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Abstract 

The concept of  -semihyperring is a generalization of semiring, a generalization of semihyperring and a 
generalization of  -semiring. Since the theory of ideals plays an important role in the theory of  -
semihyperring, in this paper, we will make an intensive study of the notions of Noetherian, Artinian, simple and 
regular  -semihyperrings. The bulk of this paper is devoted to stating and proving analogues to several theorems 
in the theory of  -semihyperrings. 
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1. Preliminaries and basic definition 

In 1964, Nobusawa [1] introduced  -rings as a 
generalization of ternary rings. Barnes [2] slightly 
weakened the conditions in the definition of  -ring 
in the sense of Nobusawa. Barnes [2], Luh [3] and 
Kyuno [4] studied the structure of  -rings and 
obtained various generalizations analogous to 
corresponding parts in ring theory.  

The hyperstructure theory was born in 1934, 
when the notion of a hypergroup was introduced 
[5]. One of the first books, dedicated especially to 
hypergroups, is "Prolegomena of Hypergroup 
Theory" written by Corsini in 1993 [6]. Another 
book on "Hyperstructures and Their 
Representations", by Vougiouklis, was published 
one year later [7]. We mention here another 
important book for the applications in Geometry 
and for the clearness of the exposition, written by 
W. Prenowitz and J. Jantosciak [8]. Another book 
[9] is devoted especially to the study of hyperring 
theory. Several kinds of hyperrings are introduced 
and analyzed. The volume ends with an outline of 
applications in chemistry and physics, analyzing 
several special kinds of hyperstructures: e -
hyperstructures and transposition hypergroups. The 
theory of suitable modified hyperstructures can 
serve as a mathematical background in the field of 
quantum communication systems. 

Algebraic hyperstructures are a suitable 
generalization of classical algebraic structures. In a 
classical algebraic structure, the composition of two 
elements is an element, while in an algebraic 
hyperstructure, the composition of two elements is 
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a set. More exactly, let H be a non-empty set. Then, 

the map *: ( )H H P H   is called a 

hyperoperation when *( )P H is the family of non-

empty subsets of H. Let H be a non-empty set and 

: ( )H H P H  be a hyperoperation. The 

couple ( , )H  is called hypergroupoid. ( , )H   is 

called a semihypergroup if for every , ,x y z H , 

we have ( ) = ( ) .x y z x y z     Moreover, if for 

every ,x H  = = ,x H H H x   then ( , )H   is 

called a hypergroup. Also, many authors studied 
different aspects of semihypergroups, for instance, 
Bonansinga and Corsini [10, 11, 12], Davvaz [13], 
Davvaz and Poursalavati [14], Fasino and Freni 
[15], Gutan [16] and Leoreanu [17]. 

We say that a hypergroup ( , )H  is canonical if   

(1) it is commutative ( =x y y x  , for every 

,x y H ),  

(2) it has a scalar identity (also called scalar unit), 
which means that 

  , = = ,e H x H e x x e x        
(3) every element has a unique inverse, which 
means that for all x H , there exists a unique 

1 ,x H   such that 1,e x x    
(4) it is reversible, which means that if ,x y z 

then there exist the inverses 1y   of y  and 1z   of 

,z  such that 1z y x   and 1.y x z     

The notion of a multiplicative hyperring was 
introduced by Rota [18] in 1982. The multiplication 
is a hyperoperation, while the addition is an 
operation, that is why it was called a multiplicative 
hyperring. A triple ( , ,·)R   is called a 
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multiplicative hyperring if (1) ( , )R   is an abelian 

group, (2) ( ,·)R is a semihypergroup, 3) for all 

, , ,a b c R  we have .( ) . .a b c a b a c    and 

( ). . . .b c a b a c a   If in (3) we have equalities 

instead of inclusions, then we say that the 
multiplicative hyperring is strongly distributive. 

The notion of  -semiring was introduced by Rao 
[18, 19] as a generalization of  -ring as well as of 
semiring. For example, let S  be the additive 
commutative semigroup of all m n  matrices over 
the set of all non-negative integers and  be the 
additive commutative semigroup of all n m  
matrices over the same set. Then, S is a  -
semiring if a b denotes the usual matrix product of 

, ,a b  where ,a b S and .   Dutta and Sardar 
[20] gave the meaning of left and right operator 
semirings for a given  -semiring. Let ( , , )R   be 

an arbitrary semiring and = { }.   It is easy to see 

that R is a  -semiring. Thus a semiring can be 
considered as a  -semiring. Many  classical 
notions of semiring have been extended to  -
semiring. 

In [21, 22], Davvaz et. al. studied the notion of a 
 -semihypergroup as a generalization of a 
semihypergroup. Many classical notions of 
semigroups and semihypergroups have been 
extended to  -semihypergroups and a lot of results 
on  -semihypergroups are obtained. 

Let ( , )R   be a hypergroupoid and  be a non-

empty set. Then, R is called a  - hyperring if 
there exists a mapping R R R   (images 
denoted by a b  for all , ,a b R  and   ) 
satisfying the following conditions: 
(1) ( , )R   is a canonical hypergroup,  

(2) there exists a zero element that a bilaterally 
absorbing element, i.e., 0 = 0 = 0, 0 = ,x x x x    
for every    and ,x R  
(1) ( ) = ,a b c a b a c     

(2) ( ) = ,a b c a c b c     

(3) ( ) = ( ) .a b c a b c     

Let R be a commutative semihypergroup and 
be a commutative group. Then, R is called a  

ingsemihyperr  if there exists a map 
* ( )R R P R   (image to be denoted by a b  

for ,a b R and   ) and *( )P R is the set of all 

non-empty subsets of R  satisfying the conditions 
3, 4, 5 and ( ) =a b a b a b      for every

, a b R and , .    Let R be  -semihyperring. 

Then, ( , )R  is a semihypergroup for every .   

(Let  be a fixed element in . We define 
=a b a b  for all ,a b S ). 

