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Abstract

. 2 2 . . . .
In this study, we focused on 7 Legendre curves and non- 7" Legendre curves in 3-dimensional Heisenberg group

IN3. Also, we gave some characterizations of these curves.
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1. Introduction

In mathematics , the Heisenberg group, named after
Werner Heisenberg, is the group of 3 X 3 upper
triangular matrices of the form

1 a b
0 1 c)
0 0 1

or its generalizations under the operation of matrix
multiplication. In 1987, L. Bianchi classified the
homogeneous metrics. L. Bianchi, E. Cartan and G.
Vranceanu found the following 2-parameter family
of homogeneous Riemannian metrics on the
cartesian 3- space IR3(x, y, z):

dx? + dy? { A ydx—xdy 2

= < 4+ +—7} VA,
I = A ue +y0) T2 A e + 7)) "
€ IR.

In this family, if A = p = 0, the Euclidean metric is
obtained, and if A # 0,u=0, the Heisenberg
metric is obtained. Inoguchi studied the differential
geometry of Heisenberg metric.

The Legendre curves play an important role in the
study of contact manifolds. In a 3- dimensional
Sasakian manifold, the Legendre curves are studied
by Baikousis and Blair who gave the Frenet 3-
frame in this space [1]. Yildinm gave some
characterizations of Legendre curves in
Homogeneous space [2]. llarslan gave a
characterization of curves on non-Euclidean
manifolds [3]. On the other hand, Baikosis and
Hirica studied Legendre curves in Riemannian and
Lorentzian Sasaki spaces [4]. Also, Legendre
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curves in a- Sasakian spaces are studied by Ozgiir
and Tripathi [5]. In this study, we focused on

2 . . . .
E—Legendre curves in 3-dimensional Heisenberg
group in IN3and gave a characterization of these
curves. Also, we gave similar results for non-
2 . . . .
;—Legendre curves in 3-dimensional Heisenberg
group in IN3.

2. Preiminaries

In this section, we will give some basic concepts
related to Sasakian geometry for later use.

The Heisenberg group IN3 can be seen as the
Euclidean space with the multiplication

y
o,y 2)(x',y',z'") = (x +x',y+y,z+7 + E(xy' - yx’))

and with the Riemannian metric

gy =dx*+dy*+ {dz 42 _ydexdy

2
2—(1+H(X2+y2)}} V1, 1€ IR. (1)

IN3 is a three dimensional, connected, simply
connected and 2-step nilpotent Lie group. The Lie
algebra of IN3 has a basis

_90_.9
1557 V%
3 F
e = -~ X- 2
a
63—5

which is dual to
9! = dx
92 = dy (3)
03 =dz+ % (ydx — xdy).
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For this basis Lie brackets are
le1, 2] = e3,[e3,e1] = [e;, €3] = 0,[6].

To study curves in IN3, we shall use their Frenet
vector fields and equations. Let y:1 = IN3 be a
differentiable curve parametrized by arc length and
let {V;,V,,V5} be the orthonormal frame field
tangent defined as follows: by V; we denote y
tangent to y, by V, the unit vector field in the
direction Dy, V; normal to yand we choose
Vo=V, XV, so that {V;,V,,V3} is a positive
oriented orthonormal basis. Thus, we have the
following Frenet equations [7]:

DV1V1 0 K 0 V1
Dy Vol =|-x 0O —‘L’l [Vzl. 4)
DV1V3 0 T 0 V3

Now, let us consider the odd-dimensional
Riemannian manifold (M, g). So, the Riemannian
manifold (M, g) is said to be an almost contact
metric manifold if there exist on M a (1,1)tensor
field ¢, a vector field ¢ (called the Reeb vector
field) and a 1-form 7 such that

n(§) =1,¢*(X) = =X + n(X)§

and

9(@X,0X) = g(X,Y) —n(X)n(¥)

for any vector fields X,Y on M. In particular, in an
almost contact metric manifold we also have
@& = 0andnop = 0.

Such a manifold is said to be contact metric
manifold, if dn = ®, where ®(X,Y) = g(X, dY) is
called the fundamental 2-form of M. If & is a
Killing vector field, then M is said to be a
K —contact manifold, we have
(Dxp)Y = R(§, X)Y
forany X,Y € M.

