long 
reaction times, moisture sensitivity of the catalyst, 
high toxicity, low yield and lack of substrate 
tolerance. While triflates such as Cu (OTf)2 and 
Sc(OTf)3 have recently emerged as the most 
effective catalysts for the reaction, the high cost and 
susceptibility to aqueous medium of the metal 
triflates do not make them good contenders for use 
in synthesis. 

Therefore, the development of a more efficient 
alternative method that is suitable, mild, selective, 
faster, clean, noncorrosive and environmentally 
benign and has a better yield is of interest. 

Dodecylbenzenesulfonic acid (DBSA), an anionic 
surfactant, can act as a combined Brønsted acid-
surfactant-catalyst (BASC). It performs the dual 
role of both an acid catalyst to activate the substrate 
molecules and a surfactant to increase the 
concentration of organic reactants by forming 
micellar aggregates in water [33].  

DBSA have been used in chemical synthesis such 
as synthesis of xanthenes [34, 35], bis(indol-3-
yl)alkane derivatives [36], carbon-carbon bond-
forming reactions [37], reaction of homoallyl 
alcohols and aldehydes in water [38], N-alkylation 
of aldoximes [39], synthesis of 
tetrahydrobenzopyrans [40], dehyration reactions in 
water [41], Thia-Michael addition reactions [42] 
and cyclotrimerization of acetophenones [35]. 
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Herein, we hope to introduce an efficient, 
catalytic, rapid, stable and high-yielding protocol 
for the acylal synthesis by DBSA, which is an 
amphipathic Brønsted acid, commercially available, 
highly reactive, cheap, stable, and an emulsifier and 
activator of the molecule surface [33]. 

2. Experimental 

2.1. General 

All chemicals were purchased from Merck or Fluka 
Chemical Companies. The known products were 
identified by comparison of their melting points, 
spectral data. NMR spectra were recorded on a 
Bruker Avance DPX-250 (1H NMR 250 MHz 
and13C NMR 63 MHz) spectrometer in DMSO-d6, 
using TMS as an internal standard. IR spectra were 
obtained using a Shimadzu FT-IR 8300 
spectrophotometer. Melting points were determined 
in open capillary tubes in a Büchi-545 circulating 
oil melting point apparatus. 

2.2 General Procedure for Preparation of 1, 1-
Diacetates 

To a mixture of aldehyde (1 mmol) and acetic 
anhydride (3 mmol), DBSA (0.2 mmol) was added 
and the mixture was stirred at room temperature. 
The progress of the reaction was monitored by 
TLC. After completion of the reaction, CH2Cl2 (10 
mL), saturated NaHCO3 (10mL) and water (10 mL) 
were added, and the organic layer was extract from 
aqueous layer and washed twice with water (2×10 
mL). Further purification by column 
chromatography on silica gel afforded the pure 1, 1-
diacetate. Aqueous layer was acidified by HCl (5%, 
15mL) and then Et2O (10 mL) was added. DBSA 
catalyst was recovered by extraction of this acidic 
solution and evaporation of diethyl ether under 
reduced pressure. It is noteworthy that DBSA could 
be reused without significant decrease in activity. 

2.3 Selected spectral data 

Diacetoxy-1-(phenyl) methane: White solid, melt 
point: 42–44 oC. 
 1H-NMR (250MHz, CDCl3): δ = 1.92 (s, 6H, CH3), 
7.30-7.46 (m, 5H, Ar-H), 7.67 (s, 1H, CH). 13C-
NMR (63MHz, CDCl3): δ = 20.7, 89.7, 126.5, 
128.6, 129.7, 135.6, 168.6 ppm. IR (KBr): 1015, 
1227, 1255, 1449, 1515, 1764, 2938, 3034, 3064 
cm-1. 
Diacetoxy-1-(4-methylphenyl)methane: White solid, 
melt point: 80-82 oC. 
1H-NMR (250MHz, CDCl3): δ = 2.11 (s, 6H, CH3), 
2.42 (s, 3H, CH3), 7.26 (d, J = 17.5Hz, 2H, CH), 
7.42 (d, J = 10Hz, 2H, CH), 7.71 (s, 1H, CH). 13C-

NMR (63MHz, CDCl3): δ = 20.9, 21.3, 89.8, 126.6, 
129.2, 132.8, 139.8, 168.8 ppm. IR (KBr): 817, 
930, 963, 1008, 1075, 1209, 1233, 1755, 1765 cm-1. 