In the above definition, if R is a semigroup, then 
R is called a tivemultiplica  - ingsemihyperr . A 

 -semihyperring R is called commutative if 
=x y y x  for every ,x y R and .   We say 

that  -semihyperring R with zero, if there exists 
0 R such that 0a a   and 0 0 , 0 0a a    for 

all a R  and .   Let A  and B be two non-
empty subsets of  -semihyperring .R We define 

 = |   , ,A B t R t a b a A b B       

= { |  , , },A B t R t a b a A b B         

 =1= | ,  , , , n
i i i i i iiA B t R t a b a A b B n          , 

 =1= |   , , .n
i i i iiX t R t n x x X n n      

A non-empty subset 1R  of  -semihyperring R  

is called a  sub-semihyperring if it is closed with 
respect to the multiplication and addition. In other 
words, a non-empty subset 1R  of  -semihyperring 

R  is a sub  -semihyperring if 1 1 1R R R   and 

1 1 1.R R R   A right (left) ideal I  of a  -

semihyperring R  is an additive sub 
semihypergroup ( , )R   such that I R R 
( ).R I I   If I  is both right and left ideal of R , 

then we say that I  is a two-sided ideal or simply an 
ideal of .R  Let X  be a non-empty subset of  -
semihyperring .R  By the term left ideal < >lX  

(respectively, right ideal < >rX ) of R  generated 

by X , that is, the intersection of all left ideals 
(respectively, right ideals) of R contains .X  
Hence, 

(1) < > = ,lX X R X   

(2) < > = ,rX X X R    

(3) < >= .X X R X X R R X R           

A non-empty subset I of a  -hyperring R is a 
left (right) ideal if and only if 
(1) ,a b I  implies ,a b I   

(2) ,a I  r R  and   imply ( ).r a I a r I    

Let I  be an ideal of a  -hyperring R  such that 
x I x I   for all .x R Then, I  is called a 
normal ideal of R . If I  is a normal ideal of a  -
hyperring ,R  then we define the relation 

( )x y modI if and only if ( ) .x y I     This 

relation is denoted by .xI y  We define the 

following operation and hyperoperation on the set 
of all classes [ : ] = { ( ) | },R I I x x R    as follows:  

( ) ( ) = { ( ) | ( ) ( )},I x I y I z z I x I y      
( ) ( ) = ( ).I x I y I x y     

Then, [ : ]R I   is a  -hyperring of which 
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= { | }.    

An ideal I  of a  -hyperring R is called null if 
= {0}I I  and is called idempotent if = .I I I  

Let 1 1( , )R  and 2 2( , )R  be two 1 - and 2 -

semihyperrings, respectively and 1 2:f    be a 

map. Then, 1 2: R R  is called a 1 2( , )  -

homomorphism or (shortly, homomorphism), if for 
every ,x y R and ,    

(1) ( ) = { ( ) | } ( ) ( ),x y t t x y x y         

(2) ( ) = { ( ) | } ( ) ( ) ( ),x y t t x y x f y         

(3) ( ) = ( ) ( ).f x y f x f y    

In the above definition, if ( ) = ( ) ( )x y x y     

and ( ) = ( ) ( ) ( ),x y x f y     then  is called a 

strong homomorphism. The set 

1 2= {( , ) | ( ) = ( )}ker a b R R a b    is called the 

kernel of .  An ordered set ( , )f  is called an 

epimorphism if 1 2: R R  and 1 2:f    be 

surjective and is called an isomorphism if 

1 2: R R   and 1 2:f    are bijective. 

Let  be an equivalence relation, A and B be 

two non-empty subsets of .R  We define ( , )A B   

if for every a A  there exists b B such that 
( , )a b  and for every c B there exists d A

such that ( , )d c   and ( , )A B   if for every 

a A and b B ( , ) .a b   Let R be a  -

semihyperring and .   An equivalence relation 
 on R is called regular if for every x R and 

,   
 
( , )     ( ) ( ), ( ) ( )    ( ) ( ).a b imply a x b x a x b x and x a x b         
 

Let I be a non-empty subset of  -semihyperring 
R . We say that I is a 2-ideal of R  if I satisfies 
the following condition: ,I R I 

 , .I R I R I I   for every .   
A 2-ideal I of  -semihyperring R  generate the 

following regular relation on :R  
= o , .Ix y x y r x y I    

It is easy to see that I  is reflexive, symmetric, 

transitive and regular. We shall call a regular 
relation of this type a Rees relation. 
 
Example 1. Let R be a  -hyperring and I be a 
normal ideal of .R Then, the relation  ( )x y modI is 

a regular relation on .R  
 
Proposition 1.1. Let R be a  -semihyperring and 

 be a regular relation on R .Then, /R  is a 


-

semihyperring with respect to the following 
hyperoperation: 

( ) ( ) = { ( ) | ( ) ( )},a b c c a b        

ˆ( ) ( ) = { ( ) | ( ) ( )},a b d d a b      

where ˆ= { | }.  


 

 
Example 2. Let ( , , )R   be a semihyperring such 

that = ,x y x y x y      be a commutative 

group. We define =x y x y   for every ,x y R  

and   . Then, R is a  -semihyperring. 
 
Example 3. Let ( , , )R    be a semiring and ( , )   

be a subgroup of ( , )R   and I be an ideal of R

such that = = {0}.I I    We define 

=x y x y I     for every ,x y R  and .   

Then, R is a multiplicative  -semihyperring.  
 
Example 4. Let 4=R Z and 4= = {0, 2} .I   

Then, R is a multiplicative 


-semihyperring with 
the following hyperoperation: ˆ = {0, 2},x y where 

, ,x y R ̂ 


 and ˆ= { | }.  


 

2. Simple   semihyperrings 

In this section R is a  -semihyperring such that it 
has an element 0 with the following property:  

0,  0 0 = {0}  0 = 0 = {0},x x and x x     

for every ,x y R and .   Hence {0} is an ideal 

of .R  
 
Definition 2.1. A  -semihyperring R is called 
simple (right simple)if 
(1) {0} and R are the only ideals (right ideals),  
(2) {0}.R R    

In the same way, we can define a simple  -
hyperring. An ideal I of  -semihyperring R is 
called simple, if I  is a simple  -semihyperring. 
This means that{0}  and I are only ideals of I and 

{0}.I I   

 
Example 5. Let ( , , )F   be a field, ( , )  be a 

subgroup of ( , )F  such that 1F  and { }t FtA  be 

a family of non-empty disjoint sets in which
| |= 1.oA  Then, = t F tS A is a simple -

semihyperring with the following hyperoperations: 

1 2 1 2
= ,   = ,g g g gx y A x y A  where 

1 2
, ,g gx A y A  1 2, g g   and .   
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Example 6. Let { | }nA n R be a family of disjoint 

set such that 
 

{0}  = 0

= (0,1)  0 < < 1

[ , 1)  < 1.
n

n

A n

m m m n m




   

 

 
Then, for every x R there exists n R such that 

nx A . So, R is a simple R -semihyperring with the 

following hyperoperation: = ,   = ,n m n mx y A x y A   

where ,  n mx A y A  and .R   

 
Example 7. Let = { , , }R a b c and = { , }.  Then, 

R is a simple  -hyperring with the following 
operations and hyperoperation: 
 

  a b c 

a a b c 

b b {a,b} c 

c c c {a,b,c} 
 

c b a   
a a a a 
c b a b 
b c a c 

 
c b a   

a a a a 
b c a b 
c b a c 

 
where = { , }.   