On the other hand, the almost contact metric
structure of M is said to be normal if
[(P. (p](X' Y) = (pZ[X’ Y] + [‘PX' (PY] - (P[(PX; Y] -
o[X, oY1, [8, 9].

A normal contact metric manifold is called a
Sasakian Manifold. It can be proved that a Sasakian
manifold is K —contact, and that an almost contact
metric manifold is Sasakian if and only if

(Dxp)Y = g(X,Y)§ —n(Y)X

for any X,Y. Furthermore, assuming that n = 63,
& = e; and defining
@: x(IN®) - x(IN?), <p(Xé))

—a,—+a;, —
2 0x, Lox,

A 0
+ > (x10; + xp05) 6_x3

where Y7, ai% € x(IN?), it can be easily seen
1A

that IN3 is a Sasakian space. Since all computings
yl .

have 3 coefficients, we have denoted IN3 as

%—Sasakian space. We need the following Lemma
for later use:

Lemma: Let X and Y be two vector fields in
x(IN3), D and D be Riemannian connections on
IN3and IE3, respectively. Thus,

2 ~
DyY =3XAY —gs(ler, e, X)pY +Dx.  (5)

On the other hand, if D is the contact distribution
in a contact manifold (M, ¢, ¢,n), defined by the
subspaces D,, = {X € T,,M|n(X) =0}, then a
one-dimensional integral submanifold of D will be
called a Legendre curve. A curve y:I = M,
parametrized by its arc length is a Legendre curve if
and only if n(y) = 0, [8, 9].

3. %— Legendre Curvesin IN3

Theorem 3.1. Let y:I - IN® be a non-geodesic
%— Legendre curve. The Frenet frame of y is
{V1, oV, &} and the Frenet formulas are

Dy, V; 0 N 9 V;
DyoVi[=|7% 0 Z||own]. (6)
Dy § 0 —% oll €

Proof: Let y:1 — IN® be a curve with arc length
parameter and the Frenet frame of y be {V;,V,, V3}.
Assume that n(y) =0 # 0. In this case, an

. yl . .
orthonormal basis of 7= Sasakian space is

QVy  §-oVy
{Vl, m,ﬁ} From here, we get

V. E-aV; ©
DV1V1=a\/%+ﬁ\/%, a,B € C*(N3,R).

On the other hand, derivating o we obtain

O.- = DV10'
= Dvlga(Vp $)
= gl(Dvlvl' f) + 9,(V1, Dy, &)

-l

= g1 (a4 B2 ) + a0~ 20V
pT=o?.

From here, we say that

B=o

1-g2

. LA .
Since y is a - — Legendre curve, we can easily
see that § =0. Moreover, from (4) we get a = k,
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Vz = (le, DV1V1 = K(le al’ld
Dy, V, = @Dy, Vi + (Dvl‘P)Vl
A
= @UepV) + 51921, V)& —n(V)Vi}
= —kV; +2¢.

From (4), we get V3 =¢, 1= —%. Hence, the
Serret-Frenet formulas are

0 k 0
Dy, V3 [ At vy
Dy, oV1| = 0 2 V1.
Dy¢ [0 2 OJ ¢
2

Theorem 3.2: Let y:1 - IN® be a non-geodesic
%— Legendre curve and 0 < |n(y)| < 1. The
curvature and the torsion of y are

Kk =+a?+ B2 a B € C®°(N3R) @)
and

_ 2, ap-ap ac
T= T g T i ®)
respectively.

Proof: Let y:1 — IN® be a curve with arc length
parameter and the Frenet frame of y be {V;,V,, V5}.
Assume that 7(y) =0¢ # 0.In this case, an

. y! . .
orthonormal basis of 7 Sasakian space is
{ QVy  §-oVy

Vl’ Ji-02’J1-¢2
DV1V1 = a\/ﬂ B
So, we obtain

k= ||Dy, | = Ja? + B2, a,B e C®(N3R)

and

}. From here we get

§-aly

=

a, B € C*(N3,R).

1
Vz = ;Dlel.

On the other hand, derivating @V, we have

Dy, Vi = @Dy, V; + (Dy,0)V;
_ (240 -l A
RASR =T E = RO
a ao Lo
- NE) Vl + J1-02 f B J1-02 (PV1 +

2 — o). ©)

Similaly, derivating & — oV, we get,

Dy, (& —olp) = Dvlse v, — — oDy, Vy

1 . v,
=—E¢V1—0V1—aa\/%—
E-oV.
aﬁﬁ. (10)

On the other hand, derivating o we have

O.- = DV10'
= Dvlga(Vp $)
= gl(Dvlvl' f) + 9,(V1, Dy, &)

= g1 (aZ 4 B ) + a0~ V)
—B\/1—02.

