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Abstract

The concept of I' -semihyperring is a generalization of semiring, a generalization of semihyperring and a
generalization of I -semiring. Since the theory of ideals plays an important role in the theory of T -
semihyperring, in this paper, we will make an intensive study of the notions of Noetherian, Artinian, simple and
regular I" -semihyperrings. The bulk of this paper is devoted to stating and proving analogues to several theorems

in the theory of I' -semihyperrings.
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1. Preliminaries and basic definition

In 1964, Nobusawa [1] introduced I -rings as a
generalization of ternary rings. Barnes [2] slightly
weakened the conditions in the definition of T -ring
in the sense of Nobusawa. Barnes [2], Luh [3] and
Kyuno [4] studied the structure of I -rings and
obtained various generalizations analogous to
corresponding parts in ring theory.

The hyperstructure theory was born in 1934,
when the notion of a hypergroup was introduced
[5]. One of the first books, dedicated especially to
hypergroups, is "Prolegomena of Hypergroup
Theory" written by Corsini in 1993 [6]. Another
book on "Hyperstructures and Their
Representations”, by Vougiouklis, was published
one year later [7]. We mention here another
important book for the applications in Geometry
and for the clearness of the exposition, written by
W. Prenowitz and J. Jantosciak [8]. Another book
[9] is devoted especially to the study of hyperring
theory. Several kinds of hyperrings are introduced
and analyzed. The volume ends with an outline of
applications in chemistry and physics, analyzing
several special kinds of hyperstructures: e-
hyperstructures and transposition hypergroups. The
theory of suitable modified hyperstructures can
serve as a mathematical background in the field of
quantum communication systems.

Algebraic  hyperstructures are a  suitable
generalization of classical algebraic structures. In a
classical algebraic structure, the composition of two
elements is an element, while in an algebraic
hyperstructure, the composition of two elements is
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a set. More exactly, let H be a non-empty set. Then,
the map o:HxH > P*(H) is called a

hyperoperation when P*(H )is the family of non-
empty subsets of H. LetH be a non-empty set and
o:HxH — P*(H)be a hyperoperation. The
couple (H,o)is called hypergroupoid. (H,e) is
called a semihypergroup if for every x,y,z e H ,
we have X o(y 0cz)= (X oy)oz. Moreover, if for
every X e H, XoH =H =H oX, then (H,o) is
called a hypergroup. Also, many authors studied
different aspects of semihypergroups, for instance,
Bonansinga and Corsini [10, 11, 12], Davvaz [13],
Davvaz and Poursalavati [14], Fasino and Freni
[15], Gutan [16] and Leoreanu [17].

We say that a hypergroup (H ,0)is canonical if
(1) it is commutative (X oy =y ox , for every
X,y eH),

(2) it has a scalar identity (also called scalar unit),
which means that

JeeH>VX eH,eox =xoe =X,

(3) every element has a unique inverse, which

means that for all xe H, there exists a unique

X 'eH, suchthat eex ox !,

(4) it is reversible, which means that if X €y oz,

then there exist the inverses yf1 of y and z7! of

z, suchthat Zey'ox and y exoz ™.

The notion of a multiplicative hyperring was
introduced by Rota [18] in 1982. The multiplication
is a hyperoperation, while the addition is an
operation, that is why it was called a multiplicative
hyperring. A triple (R,+,) is «called a
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multiplicative hyperring if (1) (R,+) is an abelian
group, (2) (R,’)is a semihypergroup, 3) for all
a,b,ceR, we have a(+c)cab+ac and
(b+clachba+calf in (3) we have equalities
instead of inclusions, then we say that the
multiplicative hyperring is strongly distributive.

The notion of I -semiring was introduced by Rao
[18, 19] as a generalization of I -ring as well as of
semiring. For example, letS be the additive
commutative semigroup of all mxn matrices over
the set of all non-negative integers and I be the
additive commutative semigroup of all nxm
matrices over the same set. Then, Sis a I'-
semiring if acrb denotes the usual matrix product of
a,a,b where a,be Sand « €I'. Dutta and Sardar
[20] gave the meaning of left and right operator
semirings for a given I -semiring. Let (R,+,0) be
an arbitrary semiring and T = {o}. It is easy to see
that Ris a I -semiring. Thus a semiring can be
considered as a I -semiring. Many classical
notions of semiring have been extended to I -
semiring.

In [21, 22], Davvaz et. al. studied the notion of a
I' -semihypergroup as a generalization of a
semihypergroup. Many classical notions of
semigroups and semihypergroups have been
extended to I" -semihypergroups and a lot of results
on I' -semihypergroups are obtained.

Let (R,+) be a hypergroupoid and I" be a non-
empty set. Then, Ris called a I' - hyperring if
there exists a mapping RxI'xR— R (images
denoted by aab for all abeR, and ael)
satisfying the following conditions:

(1) (R,+) is a canonical hypergroup,

(2) there exists a zero element that a bilaterally
absorbing element, i.e., X@0=0aX =0,X +0=X,
forevery el and x e R,

() aa(b+c)=aab+aac,

(2) (a+b)ac =aac +bac,

(3) aa(bpc) = (aab)pc.

Let Rbe a commutative semihypergroup and I’
be a commutative group. Then, Ris called a ' —
semihyperring  if there exists a map

RxI'xR— P'(R) (image to be denoted by acb

for abe Rand aeT') and P’ (R)is the set of all

non-empty subsets of R satisfying the conditions
3, 4, 5 and a(a+p)b=acb+apb for every

a,beRand «,feT. Let Rbe I' -semihyperring.
Then, (R,,0)is a semihypergroup for every a eI
(Let abe a fixed element in I'. We define
aocb=aab forall a,beS).