 
Lemma 2.2. A  -semihyperring R is simple if and 

only if =R a R R   for every \ 0.a R  
 
Proof: Suppose that R is a simple  -

semihyperring. Then, R R is an ideal of R. 

Since R is a simple  -semihyperring, R R  is 
distinct from {0},  hence it must be coincide with 

,R and it follows:  

= = .R R R R R R      

Let 0a  be an element of .R Then, R a R    

is an ideal of R and so either =R a R R    or 

= {0}.R a R    If = {0},R a R  
 then the set 

= { | = {0}},I x R R x R     contains a non-

zero element .a  Let , .x y I  Then, 

= {0}R x R    and = {0}.R y R    Since  

( ) ,R x y R R x R R y R               

I is an ideal of R  which implies that = {0}I  or 

= .I R  If = ,I R  then = {0}R x R    for 

every .x R  Since R  is simple and 

{0} ,R R R R     we have = .R R R  But 

this implies that = = {0}R R R R    which is a 

contradiction. Hence, = .R a R R  
 

Conversely, suppose that =R a R R    for all 

\ 0.a R  Then, {0}.R R  If I is an ideal of 

R  containing a non-zero element a , then 

= ,R R a R R I R I        
 and so =I R . 

Therefore, R  is a simple  -semihyperring.  
 
Lemma 2.3. If I  is a non-zero minimal ideal of 

-semihyperring R , then either = {0}I I or I  is 

a simple ideal of .R  

Proof: Since I I  is an ideal of R contained in 

,I we must have either = {0}I I  or = .I I I  

Suppose that = .I I I  Then, ( ) = .I I I I I      

Therefore, = .I I I I I      If a  is a non-zero 
element of ,I  then < >a  is a non-zero ideal of R  
contained in .I  Since I is a minimal ideal of ,R  
we have =< > .I a  Since < >= ,a a R a a R R a R           
we obtain 
 

( )

.

I a I I a R a a R R a R I

I a I

           

  

       

 
  

Hence, =I a I I    and so I is a simple ideal 
of .R   
 
Definition 2.4. Let R  be a  -semihyperring and 
for every \ 0   there exists 1   such that for 

every x R , 1x x  and 1 .x x Then, R  is 

called a  -semihyperring with  -identity.  
 
Lemma 2.5. Let R  be a right simple  -
semihyperring with  -identity. Then, \ 0R  is a 
multiplicative close subset of .R   
 
Proof: We show that for every ,a b R and ,   

\ 0.a b R   Suppose that , \ 0,a b R    but 

= {0}a b . Let = { | = {0}}.x R a x  Then,   

is a right ideal of .R  Since {0, } ,b   we obtain 

= R  which implies that = {0}.a R  Hence, 
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1 = {0}.a a   This is a contradiction. Therefore, 

\ 0.a b R   
 
Proposition 2.6. Let I be a simple left ideal of  -
semihyperring R and for every left ideal J of ,R
y r J     implies that y r J  where .y I

Then, for every    and ,r R I r  is either 

{0}or a minimal left ideal of .R   

 
Proof: Suppose that {0},I r   where    and 

.r R  Obviously, I r is a left ideal of .R   In 
order to show that it is a minimal left ideal, let A  
be a left ideal of R  contained in .I r  Assume that 

= { | }.x I x r A   Then, .r A   Let x A . 

Then, there exists y I such that .x y r  Hence 

A y r    which implies that y r A  . So, 

= .r A I r   Since I is a simple left ideal and 

  is a left ideal of R , then = {0} or = .I  

Hence = {0}A  or = .A I r  

 
Proposition 2.7. Let I be a minimal simple ideal of 
R such that {0}L  is a left ideal contained in .I  

So, {0}.L L   

 

Proof: Since L R is an ideal of R contained in 

,I = {0}L R or = .L R I  If = {0},L R  

then L is an ideal of R . Hence, =L I  and 

= = {0}.I I L I L R      That is a 

contradiction. Hence, = .L R I Since 

= = ( ) ( ) ( ) .I I I L R L R L L R           

We conclude that {0}.L L    

 
Lemma 2.8. Let R be a multiplicative  -
semihyperring with  -identity and I be a simple 

left ideal of R . Then, =I R a  for every 
\ 0.a I  

 
Proof: Suppose that 0a   is an element of .I  

Then, R a  is a left ideal of R contained in I . 

Therefore, = {0}R a  or = .R a I  If 

= {0},R a  then {0, }a  is a left ideal of .I  

Therefore, = {0}I I  which is a contradiction. 

Hence, = .R a I  
 

Theorem 2.9. Let R be a simple  -hyperring 
containing a non-zero minimal left ideal. Then, R
is the union of its minimal left ideals.  
 
Proof: Suppose that R is a simple  -hyperring 
and I is a non-zero minimal left ideal. Then, 

I R is an ideal of R and so either = {0}I R

or .I R R   Suppose that = {0}.I R  Then, 

I is an ideal of R . Since {0}I  , it follows that 

=I R  and so = {0}.R R R R    It is a 

contradiction. We conclude that =I R R  and so 
there exists a R  such that {0}.I a   Let J be a 

non-zero left ideal of R contained in I a . Then, 
= { | },b I b a J     being a non-zero left ideal 

of R contained in I and so = .J I a a J     

Now, let = { | , }.H I a a R     Then, 

certainly H  is a non-zero left ideal. Let ,x H
y R  and .   Then, there exist ,  a R  

such that .x I a  Hence, ( ) = ( ) .x y I a y I a y H       
Since R is simple, = ,H R  and R is the union of 
minimal left ideals.  