From here, we see that

B=¢

Similarly, derivating \/%and \/%we obtain
-0 -0

D (—“ )—oz =
n\Tie2) = “Tiee

and

)

+ B%o

respectively. Furthermore,

1
DV1 VZ = DV1 (E DV1 Vl)
K 1
= - K_ZDV1V1 + ;DVIDV1V1

K 1 a
— _pDlel + ;Dvl <—,—1 — 0_2) (pV1
1

_(\/1+_) Dy, oVy
+- DV1 <\/_) (E—-aV)+
1

B
- (ﬁ) Dy, (§ —aVy).
Using (9), (10), (11) and (12), we get

ak a A
DVle:_KV1_<_F+;_Z
afo ) 2%
1—02/V1—¢?2
g E_A_a_ <o )son
+< + s

From (6), it can be easily seen that

ak+d AB afo ) oV,
K2 Kk 2 gV1-02/V1-02

B;c ﬁ Aa alo )f—aVl
Ji-e2’

Taking the norm of the last equation, we have
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_ A, ap-ap aoc

T= .
2 a?+p?  1-¢2

Lemma 3.1. Let y:1 - IN3 be a curve with arc
length parameter and {V;,V,,V5;} be the Frenet
frame of y. Then, the following equation is
obtained:

i k& 22
DV, =250z v + (25 -2+ 2+ D), v, +
KKV, = 0. (13)
Proof: From (6), we know that
A
DV1q0V1 = _KV1 + Ef

and
DV1V1 = —K(le.

From here,

1 A
DVl EDVlVl = _KV1 + Ef

1)/ 1.9 2
=4 (;) DV1V1 + ;DV1V1 = —KVl + Ef

Differentiating the last equation, we have

1, 1 1\ 21
EDVlVl + 2<E) DV1V1 + (;) + K +Z; DV1V1
+KV1 = 0.

Considering the last equation, we get

. o .
DV =250z v+ (25 -2+ + D), v, +
KKVl = 0.

Theorem 33. Let y:I->IN3, y(t)=
(1 (), v2(8),ys(®)), be a %—Legendre curve in

IN3 and a be the projection curve of y on z = 0
plane. Then, the curvature of y is the curvature of
a.

Proof: The tangent vector field of y is

7)) =v1(Dey +¥2(t)e; +¥5(tes.

We can choose the parameter of y as y;(t)? +
¥,(t)? = 1. Then, if we choose y;(t) and y,(t) as
y1(t) = —sin 6(t), y,(t) = cos O(t), respectively,
we obtain

DY (1) = V1(t)ey +72(t)e,
and
1
D37 O = 3371 (2 +72(6)?
K =0(t).

On the other hand, the projection curve a of y on

z = 0 plane is a(t) = (y1(t),y2(t)). Thus, it can
be easily seen that o is a unit speed curve. The
curvature of a is

- V1) Y2(0)=v1()y2(0)l

K .
@ HACHEAGRE

From here,

K = Kq.

Corollary 3.1. Let y be a non-geodesic Legendre
curve in IN3. Then,

i) ¥ is not a circle.

ii) If y is a helix, it satisfies the following equation:

(w2 ¥
Al = (k? + %) H.
i) If y is a line,
QA(DV1V1,90V1) =0.
iV) v is not a planar curve.

Proof: i) Since y is a %—Legendre curve, the

torsion of y is — % So, it can be easily seen that y is
not a circle.
ii) If y is helix, f is constant. Also, on the ground
that the torsion of y is — %, Kk must be constant. So,
K, K =0.

From (13), we obtain

D3V, = — (KZ + %) Dy, Vi

Using V; =y, A= =Dy, Dy, V, and H = D, V; we
have

AH = (x? +§)H.

iii) If y is a line, the curvature of y is zero. Also,
Dy, Vi = kpV;.

From here, we get

QA(DV1V1,90V1) =0.

iv) Since y is a % —Legendre curve, the torsion of y
is not zero. So, it is said that y is not a planar curve.