In the above definition, if Ris a semigroup, then
Ris called a multiplicative I' - semihyperring . A

I" -semihyperring Ris called commutative if
Xay = Yyaxfor everyx,ye Rand ael. We say

that T -semihyperring R with zero, if there exists
0 e Rsuch that aca+0 and 0 € 0aa, 0 c aa0 for

all aeR and ael. Let A and Bbe two non-
empty subsets of [ -semihyperring R. We define

A+B={teR|tea+b acAbe B},
AlB={te R|tecacbaec AAbeB,a eI},

AFZB:{teRHeZi”:l aab, & €Al €B.g el neN},
NX ={teR|teZi”:1nixi % € X,n,n eN}.

A non-empty subset R of I' -semihyperring R
is called a T sub-semihyperring if it is closed with
respect to the multiplication and addition. In other
words, a non-empty subset R of I' -semihyperring

R is a sub I' -semihyperring if R +R < R and
RI'R cR,. A right (left) ideal | of a I'-

semihyperring R is an  additive sub
semihypergroup (R,+) such that ITRcR

(RTI < 1). If | is both right and left ideal of R,

then we say that | is a two-sided ideal or simply an
ideal of R. Let X be a non-empty subset of I -

semihyperring R. By the term left ideal <X >,
(respectively, right ideal < X >_) of R generated

by X, that is, the intersection of all left ideals
(respectively, right ideals) of Rcontains X.
Hence,

(1) <X > =NX FRIZX
2) <X > =NX +X iR,

(3) < X >=NX + RFZX +X FZR + RFZX FZR.
A non-empty subset | of a T -hyperring Ris a

left (right) ideal if and only if

(1) a,bel implies a-b |,

@) a< I, reRand ¢l imply raac l(aar < l).

Let | be an ideal of a I" -hyperring R such that
X+l -xc | for all X eR.Then, | 1is called a

normal ideal of R.If | is a normal ideal of a I -
hyperring R, then we define the relation

x = y(modl ) if and only if (x —y)n | =&. This
relation is denoted by XI'y. We define the

following operation and hyperoperation on the set
ofall classes [R: 1 "]={l *(X)| X € R}, as follows:

Foo@ 1 () ={1"(@ze " () +1"(Y)},
()l () = 1" (xay).
Then, [R:1°] is a T -hyperring of which
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I={a|aeT}
An ideal | of a I'-hyperring Ris called null if
ITI = {0} and is called idempotentif 1Tl =1.

Let (R.,I})and (R,,I';)be two T’ - and T, -
semihyperrings, respectively and f:T', ->I',be a
map. Then, w:R = R,is called a (I',,[',)-

homomorphism or (shortly, homomorphism), if for
every X,ye Rand « €T,

D yx+y)={y®O[tex+yicyxX)+y(y),
@) v(xay)= )|t exay} cyOf @y (y),
) fx+y)=f x)+f (y).

In the above definition, if y(x+Y)=w(X)+w(y)
and y(Xay)=w(X)f (@)w(y),then w is called a
strong homomor phism. The set
kery = {(a,b) e R xR, |w(a) =w(b)} is called the
kernd of . An ordered set (w,f) is called an
epimorphism if w:R - Rand f:I >I,be
surjective and is called an isomorphism if
w:R =R, and f:I', > T,are bijective.

Let pbe an equivalence relation, Aand B be
two non-empty subsets of R. We define (A B) e p

if for every ae A there exists be Bsuch that
(a,b) e pand for every Ce Bthere exists de A

such that (d,c)e p and (A B)e; if for every
acAand beB(@b)ep. Let Rbe a I'-
semihyperring and @ €. An equivalence relation
pon Ris called regular if for every xe Rand
acl,

(a,b)e p imply (a+x)p(b+X), (aax)p(bax) and (xaa)p(xab).

Let | be a non-empty subset of I" -semihyperring
R. We say that | is a 2-ideal of R if | satisfies
the following condition: | +Rcl,

laR c| ,Ral cl.forevery a el

A 2-ideal | of T -semihyperring R generate the
following regular relation on R :
Xpye x=yor x,yel.

It is easy to see that p, is reflexive, symmetric,

transitive and regular. We shall call a regular
relation of this type a Reesrelation.

Example 1. LetRbe a I -hyperring and| be a
normal ideal of R. Then, the relation X = y (modl ) is

a regular relation on R.
Proposition 1.1. LetRbe a I' -semihyperring and

p be a regular relation onR .Then, R/ pis al -

semihyperring with respect to the following
hyperoperation:

p(@)® p(b) = {p(c)|ce p(a)+ p(b)},
p(a) ap(b) = {p(d)|d € p(a)ap(b)},

~

where T ={a|a eT}.

Example 2. Let (R,+,0) be a semihyperring such
that Xoy =XoYy +Xoy, I be a commutative
group. We define Xay=Xoy for every x,ye R
and o €I . Then, Ris a I' -semihyperring.

Example 3. Let (R,+,0) be a semiring and (T',+)
be a subgroup of (R,+) and | be an ideal of R
such that | o['=Tol ={0}. We define
Xay=Xoaoy+!| for every X,ye R and ael.
Then, R is a multiplicative I'" -semihyperring.

Example 4. Let R=Z,and | =T ={0,2} c Z,.
Then, Ris a multiplicative I -semihyperring with
the following hyperoperation: xay = {0,2}, where

X, yeR,ael and T={a|aeT}.

2. Simple T" — semihyperrings

In this section Ris a I' -semihyperring such that it
has an element 0 with the following property:
Xxex+0, 0+0={0} and xa0=0ax= {0},

for every X,y e Rand o €I'. Hence {0} is an ideal
of R.

Definition 2.1. A T -semihyperring Ris called
simple (right simple)if

(1) {0} and R are the only ideals (right ideals),

(2) RTR = {0}.

In the same way, we can define a simple I -
hyperring. An ideal | of I -semihyperring R is
called simple, if | is a simple I -semihyperring.
This means that {0} and | are only ideals of | and
[Tl ={0}.