The dual of the previous theorem is true. 
Therefore, if R is a simple  -hyperring and 
contains a minimal right ideal, then R  is the union 
of its minimal right ideal.  
 
Proposition 2.10. Suppose that R is a simple  -
hyperring containing at least one minimal left ideal 
and one minimal right ideal. Then, for every 
minimal left ideal L of R there exists a minimal 
right ideal 1R such that 1 = .L R R  

 
Proof: Let L be a minimal left ideal of .R  Since 

R is a simple  -hyperring, = {0}L R  or 

= .L R R  By Theorem 2.9 there exist a R
and    such that {0}.L a   Since 

1{0} ,L a L R    by the dual of the previous 

theorem there is a minimal right ideal 1R such that 

1.a R  Since R is a simple  -semihyperring, 

1L R  must coincide with .R  

 
Proposition 2.11. Let I be a proper normal ideal of 
 -hyperring ,R A be the set of ideals of R

containing I and B be the set of ideals of [ : ].R I   

Then, the map : [ : ]J J I  is inclusion-

preserving bijection from A onto B.  
 
Proof: Since J is an ideal of R , [ : ]J I   is an 
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ideal of [ : ].R I   Hence  is well-defined. Let 1J

and 2J be two ideals of R such that 1 2( ) = ( ).J J   

Then, 1 2[ : ] = [ : ].J I J I   For every element 

1,x J  there is 2y J such that  ( )x y modI and 

so x a y  for some .a I  This implies that 

1 2J J . In the same way 2 1.J J  Hence, 

1 2= .J J  Let T be an ideal of [ : ].R I   Then, 

= { | ( ) }x R I x T   is an ideal of R and 

( ) = .T  Therefore,  is bijective.  

 
Proposition 2.12. If I , J are ideals of a  -
hyperring R such that ,I J  I is a normal ideal 

and there is no ideal K of R such that .I K J   

Then, [ : ]J I  is either simple or null ideal.  

 
Proof: By Proposition 2.11, [ : ]J I  is a minimal 

ideal of [ : ].R I  Thus [ : ]J I  is null or simple, by 

Lemma 2.3.  

3. Noetherian and Artinian  -semihyperrings 

A collection A of subsets of a  -semihyperring R
satisfies the ascending chain condition (or Acc) if 
there does not exist a properly ascending infinite 
chain 1 2A A  of subsets from .A  Recall that 

a subset B A is a maximal element of A if there 
does not exist a subset in A that properly contains 
B. 
 
Proposition 3.1. Let R be a  -semihyperring. 
Then, the following conditions are equivalent:  
(1) R satisfying the Acc condition on right (left) 
ideals.  
(2) Every non-empty family of right (left) ideals has 
a maximal element.  
(3) Every right (left) ideal is finitely generated.  
 
Definition 3.2. A   semihyperring R  is right 
(left) Noetherian if the equivalent conditions of the 
above propositions are satisfied.  

In the same way, we can define an Artinian  -
semihyperring. Let I be an ideal of a  
semihyperring R and I be a Noetherian  
semihyperring. Then, I is called a Noetherian ideal 
of .R  
Example 8. Let ( , )R  be a group and ( , )  be a 

subgroup of .R  Then, R is a multiplicative 
Noetherian (Artinian)   semihyperring with 
respect the following hyperoperation: = .x y R  

 
Example 9. Let = [ , 1)nA n n   for every ,n Z

= n Z nS A  and = .Z Then, S is a Noetherian 

 -semihyperring but not an Artinian  -
semihyperring with respect to the following 
hyperoperation: = , = ,n m n mx y A x y A   where 

nx A  and .my A  

 
Proposition 3.3. Let ( , , )R   be a commutative 

ring, ( , )  be a subgroup of ( , )R  such that 

1R  and { }g g RA   be a collection of non-empty 

disjoint sets. Then, = g R gS A is a  -

semihyperring with the following hyperoperation: 

1 2 1 2
= , = ,g g g gx y A x y A   where 

1
,gx A

2
gy A  and .   Therefore, R is a Noetherian 

(Artinian) ring if and only if S is a Noetherian 
(Artinian)  -semihyperring.  
 
Proof: One can see that S is a  -semihyperring 
with the above hyperoperations. Let I be an ideal 
of .R  Then, =I g I gS A  is an ideal of R .  

Conversely, suppose that T is an ideal of  -
semihyperring .S  Then, = ,IT S where =< >I X

and = { | }.gX g R A T     Therefore, the 

commutative ring R is Noetherian (Artinian) if and 
only if S is Noetherion (Artinian).  
 
Proposition 3.4. Let I be a 2-ideal of  -
semihyperring R . Let A be the set of ideals of R
containing I and B the set of ideal of / IR  . Then, 

the map : / IJ J  is inclusion-preserving 

bijection of A onto B .  
 
Proof: The proof is straightforward.  
 
Proposition 3.5. Let R be a Noetherian  -
semihyperring and I be a 2-ideal of .R  Then, 

/ IR  is a Noetherian  -semihyperring.  

 
Proof: The proof is straightforward.  
 
Theorem 3.6. Let I be a Noetherian 2-ideal of  -
semihyperring .R  If / IR   is a Noetherian  -

semihyperring, then R  is a Noetherian  -
semihyperring.  
 
Proof: Assume that I and / IR  are Noetherian 

and 1 2 3A A A   be an ascending chain of 

ideals of R . There exist ascending chain of ideals 

1 2 ,A I A I      
1 2( ) / ( ) / ,I IA I A I      in I and / ,IR   

respectively. Then, there exists n N  such that 
=i nA I A I   and ( ) / = ( ) /i I n IA I A I    
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for all .i n  Hence, =i nA I A I  for all .i n  

Suppose that .ix A I   If ,x I  then

.nx A I   Assume that ix A  for some .i n  

Then, there exists 1 nx A I  such that 

1( ) = ( )I Ix x  which implies that 1=x x or 

1, .x x I  Therefore, nx A I   which implies 

that =i nA I A I   for all i n . Hence, for i n  
= ( ) = ( ) = ( ) = ( ) = .i i i i n n i n n nA A A I A A I A A I A A I A         

So, R is Noetherian. 
 