Example 3.1.
y: I ->N3,y() = (rcost,rsint,%rzt) is a
curve in IN3. If we assume that

X =rcost
y=rsint
A
2
zZ==r
2

we get

. a a a
y(t) = (—ya + x; + Zg)y(t).

Thus, using (1.3), we get



235 1JST (2013) 37A3: 231-236
8t (y(t)) = —y iv) If y is a helix,
2 o —
02((y(®) = x (14) g (&-I_M-FL)Z
0°(y(®) = 0. 27 amp? T io?)

From (14), we can say that y is a %—Legendre
curve. On the other hand, we obtain

IOl = VI8 (7 ()12 + [62 (7 ()12 + [63 (17 ()2

=rl,

V,=Fle T2
=F=e F-e
1 T'l 7"2
and
— —y
(pV1=+;el+;€2.

Moreover, from (5) we have

A ~
Dy, V; = EV1 AVy = ga(ler, 2], VoV + D1]//11

= _g);([eli e2]! V1)§0V1 + 5‘]2
= ?%(le.

Namely, we see that

k=%

S|

where k is the curvature of y. Also, we know that
2 LA .
T=—7 for a non-geodesic 5= Legendre curve in

N3. As a result, k and 7 are non-zero constants. So,
y is a helix.

Result 3.1. Helix in Euclidean space is a helix in
%— Sasakian space, too. Also, it is a % — Legendre
curve.

Corollary3.2.y: I > N3bea %— non-Legendre

curve. Then,
i) If y is a geodesic, it satisfies the following
equation:

D," = ga([er, €21, Vi) gVy.

ii) If y is a circle,

2a0

A= —
Vi-o?

or

A= —% +6(t)r2.

where @ = r cos0(t) and B = rsin 6(t).
iii) If y is a circular helix,

aoc

A
T=-—-+ -
2 1-02

Proof: i) If y is a geodesic, k = T = 0. So, from (7)
we say that « = § = 0 and 7 is indefinite.

On the other hand, if y is a geodesic, Dy, V; = 0.
So, from (5) we get

Dy = ga([er, 5], Vi)V

ii) If y is a circle, k is a non-zero constant. In which
case there are two situations:
a) We assume that @ and 8 are constants. Thus,

r=2i 2y
2 \1-g2
or
1= 2ao0 :
V1-02

b) We assume that k is a non-zero constant and a
and B are not constants. Hence, if ¢ and f are
chosen as r cos 6(t) and r sin (t), respectively, it
is found that

o + 2 =12

and

af —af = 0(t)r.
Since T = 0, from (12) we get

2ao0

J1i-o2

iv) If y is a helix,g =c,c # 0 = const and from
(7) and (8)

A, aB-ap ac \?
2 2 _ 2% -
a‘+p =c <2+a2+ﬁ2+ T{ﬂ).

A=-—

+ 6()r2.

Example 3.2.
y: I > N3,y(t) = (rcost,rsint,c) is a curve
in N3. If we assume that,

X =rcost
y =rsint
z=c
we get

y(t) = (—y% + x%)y(t).

Thus using (3), we obtain
61 (¥ () = —y
02 ((y () = x
83(y(t)) = —r2
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So, we can say that y is not a % —Legendre curve.
On the other hand, we have

7(8) = (—yes + xe; —1%e3)y )

and

Iy @®ll = V617 (O)]? + [02(G (]2 + [63 (7 ()]?.
Thus, we get

y L r
e e, — e
N Y e i I S |

V1=_ 3

oV, = e a—
L rVr2+1 1 oz %

Moreover, from (5) we have

A ~
Dy Vy =5 Vi AVy = ga(ley, 2], Vi)oVy + Dy

= —ga(ler, e;], V1)@V + Dy, V;

1 A
= ( rz+1+zm) PV

Since,
oV §—aly
D, Vi=«a + a,fB ER
Wh=a =
we obtain
1 Ar

a=r3+r+2r2+2
and § = 0. On the other hand, we get

1 Ar |
+
r3+r  2r2+ 2|

And

-3 - ()
=727 +1) " Gz

where k and 7 are the curvature and the torsion of
y, respectively. As a result, we say that x and T are
non-zero constants. Namely, y is a circular helix.

Result 3.2. Circle in Euclidean space IE3 is a
. .4 .
circular helix in 3 —Sasakian space.
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