Diacetoxy-1-(3-nitrophenyl)methane: White 
solid, melt point: 63-65 oC.  
1H-NMR (250MHz, CDCl3): = 2.16 (s, 6H, CH3), 
7.61 (t, J = 5Hz, 1H, CH) 7.73 (s, 1H, CH), 7.82 (d, 
J = 7.5 Hz, 1H, CH), 8.25 (d, J = 7.5 Hz, 1H, CH), 
8.40 (t, J = 2.5Hz, 1H). 13C-NMR (63MHz, CDCl3): 
δ = 20.8, 88.4, 121.9,  124.6, 129.8, 133.0, 137.5, 
148.2, 168.6 ppm. IR (cm-1): 1008, 1362, 1443, 
1547, 1773.  

Diacetoxy-1-(cinnamyl)methane: White solid, 
melt point: 83-85 oC  
1H-NMR (250MHz, CDCl3): δ = 2.15 (s, 6H, CH3), 
6.24 (dd, J = 18.6 Hz, 1H, CH), 6.83 (d, J = 18.6 
Hz, 1H, CH), 7.29–7.34 (m, 5H, ArH), 7.39 (d, J = 
8.6 Hz, 1H, CH). 13C-NMR (63MHz, CDCl3): δ = 
20.8, 89.8, 121.8, 127.0, 128.7, 128.8, 135.2, 135.6, 
168.6 ppm. IR (KBr): 673, 761, 1013, 1217, 1478, 
1609, 1760, 2887, 2976, 3023. 

3. Results and Discussion 

In this protocol, we disclose the reaction of 
aldehydes with acetic anhydride to afford 
corresponding 1,1-diacetates (Scheme1).  
 
RCHO + (CH3CO)2O              DBSA                RCH(OAc)2 
                                         Solvent free, r.t 

 
Scheme 1. 

 
In an initial endeavor, we tried to convert 4-

chlorobenzaaldehyde (1 mmol) to the 
corresponding acylal by acetic anhydride (3 mmol) 
in the presence of various solvents and also under 
solvent-free condition at room temperature. When 
the reaction was carried out in various solvents such 
as EtOH, H2O, CH2Cl2, MeCN, EtOAc and PEG-
400, the corresponding acylal was afforded in less 
yields than under solvent-free conditions, and as 
shown in the Table 1 the solvent-free reaction gave 
the best results.  
 

Table 1. Effect of solvent on the protection of  
4-chlorobenzaldehyde with acetic anhydride  

catalyzed by DBSA 
 

Entry Solvent Time (min) Yield (%) 
1 EtOH 25 15 
2 H2O 30 45 
3 CH2Cl2 8 80 
4 MeCN 10 82 
5 CH3CO2Et 8 83 
6 PEG-400 30 61 
7 Solvent-free 5 94 

 
The effect of the catalyst loading on the reaction 

indicated that less than 0.2 mmol of DBSA led to 
incomplete acylation (Table 2, entries1-4). 
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CH(OAc)2

H3CO

Excellent yield was obtained with 0.2 mmol of the 
catalyst with three equivalents of Ac2O (Table 2, 
entry 5). No further increase in the yield was 
observed on increasing the amount of catalyst under 
the same condition (Table2, entry 6). 
 