Proposition 3.7. Let R be a  -semihyperring and
A , B be two Noetherian 2-ideals of .R Then, 
A B is a Noetherian sub  -semihyperring of .R  

 
Proof: Since A and B are 2-ideals, then A B is a 
2-ideal of A and B is a 2-ideal of .A B Indeed,  
( ) ( ) ( ) ,A B A A A B A A B         

( ) ( ) ( ) .A B A A A B A A B        

In the same way we can see that B is a 2-ideal of 
A B . We define : / ( ) / ,BA BA A B     by 

( ( )) = ( ),BA B x x   for all .x A Let 

( ) = ( )A B A Bx y    for some , .x y A  Then, 

( ) = ( ).B Bx y   Hence,   is well-defined. Since 
 

( ( ) ( )) = ({ ( ) | })

= { ( ) | }

= ( ) ( )

= ( ( )) ( ( )).

A B A B A B

B

B B

A B A B

x y t t x y

t t x y

x y

x y

    

 
   

  

 

  
 




 

 
In the same way, it is easy to see that 
( ( ) ( )) = ( ( )) ( ( )).A B A B A B A Bx y x y           

Hence, / ( ) / .BA BA A B     By the previous 

proposition, A B is Noetherian. 
 
Lemma 3.8. Let R be an ordered  -
semihyperring with zero. The principle ideals of R
forms a chain with respect to inclusion if and only 
if ideals of R do so.  
 
Proof: Suppose that ,I J are ideals of R such that 

I J with zero. Then, .J I  Let .x J We 
consider an element y I such that .y J By 

hypothesis, we have < > < >x y  or < > < > .y x  

If < > < >,y x then < > < > ,y y x J  
which is impossible. Thus we have < > < >x y
and so which < > .x x I   
 

Lemma 3.9. Let 1R and 2R be 1 - and 2 -

semihyperring with zero, 1 - and 2 -identity, 

respectively. Then, = 1 2R R R is a Noetherian 

( , )1 2 


-semihyperring with the following 

hyperoperations if and only if 1R  and 2R  are 

Noetherian 1  and 2 -semihyperring, respectively.  
( , ) ( , ) = {( , ) | , },1 1 2 2 1 2 1 2a b a b x y x a a y b b    

( , ) ( , )( , ) = {( , ) | , }.1 1 2 2 1 2 1 2a b a b x y x a a b b   


 

 
Proof: The proof is straightforward.  
 
Proposition 3.10. Let R be a  -semiring with 

zero and  -identity, 1  and 2  
be regular 

relations on R such that =1 2 R R    and 

= .1 2 Id R   Then, / 1R   and / 2R   are 

Noetherian  -semirings if and only if R  is a 
Noetherion  -semiring.  
 
Proof: Let : / /1 2R R R     defined by 

( ) = ( ( ), ( )).1 2x x x    We show that  is a 

homomorphism. We have 
( ) = ( ( ), ( ))1 2

= ( ( ), ( )) ( ( ), ( ))1 2 1 2

x y x y x y

x x y y

  

   

  


 

= ( ) ( ).x y   

Let :f    defined by ( ) = ( , ).f    In 

the same way, ( ) = ( ) ( ) ( ).x y x f y      Also, 

we have  
 

= {( , ) | ( ) = ( )} = {( , ) | ( )1

        = ( ), ( ) = ( )} = .1 2 2

ker a b a b a b a

b a b IdR

   

  
 

 
Let ( ( ), ( )) / / .1 2 1 2x y R R      There 

exists c R  such that ( , ) 1a c  and ( , ) 2c b 

which implies that 
( ) = ( ( ), ( )) = ( ( ), ( )).1 2 1 2c c c x y      Hence 

/ / .1 2R R R    By Lemma 3.9, R is a 

Noetherian  -semihyperring if and only if / 1R 

and / 2R  are Noetherian  -semihyperrings.  

In the previous proposition, let R be a  -
semihyperring. Then,  is a homomorphism but is 

not a strong homomorphism. Let R be a  -
semihyperring. An ideal P of R is called prime if 

,A B P  implying that A P or ,B P where
A and B are ideals of .R  An ideal M of  -
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semihyperring R is called maximal, if M R  and 
there are no ideals in " between" M and .R  In 
other words, if I is an ideal which contains M as a 
subset, then either =I R or = .I M Let R be a 
commutative  -semihyperring with zero and  -
identity. Then, every maximal ideal of R is prime. 
 
Example 10. Let = { , , , }R a b c d , 2=  and 

.= 0, = 1   Then, ,R is a  -semihyperring with 

the following hyperoperations: 
 

  a b c d 
a {a,b} {a,b} {c,d} {c,d} 
b {a,b} {a,b} {c,d} {c,d} 
c {c,d} {c,d} {a,b} {a,b} 
d {c,d} {c,d} {c,d} {a,b} 

 
  a b c d 

a {a,b} {a,b} {a,b} {a,b} 

b {a,b} {a,b} {a,b} {a,b} 

c {a,b} {a,b} {c,d} {c,d} 

d {a,b} {a,b} {c,d} {c,d} 
 
For every ,x y R we define = { , }.x y a b In this 

example = { , }P a b is a prime ideal of .R  

 
Proposition 3.11. Let R be a commutative  -
semihyperring with zero and  -identity and 

1 2, , ..., nM M M  different maximal ideals in .R

Then, 
1 2, , ..., nM M M is a proper ideal of 

1 2 1  ... .nM M M     

 
Proof: It is straightforward. 
 
Proposition 3.12. Let R be a multiplicative  -
semihyperring with zero, I and J be non-empty 
subsets of /F  and ,R  respectively. Then,   

1) If I is an ideal of / ,F   then RI is an ideal of 

.R  
2) If J is an ideal of ,R  then /FJ  is an ideal of 

/ .F   

 
Proof: (1) Since I is a non-empty set, there exists 

an element  =1( , ) .n
i i ix I    Hence  

 =1(0, ) ( , ) (0, )n
i i ix I        for every 

,    which implies that I R is a non-empty set. 