Example 5. Let(F,+,0)be a field,(I',+)be a
subgroup of (F,+)such that 1. eI"and {A},_ be

a family of non-empty disjoint sets in which
|A,[=1. Then, S=[J,cAis a simplel-

semihyperring with the following hyperoperations:
X®y= Ag]+gz, Xy = Aglagz , where
X eAg],y eAg2, 0,9,€l and eI
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Example 6. Let {A,|ne R} be a family of disjoint
set such that

{0} n=0
A, = 0,1) 0<n<1
[mm+1) m<n<m+l.

Then, for every X & Rthere exists Ne Rsuch that
Xe A,. So,Ris a simple R -semihyperring with the
following hyperoperation: X®y= A, XY= A,m:
where xe A,, ye A and a € R.

Example 7. Let R={a,b,c}and I = {«, }. Then,

Ris a simple I -hyperring with the following
operations and hyperoperation:

@ | a b C
a |a b C
b | b| {ab} c
c |c c {a,b,c}
a |a|b|c
a |alal|a
bla|b|c
c |alc|Db
B la|b|c
a |alal|a
blalc|b
c |a|b|c

where I' = {a, S}

Lemma2.2. A T -semihyperring R is simple if and
only if RFZaFZR= R for every ae R\0.

Proof: Suppose that Ris a simple T -
semihyperring. Then, RFZRis an ideal of R.
Since Ris a simple I' -semihyperring, RFZR is
distinct from {0}, hence it must be coincide with
R, and it follows:
Rl"Z RFZR = RFZR =R

Let a# 0be an element of R.Then, RFZaFZR
is an ideal of Rand so either RFrZar>R=R or
RrZar2R = {0}, If RI2Zar2R = {0}, then the set
| ={X eR| RFZXFZR ={0}}, contains a non-
zero element a Let Xx,yel. Then,

RMZXI2R= {0} and RCZyY 2R = {0}. Since

RFZ(X+ y)FZRg RFZXFZR+ RFZszR,

| is an ideal of R which implies that | ={0} or
| =R. If | =R, then RFZXFZR={0} for
every XeR. Since R is simple and

{0}#RITRcRTZR, we have RTZR=R. But
this implies that R= RFZ RFZR ={0} whichisa
contradiction. Hence, RFZaF ZR =R

Conversely, suppose that Ranl“ Z"R= R for all
aec R\0. Then, RFZR #{0}LIf 1 is an ideal of

R containing a non-zero element a, then

R= RFZaFZRg RFZIFZRQ I, and so | = R.
Therefore, R is a simple I -semihyperring.

Lemma 2.3. If | is a non-zero minimal ideal of T

-semihyperring R, then either IFZI ={0}or | is
a simple ideal of R.

Proof: Since IFZI is an ideal of R contained in
| , we must have either IFZI ={0} or | FZI =1.
Suppose that T =1 Then, (I r2| )FZI —ir2.
Therefore, IFZI FZI =1 FZI. If a is a non-zero
element of |, then <a> is a non-zero ideal of R
contained in | . Since | is a minimal ideal of R,

we have | =<a>. Since .,-_ya.rriasarirsRrEarir,
we obtain

Il“zal“zl c Irz(Na+ era+arZR+ erarZR)rzl
c Il“zal“zl.

Hence, IFZaFZI =1 and so | is a simple ideal
of R.

Definition 2.4. Let R be a I' -semihyperring and
for every a €I'\0 there exists 1, e I' such that for
every Xe R, XeXal,and X €1,ax.Then, R is
called a I" -semihyperring with I" -identity.

Lemma 25. Let R be a right simple I -
semihyperring with I -identity. Then, R\0 is a
multiplicative close subset of R.

Proof: We show that for every a,be Rand a €T,
acb < R\0. Suppose that a,b e R\0, o eI but
acb={0}. Let 6 ={x e R|aax ={0}}. Then, 6
is a right ideal of R. Since {0,b} < 8, we obtain
f=R which implies that aaR ={0}. Hence,
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acaal, ={0}. This is a contradiction. Therefore,
acb < R\O0.

Proposition 2.6. Let | be a simple left ideal of T -
semihyperring R and for every left ideal J of R,

yar nJ =< implies that yar < J where y 1.
Then, for every ¢l and r e R, lar is either
{0} or a minimal left ideal of R.

Proof: Suppose that | ar = {0}, where @ €T" and

r e R. Obviously, laris a left ideal of R. In
order to show that it is a minimal left ideal, let A
be a left ideal of R contained in | ar. Assume that
0={x el |xar cA}.Then, Oar c A. Let xe A.

Then, there exists y e | such that X € yar. Hence
Anyar #J which implies that yar < A. So,
Oar = A c lar. Since | is a simple left ideal and
0 is a left ideal of R, then 6={0}or 8=1.
Hence A={0} or A=Ilar.

Proposition 2.7. Let | be a minimal simple ideal of
R such that L # {0} is a left ideal contained in I .

So, LTZL # {0},

Proof: Since LFZRis an ideal of R contained in

I, LFZR: {0} or LFZR =|. If LFZR ={0},
then Lis an ideal of R. Hence, L=1 and
IFZI =LFZI gLFZR:{O}.Tha‘[ is a
contradiction. Hence, LFZR =1.Since

| = 1721 = (LIZRIX (LI2R) < (LTZL)r=R

We conclude that LFZL #{0}.

Lemma 2.8. Let Rbe a multiplicative I -
semihyperring with I -identity and | be a simple

left ideal of R. Then, | = Rl"za for every
ael\0.

Proof: Suppose that a=0 is an element of I.
Then, Rl“za is a left ideal of R contained in | .
Therefore, Rl“za: {0} or Rl"za: . If
Rl"za:{O}, then {0,a} is a left ideal of |.
Therefore, IFZI ={0} which is a contradiction.

Hence, RFZa= l.

Theorem 2.9. Let Rbe a simple I -hyperring
containing a non-zero minimal left ideal. Then, R
is the union of its minimal left ideals.