Table 2. Conversion of 4-chlorobenzaldehyde to the 
corresponding 1, 1-diacetate with acetic anhydride  

in the presence of DBSA 
 

Entry Catalyst (mmol) Time (min) Yield (%) 
1 No catalyst 360 0 
2 0.05 30 36 
3 0.1 20 62 
4 0.15 10 81 
5 0.2 5 94 
6 0.3 8 83 

To establish generality and versatility of the 
present method and to examine the tolerance of the 
other functional groups present in the substrates, 
diverse aldehydes including aromatic, α,β-
unsaturated and aliphatic aldehydes compounds 
were subjected to acylal formation under optimized 
conditions in the presence of DBSA. The results 
were presented in Table 3.  
 
 
 
 
 
 
 
 

 
Table 3. Conversion of various aldehydes to the corresponding 1,1-diacetates by DBSAa 

 

Entry Substrate Product 
Time 
(min) 

Yield 
(%)b 

Mp.oC 
(Lit) 

 
Ref. 

1 

  

5 94 42-44 (44-45) [22] 

2 

  

4 96 80-82 (81-82) [22] 

3 

  

5 96 63-64 (64-65) [22] 

4 

  

8 88 57-59 (59) [43] 

5 

  

10 90 87-89 (89) [44] 

6 

  

5 92 81-83 (82-83) [22] 

7 

  

6 93 91-93 (92-95) [45] 
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8 

  

6 91 63-65 (65-66) [22] 

9 

  

7 90 
124-126 (125-

27) 
[22] 

10 

  

7 86 64-66 (66-67) [46] 

11 

  

10 83 51-53 (52-53) [22] 

12 

  

8 93 83-85 (84-85) [46] 

13 

  

4 92 Oil ---- 

14 
 

  

5 93 Oil ---- 

15 

  

30 NR ---- ---- 

16 

  

30 NR ---- ---- 

17 

  

30 NR ---- ---- 

 

a Reaction condition: aromatic and aliphatic aldehydes (1 mmol), acetic anhydride (3 mmol), DBSA (0.2 mmol) at room 
temperature under solvent-free condition 
b The yields refer to the isolated pure products 
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The results indicated that the substitute groups of 

aromatic aldehyde, whether they were electron-
donating or electron-withdrawing groups, had less 
effect on the efficiency of reaction (Table 3). 
Heterocyclic, α,β-unsaturated and Aliphatic 
aldehydes produced acylals in good yields (Table, 
entries 10-14). Acid-sensitive compounds such as 
2-furylaldehyde, 2-thiophenecarboxaldehyde, and 
cinnamaldehyde are also protected as 1,1-diacetates 
in high yields without any side products (Table 3, 
entry10-12). Under these reaction conditions, many 
functional groups such as methyl ether, bromo, 
nitro, and olefins are unaffected. Another advantage 

of this protocol is that it does not require dry or 
inert reaction conditions. Ketones remain unreacted 
under these reaction conditions. Therefore, 
aldehydes can be chemoselectivity protected in the 
presence of ketones. To check the chemoselectivity 
of this reaction, an equimolar mixture of 4-
nitrobenzaldehyde and 4-methyl benzaldehyde, 
benzaldehyde and acetophenone, and also 4-
nitrobenzaldehyde and 4-nitroacetophenone were 
added to acetic anhydride (3 mmol) in the presence 
of DBSA (0.2 mmol) and stirred at room 
temperature for the appropriate time (Scheme 2).  

 

 
 

Scheme 2. Competitive acylal formation reactions using Ac2O in the presence of DBSA catalyst 
 

Exclusively 1,1-diacetates of benzaldehyde and 4-
nitrobenzaldehyde were obtained, and 
acetophenone and 4-nitroacetophenone remained 
because of the electron-donating ability and the 
steric effect of the methyl group (Scheme2). 