Now, let , ,x y I R  then ( , ), ( , )x y I      for 

every .   Hence ( , ) = ( , ) ( , )x y x y I         

for every   and so .x y I   Let ,x I R

y R and .   Then, ( , )x I    for every 

.   Since I  is an ideal of / ,F   

( , ) ( , ) .x y I      So { ( , ) | }t t x y I     

which implies that .x y I   Hence, I R is an 

ideal of .R  
(2) Let J be an ideal of .R  Then, 0 ,J which 

implies that (0, ) ./JF    Hence, /JF   is a 

non-empty set. Let    =1 =1( , )   ( , )mn
i ji i j jx and y      

be elements of / .FJ   Then, 

=1 =1  n m
i ji i j jx x and y x I     for every .x R

Hence, =1 =1
n m
i ji i j jx x y x I     which 

implies that    =1 =1 / .n m
i j j j Fx x y x Ji i        In 

the same way, /FJ  is closed with respect to the 

above hyperoperation. Hence, /JF   is an ideal of 

/ .F   

 
Theorem 3.13. Let R be a multiplicative  -
semihyperring with  -identity and zero, I and J
be ideals of /F   and ,R  respectively. Then, (1) 

/( ) = ,RFJ I  /(2) ( ) = ,R FI J  

 
Proof: (1) We have 

/ /

/

( ) = { | ( , ) }

= { | ( , ) ,  }

= { | ,   , }.

RF F

F

J x R x J

x R x J for every

x R x a J for every a R

 





  

 

  

  

   
Since R has  -identity, then /( ) .RFJ J   

Therefore, /( ) = .RFJ J  (2) By definition, we have  

  
  

/
=1=1

=1=1

( ) = ( , ) | ,   

= ( , | ( , )    , .

n n

R RF i i i i
ii

n n

i i i i
ii

I x x x I for all x R

x t I for every t x x x R

   

   

 

   

This implies that /( ) / .R FI F I    Since R  is 

with  -identity, /( ) .R FI I   Hence, 
/( ) = .R FI I  

 
Corollary 3.14. Let 1J and 2J be two ideals of R

and A  and B be two ideals of /F   such that 

1 2J J  and .A B  Then, 1 2/ /( ) ( )F FJ J   and 

.R RA B  

 
Corollary 3.15. Let R be a multiplicative  -
semihyperring. Then, R is a Noetherian (Artinian) 
if and only if /F   is Noetherian (Artinian) 

multiplicative hyperring.  
 
Corollary 3.16. Let R be an Artinian  -ring. 
Then, R is a Noetherian  -ring.  
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4. Regular  -hyperrings 

Let R be a  -hyperring. An element x R  is 
( , )  - regular or shortly regular if for every 

x R there exist y R and ,    such that 

= .x x y x   Let every element of R be regular. 

Then, R is called a regular  -hyperring. An 
element e R is idempotent, if there exists  
such that = .e e e  In this case, we say that e is an 
 -idempotent. We denote that the set of all  -

idempotent element with .E  Hence, if E is a set 

of all idempotent elements of ,R  then = .EE 

  

If every element of R is an idempotent, then R is 
called an  idempotent  -hyperring. For an element 
a in a  -hyperring R if there exist an element 
b R and ,   such that =a a b a   and 

= ,b b a b   then b is said to be a ( , )  - inverse 

of .a  In this case, we write ( ).b V a
  Notice that 

an element with an inverse is necessary regular and 
every ( , )  -regular element has a ( , )  -inverse: 

if there exist x R and , ,   = ,a a x a  then 

define =b x a x  and observe that  

= ( ) = ( ) = = .a b a a x a x a a x a x a a x a a           
= ( ) ( ) = ( ) ( )

= ( ) = = .

b a b x a x a x a x x a x a x a x

x a x a x x a x b

             
     

 

Hence, in a regular  -hyperring every element 
has inverse. Let a be a ( , )  -regular element of 

.R  Then, ( ) .V a
    An ideal I of a  -

hyperring R is called ( , )  -regular, if 
' ( )x x x y x I       implies that there 

exist 1 2,x x x x y x   such that 
'

1 2=x x a x  for some .a I  Let I be an ideal of 

a  -hyperring R and for every x I there exist 
,    and y I such that = .x x y x   Then, 

I is called a  regular ideal of .R  
 
Example 11. Let ( , , )R   be a regular commutative 

ring, ( , )  be a non-empty subset of R and  be 

an equivalence relation defined as follows: 
  =   = .x y x y or x y    

Then, the set / = { ( ) | }R x x R   becomes a 

regular  -hyperring with respect to the 
hyperoperation 

( ) ( ) = { ( ), ( )}x y x y x y      and 

multiplication ( ) ( ) = ( ).x y x y     

 
Proposition 4.1. Let R be a regular  -hyperring 
with zero. Then, every principal (right) left ideal of 
R is generated by an idempotent element.  

Proof: Suppose that x is an element of .R  Then, 
there exist y R and ,     such that 

= .x x y x  Since, 
 

=1 =1
< > = | , , , , , ,1 .

n m

l i j j j j
i j

x y R y n x r x i n m j r R j m           
 


 

 
We have .< > =< >l lx y x  Moreover, 

( ) ( ) = ( ) = .y x y x y x y x y x        Hence, 

y x is an  -idempotent element of .R This 

completes the proof.  
 
Proposition 4.2. Let R be a  -hyperring with  -
identity and for every x R there exists 
idempotent element e R such that = .x R e R 
Then, R is a regular  -hyperring.  
 
Proof: Since R is a  -hyperring with  -identity, 
there exist 1 2,x x R and ,   such that 

1=x e x and 2= .e x x Since e  is an idempotent 

element of ,R there exists   such that = .e e e  

Hence, 
 

1 1 2 2 1

2 2 1

2

= = ( ) = ( ) ( )

= ( )

= .

x e x e e x x x x x x

x x x x x

x x x

      
   
 

 

 
Then, x is a regular element of .R Therefore, R is 
a regular  -hyperring. 
 
Proposition 4.3. Let R be a regular  -hyperring. 
Then, every one-sided ideal of R is idempotent.  
 
Proof: Suppose that I is a right ideal of R and 

.x I Then, =x x y x  for some ,   and 

.y R Consequently, = ( ) .x x y x I I    Thus, 

= .I I I  
 
Proposition 4.4. Let ,I J be two ideals in  -
hyperring R such that .I J  If J is regular, then 
I is regular too. 
 
Proof: Suppose that .x I  Then, there exist 
y J and ,   such that = .x x y x   Hence, 

=z y x y  is an element of I such that 

= ( ) = ( ) ( ) = = .x z x x y x y x x y x y x x y x x           
 
Proposition 4.5. Let R be a  -hyperring and 
I J are ideals of R such that I is a ( , )  -

regular ideal of R . Then, I and [ : ]J I  are both 

regular if and only if J is regular.  
 