Proof: Suppose that Ris a simple I -hyperring
and | is a non-zero minimal left ideal. Then,

IFZRis an ideal of R and so either IFZR= {0}

or | FZR = R. Suppose that | FZR ={0}. Then,
| is an ideal of R. Since | #{0}, it follows that

| =R and so RFRgRFZR:{O}. It is a

contradiction. We conclude that IFZR: R and so
there exists ae€ R such that | ea# {0}. Let Jbe a
non-zero left ideal of R contained in |aa. Then,
Y ={el |blacJ}, being a non-zero left ideal
of Rcontained in | and so Jc laa=%Yaac J.
Now, let H=u{lealaeR,ael'}. Then,
certainly H is a non-zero left ideal. Let x e H,
ye R and B eTl. Then, there exist ¢ €', a€e R
such that x elaa Hence, gye(aa)sy=1a(asy) cH.
Since Ris simple, H =R, and Ris the union of
minimal left ideals.

The dual of the previous theorem is true.
Therefore, if Ris a simple I -hyperring and

contains a minimal right ideal, then R is the union
of its minimal right ideal.

Proposition 2.10. Suppose that R is a simple I -
hyperring containing at least one minimal left ideal
and one minimal right ideal. Then, for every
minimal left ideal L of R there exists a minimal
right ideal R suchthat LT'R, =R.

Proof: Let L be a minimal left ideal of R. Since
Ris a simple I -hyperring, LFZR ={0} or
LFZR =R. By Theorem 2.9 there exist aeR
and ael’ such that Leaa=#{0}. Since
{0}#2LaacLI'R,, by the dual of the previous
theorem there is a minimal right ideal R, such that
acR. Since Ris a simple I -semihyperring,
LI'R, must coincide with R.

Proposition 2.11. Let | be a proper normal ideal of
I' -hyperring R, A be the set of ideals of R

containing | and B be the set of ideals of [R:1"].
Then, the map ¢:J[J:1"]is inclusion-
preserving bijection from A onto B.

Proof: Since Jis an ideal of R, [J:1"] is an
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ideal of [R:1"]. Hence ¢is well-defined. Let J,
and J, be two ideals of R such that ¢(J,) = ¢(J,).
Then, [J,:17]=[J,:1"] For every -element
X €J,, thereis ye J, such that x =y (modl ) and
so X ea+y for some ael. This implies that
JycJ,. In the same way J,cJ,. Hence,
J,=J,. Let T be an ideal of [R:I1"] Then,
o={XeR[I"(X)eT}is an 1ideal of R and
#(®) =T . Therefore, ¢ is bijective.

Proposition 2.12. If |, Jare ideals of a I -
hyperring R such that | < J, | is a normal ideal

and there is no ideal K of Rsuch that | c K < J.
Then, [J : 17]is either simple or null ideal.

Proof: By Proposition 2.11, [J:1"]is a minimal
ideal of [R:1%]. Thus [J:1"]is null or simple, by
Lemma 2.3.

3. Noetherian and Artinian T -semihyperrings

A collection A of subsets of a I' -semihyperring R

satisfies the ascending chain condition (or Acc) if
there does not exist a properly ascending infinite
chain A c A, c...of subsets from A. Recall that

a subset B € A is a maximal element of A if there
does not exist a subset in A that properly contains
B.

Proposition 3.1. Let R be a I -semihyperring.
Then, the following conditions are equivalent:

(1) R satisfying the Acc condition on right (left)
ideals.

(2) Every non-empty family of right (left) ideals has
a maximal element.

(3) Every right (left) ideal is finitely generated.

Definition 3.2. A T —semihyperring R is right
(left) Noetherian if the equivalent conditions of the
above propositions are satisfied.

In the same way, we can define an Artinian T -

semihyperring. Letl be an ideal of a I —
semihyperring R and | be a Noetherian I —
semihyperring. Then, | is called a Noetherian ideal
of R.
Example 8. Let (R +)be a group and (I',+)be a
subgroup of R. Then, Ris a multiplicative
Noetherian  (Artinian) I' —semihyperring with
respect the following hyperoperation: xay = R.

Example 9. Let A, =[n,n+1) for every neZ,
S=uU, A, and T =Z.Then, Sis a Noetherian

I' -semihyperring but not an Artinian I -
semihyperring with respect to the following
hyperoperation: X®y= A, . Xay= A,m. Where

Xe A, and y €A,,.

Proposition 3.3. Let (R+,0)be a commutative
ring, (I',+)be a subgroup of (R +)such that
lgeTand {Aj}, g be a collection of non-empty
disjoint sets. Then, S=[J,gAjis a [I'-
semihyperring with the following hyperoperation:
X®y= A\Jl+gz,xay: A‘Jl“gz’ where X eAgl,
ye A, and a €l Therefore, Ris a Noetherian
2

(Artinian) ring if and only if Sis a Noetherian
(Artinian) I" -semihyperring.

Proof: One can see that Sis a I -semihyperring
with the above hyperoperations. Let | be an ideal
of R. Then, § =y, A, isanideal of R.

Conversely, suppose that T is an ideal of I -
semihyperring S. Then, T =S, , where | =< X >

and X ={g eR|A; nT #J}. Therefore, the

commutative ring R is Noetherian (Artinian) if and
only if Sis Noetherion (Artinian).

Proposition 3.4. Let |be a 2-ideal of T -
semihyperring R . Let A be the set of ideals of R
containing | and B the set of ideal of R/ p, . Then,

the map w:J—>J/p is inclusion-preserving
bijection of Aonto B.

Proof: The proof is straightforward.

Proposition 3.5. Let Rbe a Noetherian I -
semihyperring and | be a 2-ideal of R. Then,

R/ p, is a Noetherian r -semihyperring.

Proof: The proofis straightforward.

Theorem 3.6. Let | be a Noetherian 2-ideal of T -
semihyperring R. If R/ p, is a Noetherian I -

semihyperring, then R is a Noetherian T -
semihyperring.