Comparing different aldehydes diacetylation 
reactions in the presence of acid catalysts indicates 
that the performance of these reactions in the 
presence of DBSA is much better compared to 
other acid catalysts because the key factor in such 

chemical transformations is not the acid power, but 
it is the acid catalyst and activating the molecule 
surface that plays an important role in accelerating 
reactions. Also, the existence of polar and nonpolar 
hydrophobia groups in DBSA catalyst compared to 
similar catalysts such as PEG‐supported sulfonic 
acid, saccharin Sulfonic acid, silica-bonded s-
sulfonic acid, silica sulfuric acid and silica 
phosphoric acid caused these substances to be used 
as cleaner, emulsifier and activator of the molecule 
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surface [44]. Analyzing the reactions on Lewis 
acids such as sulphated zirconia, Fe(CH3SO3)2-
4H2O, β-zeolite, Bi(NO3)2-5H2O and 
chloroacetylated polystyrene-supported Zinc 

complexes lead to harsh conditions, long times and 
using organic solvents to produce the desired 
products (Table 4).  
 

 
Table 4. Comparison of DBSA with the reported catalysts for the diacetylation of Benzaldehyde 

 

Entry Catalyst Solvent Temp.(oC) Time(min) Yield(%)a Ref. 

1 DBSA 
Solvent-
free 

rt 5 94 
Present 
work 

2 P-TSA 
Solvent-
free 

rt 8 92 
Present 
work 

3 PEG‐Supported Sulfonic  
Acid (0.1 mmol) 

Solvent-
free 

rt 35 92 [26] 

4 
Saccharin Sulfonic  
Acid (0.2 mmol) 

Solvent-
free 

rt 48 90 [27] 

5 
Silica-bonded S-sulfonic  
acid (0.005 g) 

Solvent-
free 

rt 4 84 [28] 

6 
Silica sulfuric acid 
(200 mg, 0.52 mol%) 

Solvent-
free 

rt 30 84 [29] 

7 
1-H-3-methyl-imidazolium hydrogen 
sulfate  
(3.8 mol%) 

Solvent-
free 

rt 25 90 [47] 

8 
Silica Phosphoric  
Acid (2.5 mol%) 

Solvent-
free 

rt 35 88 [30] 

9 
H3PW12O40/MCM-41 
(20 wt %) 

Solvent-
free 

60 ºC 120 84 [31] 

10 
(NH4)3PW12O40 

(0.5 mol%) 
Solvent-
free 

rt 90 98 [48] 

11 
Fe(CH3SO3)2-4H2O 
(3 mol%) 

Solvent-
free 

rt 60 97 [49] 

12 
Sulphated Zirconia 
(25 mg) 

Solvent-
free 

0 ºC 360 97 [50] 

13 
Chloroacetylated 
Polystyrene-Supported  
Zinc Complexes (5 mol%) 

Solvent-
free 

rt 60 87 [51] 

14 β-Zeolite (50 wt %) 
Solvent-
free 

60 ºC 120 92 [25] 

15 
Bi(NO3)2_5H2O 
(10 mol %) 

CH3CN rt 90 87 [18] 
 

a Yields refer to the isolated pure products 
 

Also, analyzing the data in Table 4 reveals that 
completion of these reactions in the presence of 
PEG‐Supported sulfonic acid, saccharin sulfonic 
acid, silica sulfuric acid, silica phosphoric acid and 
hetropolyacids such as H3PW12O40/MCM-41 leads 
to longer time for these reactions to be done. Using 
silica-bonded S-sulfonic acid catalyst, the data 
leads to lower yields for the reactions. 

4. Conclusion 

In conclusion, a simple, efficient and rapid 
procedure for the preparation of geminal diacetates 
was established. The advantages of this method are 
short reaction times, excellent yields, high 
selectivity, no solvent, low catalyst loading and 
does not need rigorous reaction conditions. Further 

investigation on the application of DBSA discloses 
several unique properties of  DBSA, such as 
commercial availability, stability, act as a combined 
Brønsted acid-surfactant-catalyst (BASC) and a 
surfactant to increase the concentration of organic 
reactants by forming micellar aggregates [33] make 
DBSA useful for catalytic applications [34, 52]. 
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