Proof: By Proposition 4.4, it is obvious that if J is 
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regular, then [ : ]J I  and I are regular. 

Conversely, assume that I and [ : ]J I  are both 

regular and .x J  It follows from regularity 

[ : ]J I   that ( )x x y x I      for some 

,     and .y J  Suppose that 
' ( ) .x x x y x I     Then, there exist 

1 2,x x x x y x    such that '
1 2=x x a x   for 

some .a J  Hence 
 

'
1 2= ( ) ( )

=

= ( ) .

x x x y x x a x x y x x x y x a x x y x x y x

x a x x a x y x x y x a x x y x a x y x

x a a x y y x a y x a x y y x

             
               
         

      
  

   

 

 
Consequently, from which we conclude that 
=x x z x  from some .z J  Hence, J  is a 

regular.  
 
Proposition 4.6. Let R be a  -hyperring, I be a 
regular ideal and J be a normal ideal such that 
( , )  -regular. Then, I J is a regular ideal of .R   

 
Proof: Clearly, J is a normal ideal of I J and 
I J is a normal ideal of .I Consequently, one can 

see [ : ] [ : ( ) ].I J J I I J     Since I is regular, 

[ : ( ) ]I I J   is regular. By Proposition 4.5, we 

obtain I J is regular ideal of .R  
Let R be a  -ring such that every element of R

be ( , )  -regular. (This means that for every 

x R  there exists y R and  such that 

= .x x y x  ) Then, R is called a ( , )  -regular 

 -ring. An ideal P of a commutative  -ring R is 
called quasi prime if A R B P    implies that 
A P or ,B P where A, B are subsets of R and 

,R A A  .R B B   
 
Theorem 4.7. Let R be a commutative  -ring and 
  such that (1) R be a Noetherian   ring, (2) 

/R P is ( , )  -regular for all quasi prime ideals of 

,R (3) {0}  is a quasi prime ideal of .R Then, R is a 

( , )  -regular  -ring. 

 
Proof: Assume that R is not ( , )  -regular  -

hyperring. Then, there is some x R such that 
.x x R x   Note that {0} is a quasi prime ideal 

of R such that {0}.x x R    Hence, 

= { | ,       }I R x x R x I I is a quasi ideal of R      
is a non-empty set. Since R is a Noetherian  -ring, 
there is a quasi ideal J in R which is maximal with 
resect to the property .x x R x J    Suppose that 

x J be ( , )  -regular element of / .R J  Thus, 

there is y R  such that x x y x J x R x J        

which is a contradiction. Hence, /R J is not ( , ) 
-regular. Therefore, J  is not quasi prime ideal of 

.R Thus there exist ideals 1I and 
2I such that 

1 2I R I J   and 1,I  2I are not subsets of .J  

Now, set  

2= { | }  = { | }.A r R r R I J and B r R A R r J         

Since J  is a quasi prime ideal, we conclude that A
and B  are quasi prime ideals of .R  Clearly, 

1
I A and 

2 .I B  Hence, A and B properly contain .J  Because 

of maximality of ,J  x a R x A    and 

.x x R x B    Hence, there exist 
1 2
,r r R  and 

,    such that 
1

=x x r x a    and 

2=x x r x b    where a A and b B . We have 

1 2 1 2 1 1 2( ) = ( ) ( ) .x x r r r x r x x x r x x x r x r x A               

In the same way, we can see 

1 2 1 2( ) .x x r r r x r x B        Hence, .x x R x A B     

Note also that, since ( ) ( ) ,A B R A B A R B J         

then we have  .A B J   Hence, ,x x R x J    

which is a contradiction. Therefore, R is a ( , )  -

regular  -ring.  
 
Proposition 4.8. Let R be a commutative  -
hyperring with  -identity. Then, =I J I J  for 
all ideals I and J  if and only if R  is regular.  
 
Proof: Suppose that R is regular and ,I  J are two 
ideals of .R  By Proposition 4.3, I J is 
idempotent. Then, = ( ) ( ) .I J I J I J I J       

Hence, = .I J I J   
Conversely, suppose that = ,I J I J  where I

and J are ideals of .R  Let .x R  Then, x R and 
R x  are ideals of .R  So, 

( ) ( ) = ( ) ( ).x R R x x R R x      Since R  has  -

identity, x x R  and x R x  and so 

( ) ( ) = ( ) ( ) .x x R R x x R R x x R x        
Hence, R is regular. 
 
Proposition 4.9. Let   be a regular relation on a 

regular  - hyperring ,R ( )a  is a  -idempotent 

element in /R  and a a be a ( , )  -regular 

element of .R  Then, there exists an idempotent 
element e R  such that ( ) = ( ),a e   where e  is 

an  -idempotent element of .R  
 
Proof: It is straightforward. 
 
Proposition 4.10. Let R be a regular  -hyperring 
and 1 2e e  be ( , )  -regular element of ,R where 
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,   and 1 ,e E
 2 .e E Then, 

1 2 1 2 1

1 2 2

( , ) = { ( ) |

               = = , = = },

E e e x V e e E x e

x e x e x e x x

 
   

  
 

 

is a non-empty set of .R  
 
Proof: Since 1 2e e is a ( , )  -regular, 1 2( )V e e

 
is a non-empty set of .R Suppose that 

1 2( )y V e e
  and 2 1.=x e y e   Then, 

.=

)()(=

)()(=

)()()(=)()(

21

2121

211221

2112212121

ee

eeyee

eeeyeee

eeeyeeeeexee







 

Also, we have  

1 2 2 1 1 2 2 1

2 1 1 2 2 1

2 1 2 1

2 1 2 1

2 1

( ) = ( ) ( ) ( )

= ( ) ( )

=

= ( )

=

= ,

x e e x e y e e e e y e

e y e e e e y e

e y e e y e

e y e e y e

e y e

x

         
      
    
    
 

 

and so 1 2( )x V e e
  . Also, 

2 1 2 1

2 1 2 1

2 1

= ( ) ( )

= ( ( ) )

=

= ,

x x e y e e y e

e y e e y e

e y e

x

     
    
 