Proof: Assume that | and R/ p, are Noetherian
and A cA cA...be an ascending chain of
ideals of R. There exist ascending chain of ideals
AnlcAnlc..,

(Aul)y/ ppc(Aul)/p c...,in | and R/ p,,
respectively. Then, there exists ne N such that

Anl=Anl and (AUl)/p =(AUl)/p
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for all i >n. Hence, AUl =AUl forall i >n.
Suppose that xeA ul. If xel, then
X € A, Ul. Assume that xe A for some i >n.
X € A,ul such  that
o (X)=p, (x)which implies that X=X or

Then, there  exists

X,X; €. Therefore, xe A,ul which implies
that A Ul =A Ul forall i >n.Hence, for i 2n

A=AnAUD=ANAUD=AUVAND=AUMAND=A,.
So, R is Noetherian.

Proposition 3.7. Let Rbe a I' -semihyperring and
A,Bbe two Noetherian 2-ideals of R.Then,
Au B is a Noetherian sub I" -semihyperring of R.

Proof: Since Aand B are 2-ideals, then AnBis a
2-ideal of A and B is a 2-ideal of A U B.Indeed,

(AnB)+ Ac(A+AN(B+A) c ANnB,
(AnB)aAc (AcA)N(BaA) c AnB.

In the same way we can see that B is a 2-ideal of
ANnB. We define v : A/ p,.g = (AUB)/ pg, by
W (pa~g (X)) = pg (X), for all X € A. Let
Pa~g(X) = pa~g(y) for some x,ye A Then,
Pe(X) = pg(y). Hence, v is well-defined. Since

V(Pae (XD Parp(Y) =¥ ({pas)[teX+y})
={pgM|tex+y}
= pg(X)® pg(y)
=W (PasX))BW(Pas(Y)

In the same way, it is easy to see that
W (Ppne(X)aPps(Y) =¥ (LA (D)W (Ppqg(Y)):
Hence, A/p,.g=(AUB)/pg. By the previous
proposition, AU B is Noetherian.

Lemma 38 Let Rbe an ordered I -
semihyperring with zero. The principle ideals of R
forms a chain with respect to inclusion if and only
if ideals of R do so.

Proof: Suppose that |, J are ideals of R such that
| UJ with zero. Then, Jcl|. Let X €J.We
consider an element y el such that y ¢ J.By
hypothesis, we have <x >c<y > or <y >c<X >.
If <y>c<X>then ye<y>c<x>,
which is impossible. Thus we have <X >c<vy >

and so which x e<x >c |.

Lemma 3.9. Let Rland sze Fl- and F2-

semihyperring with zero, r- and Fz-identity,

respectively. Then, R = R1 X R2 is a Noetherian

~

(l—‘1 , F2 ) -semihyperring with the following
hyperoperations if and only if R1 and Rz are

Noetherian Fl and Fz -semihyperring, respectively.
(alabl)®(a29b2) = {(Xay) | X eal +a29 y Ebl +b2}a

Proof: The proof is straightforward.

Proposition 3.10. Let R be a I -semiring with
zero and I -identity, Py and Py be regular

relations on R such that Prepy = RxR and
PPy = IdR. Then, R/ p and R / py are

Noetherian I' -semirings if and only if R is a
Noetherion I' -semiring.

Proof: Let y:R—>R/p xR/p, defined by

w(X)=(p;(X), py(x)). We show that yis a
homomorphism. We have
y(X+y)=(p(X+Y),pp(X+Y))
= (9, (%), £y (X)) D (£, (¥ ), Py (¥ )
=y(X)®w(y).

Let f :T —>l:><1ideﬁned by f(a)= (;,;). In
the same way, w(Xay)=w(X)f (a)w(y). Also,
we have

kery = {@.b) [v@ = y(0)} = {@b)| o @
= py(0). py @ = py (b))} = ldgy.

Let (pl(x),pz(y))eR/plxR/pz. There
exists € € R such that (a,c) e Py and (c,b) e Py
which implies that
v (€)= (p(€), p5 (©)) = () (X), Py (¥))- Hence
RER/plxR/pz. By Lemma 39, Ris a
Noetherian I' -semihyperring if and only if R/ Py

and R/ P, are Noetherian T -semihyperrings.

In the previous proposition, let Rbe a I'-
semihyperring. Then,  is a homomorphism but is
not a strong homomorphism. Let Rbe a I -
semihyperring. An ideal P of R is called prime if
AT'B c P, implying that Ac Por Bc P, where
Aand Bare ideals of R An ideal M of I -
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semihyperring R is called maximal, if M # R and
there are no ideals in " between" M and R In
other words, if | is an ideal which contains M as a
subset, then either | = Ror | =M .Let Rbe a
commutative I -semihyperring with zero and T -
identity. Then, every maximal ideal of R is prime.

Example 10. Let R={ab,c,d}, T'=Z,and
a=0,8=1 Then, R, isa I -semihyperring with
the following hyperoperations:

@ a b c d
a {a,b} | {a,b} | {c,d} {c,d}
b {a,b} | {a,b} | {c,d} {c,d}
[ {c,d} | {c,d} | {a,b} {a,b}
d | {cd} | {c,d} | {c,d} {a,b}
B a b c d
a {a,b} {a,b} {a,b} {a,b}
b {a,b} | {a,b} | {a,b} | {a,b}
[¢ {a,b} {a,b} {c,d} {c,d}
d {a,b} | {a,b} | {c,d} | {c,d}

For every Xx,ye Rwe define Xay={a,b}.In this
example P = {a,b}is a prime ideal of R

Proposition 3.11. Let Rbe a commutative I -
semihyperring with zero and T -identity and
M;,M,,..,M, different maximal ideals in R

Then, M,,M,,..,M is a proper ideal of
MIM,[".TM, .

Proof: It is straightforward.

Proposition 3.12. Let R be a multiplicative I -
semihyperring with zero, | and J be non-empty
subsets of F /£ and R, respectively. Then,

1)If | is an ideal of F /&, then | is an ideal of

R.
2) If J is an ideal of R, then ‘]F/§ is an ideal of

F/&

Proof: (1) Sincel is a non-empty set, there exists
an element §(Hin:1(xi , O )) el. Hence
£0,a) € £(TTT(X; @) O &(0,a) | for  every
a € T', which implies that | R is a non-empty set.
Now, let x,y €l R then &(x,a),&(y,a)el for

every a €. Hence &x +y,a)= &, ) ®E(Y,a) el

for every o e€l'and so x +y el. Let X el,

y e Rand ael. Then, &(X,a)el for every
ael’. Since | is an ideal of F/¢,

cX,a)os(y,a)cl. So {(t.a)|texay}cl
which implies that xay < |. Hence, IR is an

ideal of R.
(2) Let Jbe an ideal of R. Then, 0eJ,which

implies that §(O,a)eJF/§. Hence, JF/p is a
non-empty set. Let (%, o)) and E(TT](y ;. ))
be elements of N & Then,
>Lx;ax and szlyJ'ﬂj x cl forevery X eR.
Hence, X} ax+XiLy;px cl which
implies that f(l_linzlxiaiX)@é‘(HjmzlyjﬁjX)gJF/g- In
the same way, Jg, ¢ is closed with respect to the
above hyperoperation. Hence, Jg, ¢ is an ideal of
F/é.

Theorem 3.13. Let R be a multiplicative T -

semihyperring with I" -identity and zero, | and J
be ideals of F /¢ and R, respectively. Then, (1)

Ger =1 ) (R)ge =9,

Proof: (1) We have
Gedr =X eRIEXT)CIp )

={xeR \f(x,a)eJF/g, for every a e T’}

={Xx eR|xaacJ, forevery ael',acR}.
Since R has I -identity, then (J, Cf)R cJ.
Therefore, (J¢, §)R =J. (2) By definition, we have
(e :{g(irzll(xi . ))\élxiaix Clg. foral x GR}

= {g(iﬂl(xi . )|§(t,l‘) cl foreveryt e élxiai XX € R}.

This implies that (I R),:/gF /&c]. Since R is

with T -identity, (I R)F/§ c | . Hence, (I R)ese =1

Corollary 3.14. Let J, and J, be two ideals of R
and A and B be two ideals of F /& such that
J,cJ, and A c B. Then, (JI)F/§ g(JZ)F/§ and
Ap c Bg.

Corollary 3.15. Let R be a multiplicative I -
semihyperring. Then, R is a Noetherian (Artinian)
if and only if F/& is Noetherian (Artinian)

multiplicative hyperring.

Corollary 3.16. Let R be an Artinian I -ring.
Then, R is a Noetherian I' -ring.
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4. Regular T" -hyperrings

Let R be a I -hyperring. An element X € R is
(a,p) - regular or shortly regular if for every
X € Rthere exist y e Rand «,f eI such that
X =Xay px. Let every element of R be regular.
Then, R is called a regular I -hyperring. An
element e € R is idempotent, if there exists a eI’
such that € =ece. In this case, we say that € is an
a -idempotent. We denote that the set of all « -
idempotent element with E . Hence, if E is a set

of all idempotent elements of R, then E = U E,.
ael’

If every element of R is an idempotent, then R is
called an idempotent I" -hyperring. For an element
ain a I -hyperring R if there exist an element

beRand «,felsuch that a=apbea and
b =baapb, then bis said to be a («, ) - inverse

of a. In this case, we write b €V aﬂ (a). Notice that

an element with an inverse is necessary regular and
every (a, ) -regular element has a (f,a) -inverse:
if there exist X e Rand «,f €I, a =aax fa, then
define b = X faax and observe that
acbh fa=aa(x faax)fa= (aax fa)ax fa=acX fa=a.
bpaab = (x faax)pfaa(x faax)= X B(aax fa)a(x faax)
=X f(aax fa)ax =X faax =b.

Hence, in a regular T' -hyperring every element

has inverse. Let abe a («, ) -regular element of

R. Then, V(@ #2. An ideal lof a T -

hyperring R is called (e,f)-regular, if
X e(X-XaypBx)n| #& implies that there

exist X;,X, € X —Xay X such that

X' =x,aapx, for some ael. Let | be an ideal of

a I -hyperring R and for every x €1 there exist
a,fel and y €l such that X =Xay fX. Then,

| is called a regular ideal of R.

Example 11. Let (R,+,-) be a regular commutative
ring, (I',+)be a non-empty subset of R and p be
an equivalence relation defined as follows:
XpYy < X=yor X =-y.

Then, the set R/ p={p(X)|x € R} becomes a

regular T -hyperring with respect to the
hyperoperation

PX)® p(y)={p(x +Yy),p(x —y)}and
multiplication p(X Yap(y) = p(xay).
Proposition 4.1. Let R be a regular I -hyperring

with zero. Then, every principal (right) left ideal of
R is generated by an idempotent element.

Proof: Suppose that X is an element of R. Then,
there exist yeRand «,fel  such that

X =Xay fX.Since,
<X>|:{y ERWG%H‘XJr%rIﬁjx,i,n,m,j eNp, elr; eR1< sm}_
il i=1

We  have <X > =<y pX > .

(y pxya(y px)=y p(xay px)=y px.  Hence,
y /X is an ¢« -idempotent element of R.This

Moreover,

completes the proof.

Proposition 4.2. Let R be a I' -hyperring with T -
identity and for every X €Rthere exists
idempotent element e € Rsuch that XI'R =el'R.
Then, R is aregular I -hyperring.

Proof: Since R is a T -hyperring with T -identity,
there exist X;,X, eRand a,f el such that
X =eax,and e =X fX,.Since € is an idempotent
element of R, there exists y € I" such that e =eye.

Hence,

X =eax, =(eye)ax,=(XpBX,)y(XpBX,)ax,
=X X,y (X X, 0X,)
=X X, yX.