 

and so .Ex Finally, it is clear that xex =1
and 2 = .e x x  Therefore, 1 2( , )x E e e

 which 

implies that 1 2( , )E e e
 is a non-empty set of .R  

 
Proposition 4.11. Let R be a regular  -hyperring 
and 1 2e e  be ( , )  -regular element of ,R where 

,    and 1e E , 2e E . Then, 

1 2 1 2 1 2 1 2( , ) = { | = = , = }.E e e x E x e e x x e x e e e
      

 
Proof: Suppose that ,x E 1 2= =x e e x x  and 

1 2 1 2= .e x e e e    Then,  

1 2 1 2 1 2 1 2

1 2 2

1 2

1 2

( ) ( ) = ( ) ( )

= ( )

=

= .

e e x e e e e x e e

e e x e

e x e

e e

       
  
 


 

1 2 1 2( ) = ( ) = = .x e e x x e e x x x x        

Hence, 1 2( )x V e e
   and so 1 2( , ).x E e e

  

Conversely, let 1 2( , )x E e e
 . Then, x E and 

1 2 1 2 1 2( ) ( ) = .e e x e e e e      Moreover,  

( ) ( ) = ( ) ( )1 2 1 2 1 2 1 2
= ( )1 2 2
= ( )1 2 2
= .1 2

e e x e e e e x e e

e e x e

e e x e

e x e

       

  

  

 

 

Therefore, 1 2 1 2= .e x e e e    

 
Proposition 4.12. Let R be a regular  -hyperring, 

1 2e e be ( , )  -regular element of ,R where 

1 ,e E 2 .e E  Then, 1 2( , )E e e
 is a sub 

semigroup of .R  

 
Proof: By Proposition 4.11, 1 2( , )E e e

 is a non-

empty set. Let 1 2 1 2, ( , ).x x E e e
 Then, 

1 2,x x E and  

          

= = , = , 1 1 2 1 1 1 1 2 1 2 2 1

= = , = .2 2 1 2 2 1 2

x e e x x e x e e e x e

e x x e x e e e

     

   
 

Moreover,  

1 2 1 1 1 2 2 1

1 1 2 2 1

1 1 2 1

1 1 2 1

1 1 1

= ( ) ( )

= ( )

= ( )

= ( ) ( )

= = .

x x x x e x e x

x e x e x

x e e x

x e e x

x x x

     
   
  
  


 

It follows that 

1 2 1 2 1 2 1 2 1 2( ) ( ) = ( ) = ,x x x x x x x x x x        and 

so 1 2x x is  -idempotent element. Also, 

1 1 1 1 12 2 2( ) = ( 1 ) = ,x x e x x e x x      

2 1 2 2 1 2 1 2( ) = ( ) = .e x x e x x x x      

1 1 2 2 1 1 2 2 2

1 1 2 2 2

1 2 2 2

1 2 2 2

1 2 2 ,

( ) = ( ) ( )

= ( )

= ( )

= ( )

=

e x x e e x e x e

e x e x e

e e x e

e e x e

e x e

      
   
  
  
 

 

and so 1 2 1 2( , ).x x E e e
  This implies that 

1 2( , )E e e
 is a sub semigroup of .R  

 
Proposition 4.13. Let R be a regular  -hyperring, 
b is a ( , )  -regular, a is a ( , )  -regular and for 

every  -idempotent elements 1 2, ,e e R

2 1 1 2( , ).e e E e e
   Then, ( ) ( ) ( ).V b V a V a b  

     

 
Proof: Since b is a ( , )  -regular and a  is a ( , ) 

-regular elements, ( )V b
  and )(aV 

 are non-
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empty subsets of .R Suppose that ' ( )a V a
  and 

' ( ).b V b
  Let ' '( , ).g E a a b b

   Then,  
' ' ' '

'

' '

' '

' '

' '

( ) ( ) ( ) = ( ) ( )

= ( ) =

= ( ) ( )

= ( )

= ( )

= ( ) ( )

= .

a b b g a a b a b b g a a b

a g a a b a g b

a a a g b b b

a a a g b b b

a a a b b b

a a a b b b

a b

           
     
     
     
    
    


 

' ' ' ' ' ' ' '

' ' ' '
                                                               

( ) ( ) ( ) = ( ) ( )

= ( ) = .

b g a a b b g a b g a a b b g a

b g g a b g a

             

    
 

Hence, ' ' ( ).b g a V a b
   One can see that

'a a and 'b b are -idempotent elements of .R

Hence ' ' ' '( ) ( ) ( , ).b b a a E a a b b
     This 

implies that ' ' ' '(( ) ( )) ( ).b b b a a a V a b
     

 
Thus, ' ' ' '( ) ( ) ( )b b b a a a V a b

       which 

implies that ' ' ( ).b a V a b
    

Therefore, ( ) ( ) ( ).V b V a V a b  
     

 
Proposition 4.14. Let R be a regular  -hyperring 

with the set E of  -idempotent elements, 21 ee
is a ( , )  -regular element of R where 21,e e E

and ( )V e E
  for every .e E Then, E is a 

sub semigroup of .R  

 
Proof: Suppose that 1 2,e e E , 1 2( )x V e e

  and 

2 1.=y e x e  Then,  

1 2 1 2 1 2 2 1 1 2

1 2 2 1 1 2

1 2 1 2

1 2

( ) ( ) = ( ) ( ) ( )

= ( ) ( )

= ( ) ( )

= .

e e y e e e e e x e e e

e e e x e e e

e e x e e

e e

         
     
   


1 2 2 1 1 2 2 1

2 1 1 2 2 1

2 1 2 1

.2 1

( ) = ( ) ( ) ( )

= ( ) ( )

= ( )

=

y e e y e x e e e e x e

e x e e e e x e

e x e e x e

e x e

         
      
    
 

Hence, 1 2( ).y V e e
   Moreover, 

 
2 1 1

2 1 2 1 2 1

= ( ) ( )2
        = ( ) = = ,

y y e x e e x e

e x e e x e e x e y

     

      
 

 
which implies that y is  -idempotent element. But 

2 .1 ( )e e V y E
    Hence, E is a sub 

semigroup of .R  

5. Conclusion 

In this work, we presented the concept of  -
semihyperring which is a new kind of hyperalgebra 
and is a generalization of semihyperrings, 
hyperrings and rings and proved some results. In 
particular, the study of the notions of Noetherian, 
Artinian, simple and regular  -semihyperrings. 
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