Then, X is a regular element of R.Therefore, R is
aregular I -hyperring.

Proposition 4.3. Let R be a regular I' -hyperring.
Then, every one-sided ideal of R is idempotent.

Proof: Suppose that | is a right ideal of R and
X €l.Then, X =Xxay X for some «,f eIl and

y € R.Consequently, X =(xay)pfx €lI'l.Thus,
Tl =1.

Proposition 4.4. Let 1,J be two ideals in T -
hyperring R such that | < J. If J is regular, then
| is regular too.

Proof: Suppose that X el. Then, there exist
y €J and a,f I such that X =Xxay fx. Hence,

z=ypXayis an element of | such that

Xaz fx =Xa(y pXay)px =(Xay fx)a(y fX)=Xay X =X.

Proposition 4.5. Let Rbe a T -hyperring and
| < J are ideals of R such that lis a («,f)-

regular ideal of R . Then, | and [J:| *]are both
regular if and only if J is regular.

Proof: By Proposition 4.4, it is obvious that if J is
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regular, then [J :1 “]and | are regular.

Conversely, assume that | and [J:| *]are both
regular and X €J. It follows from regularity
[J:17] that (X —xayBx)n| =@ for some
a,pel and y €J. Suppose that

X e(X -xaypx)nl. Then, there  exist

X|,X, €X —Xay X such that X =Xx,aapx, for
some a € J. Hence
X ex +Xay px =X,0apX, +Xay fx < (X —Xay fx)aaf(x —xay fX)+Xay fXx

=Xaafx —xaafxay px —Xay fxaafx +xay pxaapxay px
=Xa(a-afxay -y pxaa+y pfxaafxay +Yy)px.

Consequently, from which we conclude that
X =XazpfX from some ZeJ. Hence, J is a
regular.

Proposition 4.6. Let Rbe a T -hyperring, | be a
regular ideal and J be a normal ideal such that
(a, B) -regular. Then, | +J is a regular ideal of R.

Proof: Clearly, Jis a normal ideal of |+ Jand
I N J is a normal ideal of |.Consequently, one can

see [| +J:3°]1=[l :(I nJ)"]. Since | is regular,
[1:(1nJ)"] is regular. By Proposition 4.5, we

obtain | +J is regular ideal of R.
Let Rbe a T -ring such that every element of R
be (a,a)-regular. (This means that for every

Xe R there exists yeRand «ael such that
X =Xayax.) Then, Ris called a (a,a) -regular

I -ring. An ideal P of a commutative I' -ring Ris
called quasi prime if ATRIBc P implies that

Ac Por Bc P, where A, B are subsets of Rand
RTA c A, RTBc B.

Theorem 4.7. Let Rbe a commutative T -ring and
o €T'such that (1) R be a Noetherian I' — ring, (2)

R/Pis (a,a) -regular for all quasi prime ideals of
R, 3) {0} is a quasi prime ideal of R Then, Ris a

(a,a) -regular I' -ring.

Proof: Assume that Ris not («,a)-regular T -
hyperring. Then, there is some Xe Rsuch that
X ¢ XaRax. Note that {0} is a quasi prime ideal
of Rsuch that X ¢ xaRa +{0}. Hence,

0={l cR|xg xaRax+1,| isaquas ideal of R}
is a non-empty set. Since Ris a Noetherian I' -ring,

there is a quasi ideal J in R which is maximal with
resect to the property X ¢ XaRaX+ J. Suppose that

x+Jbe (a,a)-regular element of R/J. Thus,

there is y € R such that xe xayax+J < xaRax+J

which is a contradiction. Hence, R/ J is not (a,a)

-regular. Therefore, J is not quasi prime ideal of

R.Thus there exist ideals | and | 5 such that

Ill“RFI2 c Jand Il, Izare not subsets of J.

Now, set

A={reR|ITRIl, cJ}and B={r e R|ATRI'r c J}.
Since J is a quasi prime ideal, we conclude that A

and B are quasi prime ideals of R. Clearly, I1 < Aand

|, = B. Hence, Aand B properly contain J. Because

of maximality of J, XeaaRax+A and
X e XaRaX+ B. Hence, there exist I’] ,I’2 eR and

a,fel’ such  that X=Xarax+a  and

X = Xar,ax+b where ae Aand beB. We have
X=Xa (I, +1, —haXar,)aX= (X—XanaX) - (X—XahaX)ar,aXe A
In the same way, we can see
X=Xa(r, +1, —raxar,)axe B. Hence, xexaRax+AnB.

Note also that, since (ANB)I'R[(AnB)c ATRIBc J,
then we have A "B cJ. Hence, X XaRax+J,
which is a contradiction. Therefore, Ris a (&,a)-

regular [ -ring.

Proposition 4.8. Let Rbe a commutative I -
hyperring with T -identity. Then, T3 =1nJ for
all ideals | and J ifand only if R is regular.

Proof: Suppose that R is regular and |, J are two
ideals of R By Proposition 4.3, InJis
idempotent. Then, | NI =1 NI NI)cITI.
Hence, ITI=1NJ.

Conversely, suppose that | NJ =1T"J, where |
and J are ideals of R. Let Xe R Then, XaRand
RpGx are ideals of R So,

(XaR)I'(RAX) = (xxR)N(RAX). Since R has I' -
identity, XeXaR and XxeRfx and so
X € (XaR) N (RAX) = (xaR)I'(RAX) < XxaRAX.
Hence, Ris regular.

Proposition 4.9. Let p be a regular relation on a
regular T - hyperring R, p(a) is a « -idempotent
element in R/pand acabe a («,pf)-regular
element of R. Then, there exists an idempotent
element ee R such that p(a)= p(e), where € is
an « -idempotent element of R.

Proof: It is straightforward.

Proposition 4.10. Let Rbe a regular T -hyperring
and gae, be (a,f)-regular element of R, where
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a,feland § €E,, ¢ € E;. Then,
Ef(e.e,)={x eV /(eae,)nE, |xae

=X e =X,e,ax =e,fX =X},
is a non-empty set of R.

Proof: Since gae, is a (a, f) -regular, Vg (gae)

is a non-empty set of R.Suppose that
yeVj (gag)and x =e,ay fe,. Then,
(eae,)fxa(eae,) =(eae)p(eaypfe)a(eae,)
=eqa(e,fe)ayp(e e )ae,
= (gae)ayp(eae,)

=6as,.
Also, we have
xa(gae)px =(gaype)a(gae,)f(eaype)
=gayp(eag)a(e,fe)ayps
=eaypeceaype
= ga(yfgae,ay)fg
=eaype
=X,
andso xeV/ (gae,). Also,
xax = (eaype)a(eaype)
= ga(yp(eae)ay)fe
=eayfe
=X,
and so X€ Ea.Finally, it is clear that Xo€ = X

and epx=x Therefore, xeE’”(g,e,)which

implies that Ef (e,e)) is a non-empty set of R.

Proposition 4.11. Let R be a regular I -hyperring
and gae, be (a,p)-regular element of R, where

a,pel QGEQ,%eEﬂ. Then,
E’(e.,e)={xeE, | xag = e X=X gaxae, = gae,}.

and

Proof: Suppose that xeE,, xag =g X=xand
gaxae, = gae,. Then,
(qae,)fxa(qae) = (gae,)B(xag)ae,

= qa(e, Axae,

=gaxae,

=gae,.
Xa(gag,)BX = (Xag)ae, fX= XaX = X
Hence, xeV,/ (gae,) andso xe EZ (g, e)).
Conversely, let xe Ef (e,e). Then, xeE,and
(gae,)Bxa(gae,) = gae,. Moreover,

(eloce2 )X a(e1a92 ) = (e1 ae, )P(x ae )oce2
= (e1 ae, ) X ae,
= eloz(e2 PX )oze2
=eaxae,.

Therefore, gaxae, = gae,.

Proposition 4.12. Let Rbe a regular T -hyperring,
gae,be (a,p)-regular element of R, where

§ €E,, e €E;  Then,

semigroup of R,.

E/(e.,e)is a sub

Proof: By Proposition 4.11, E”(e,e,)is a non-

empty set. Let
X, % € E,and

X 08 = ezﬂxl =X|,€,aX 08, =€ae,,X,0ae

X,,X, € EZ(e,,e,). Then,

= ezﬂ’x2 =X,eax,ae, =eae,.

Moreover,

Xax,aX = (Xoag)aXa(e BX)
= Xa(qax,ae) X%
=Xa(gag)pfx
= (Xlael)a(ezﬂxl)
=XaxX = X.

It follows that
(XaX))a(XaX,) = (XaX,aX)aX, = XaX,,
SO X aX, is o -idempotent element. Also,
(XX )ag = xa(Xael) = XaxX,,
& A(xax,) = (& %)ax, = Xax,.
ga(x,ax,)ae, =(gaX,)a(e,pX,)ae,
= (g,ax,ae,) X, ae,
= (e,ae,)pX,aL,
=ga(e,fx,)ae,

=eax,0e,.

and

and so xax, € E/(g,e).This implies that

Ef (g,€,) is a sub semigroup of R, .

Proposition 4.13. Let Rbe a regular T -hyperring,
bisa (8,a)-regular, ais a (a, B) -regular and for
every €.e, eR,
e,ae, €EZ (e,e,). Then, Vv ” (b)av S@cV ﬁﬂ (aab).

o -idempotent  elements

Proof: Since bisa (f8,a)-regular and a is a (a,f)

-regular elements, V./(b) and V (a)are non-
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empty subsets of R.Suppose that a eVﬁ“ (a) and

b eV /(b). Let g e EZ(afabpb). Then,
(aab)p(bagaa)fach) = aa(bpbag)aa f(ach)
= aa(gaa fa)ab = aagab
= (acrd fa)aga(bpb ab)
= aa(a faagabpb )ab
=aa(a faabpb)ab
= (aca fa)a(bpb ab)
= aab.
(b'agaad)p(ach)fb agaa)=b'a(gaa fa)a(b b ag)ea
=b'a(gag)aa =b'ageaa.
Hence, bagaa eVﬂﬁ (arb).One can see that
a faandbfb are o -idempotent elements ofR.
Hence (bpb)a(a fa) e E*(a fa,bpb). This
implies that ba((bgb )a(a fa))ea eVﬂﬂ (aab).
Thus, (babpb)a(afaca)eV) (aab) which
implies that baa eV’gB (acb).
Therefore, V/ (b)aV (a) cV/ (aah).

Proposition 4.14. Let Rbe a regular T -hyperring
with the set E, of « -idempotent elements, €€,
is a (a,a) -regular element of Rwhere §,6 €E,
and V., (e)c E,for every ecE, . Then, E,is a

sub semigroup of R, .

Proof: Suppose that €,6 €E,,xeV, (gae,)and

y = e axag. Then,

(gag)aya(gae,) =(gas)a(eaxaq)a(gas,)
=ga(eae )axa(gag)ae,
= (gag)axa(gae,)
=gae,.

ya(goe,)ay =(e,aXxae)a(eae,)a(e,axae))

=e,aXa(eae) )a(e,ae,)axae
=g a(Xaeae,ax)ae
=e,axae,.

Hence, y eV, (gae,). Moreover,

yay = (&,axae)a(e,axae)

=e,a(Xaeae,aX)ae =e,aXxae =Y,

which implies that Yy is « -idempotent element. But

eae, eV, (y)cE, Hence, E,is a sub

semigroup of R, .

5. Conclusion

In this work, we presented the concept of T -
semihyperring which is a new kind of hyperalgebra
and is a generalization of semihyperrings,
hyperrings and rings and proved some results. In
particular, the study of the notions of Noetherian,
Artinian, simple and regular " -semihyperrings.
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