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Abstract 

Using the Riemann-Liouville fractional differintegral operator, the Lie theory is reformulated. The fractional 
Poisson bracket over the fractional phase space as 3N state vector is defined to be the fractional Lie derivative. Its 
properties are outlined and proved. A theorem for the canonicity of the transformation using the exponential 
operator is proved. The conservation of its generator is proved in a corollary. A Theorem for the inverse fractional 
canonical mapping is proved. The composite mappings of two successive transformations is defined. The 
fractional Lie operator and its properties are introduced. Some useful lemmas on this operator are proved. Lie 
transform depending on a parameter over the fractional phase space is presented and its relations are proved. Two 
theorems that proved the transformation = WE Z  is completely canonical and is a solution of the Hamiltonian 

system (30) are given. Recurrence relations are obtained. 
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1. Introduction 

In 1966, the Poincaré and von Zeipel-Brouwer 
theories were rejuvenated by Hori [1] through the 
introduction of canonical transformations expressed 
by Lie series mappings instead of the classical 
Jacobian transformations. 

Over the years many different techniques have 
been developed for handling various perturbation 
problems. Some are suited for a few special 
problems while others are quite general, but almost 
all were developed before the computer age. To our 
knowledge only one general technique was 
developed specifically to be used in conjunction 
with a computer algebra system, namely the method 
of Lie transforms. It is truly an algorithm in the 
sense of modern computer science: a clearly 
defined iterative procedure. The method was first 
given in Deprit [2] for Hamiltonian systems of 
differential equations, then generalized to arbitrary 
systems of differential equations by Kamel [3] and 
Henrard [4]. The predecessor of this method was a 
limited set of formulas given in Hori [1]. All these 
papers appeared in astronomy journals far from the 
usual journals of perturbation analysis. Through the 
seventies only a few papers on this subject appeared 
outside the astronomy literature. Recently, several 
books have presented the method but only in the 
limited context in which it was initially developed. 
 
 
Received: 22 November 2011 / Accepted: 1 January 2012 

In celestial mechanics, the Hamiltonian is usually 
a periodic or almost periodic function of time, a 
further requirement would be the averaging of the 
Hamiltonian to eliminate the time. The canonical 
form of differential equations offers a possibility of 
establishing general rules governing 
transformations from one set of variables to another 
set. Under these rules the canonical form of the 
equations is preserved. When choosing the suitable 
transformation, the original problem may be 
changed to a simpler one. Often the number of 
degrees of freedom is reduced, and in some cases 
the complete solution may thus be achieved.  

A theorem by Lie has been applied to construct 
explicit transformations. Hori [5] constructed an 
algorithm using the Lie series to determine the 
transformed Hamiltonian from the old one. Deprit 
[2] constructed another algorithm to generate the 
new Hamiltonian recursively using the Lie 
transform. Cambell and Jefferys [6] and Mersman 
[7] showed the equivalence of Hori's and Deprit's 
methods while Kamel [3] simplified Deprit's 
algorithm. Hori [8] showed that second order, Lie 
transforms are equivalent to von Zeiple's technique. 
Shniad [9] proved that the von Zeipel 
transformation is equivalent to the Deprit's 
transformation, while Mersman [10] established the 
equivalence of Hori, Deprit and von Zeipel 
transformation. Sessin [11] showed that the 
equations generated by Lie-Deprit's method could 
be solved in the same way as Hori did in his 
method. Varadi [12] constructed transformation 
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depending on two parameters. Ahmed [13] 
developed a method to construct a Lie transform in 
the multiple-case parameters. Cui and Garfinkel 
[14] modified Hori's method to achieve the 
solution, when the unperturbed part of the 
Hamiltonian depends only on the momenta, without 
using pseudo-time. 

The Fractional Calculus (FC) generalizes the 
ordinary differentiation and integration so as to 
include any arbitrary irrational order instead of 
being only the positive integers (see Samko et. al. 
[15], Kilbas, et. al. [16], Magin [17], Podlubny 
[18]). In a letter to L'Hopital in 1965, Leibniz raised 
the possibility of generalizing the operation of 
differentiation to non-integer orders, and L'Hopital 
asked what would be the result of half-
differentiating x . Leibniz replied, It leads to a 
paradox, from which one day useful consequences 
will be drawn. The paradoxical aspects are due to 
the fact that there are several different ways of 
generalizing the differentiation operator to non-
integer powers, leading to inequivalent results. 
During the second half of the twentieth century, 
many authors have explored the world of FC giving 
new insight into many areas of scientific research in 
physics, mechanics and mathematics. Miller and 
Ross [19] pointed out, there is hardly a field of 
science or engineering that has remained untouched 
by the new concepts of FC. To move from the 
integer-order calculus to the FC version of a system 
we replace the time derivative in an evolution 
equation with a derivative of fractional order. 
Riewe [20], [21] has formulated Lagrangian and 
Hamiltonian mechanics to include derivatives of 
fractional order. It has been shown that Lagrangian 
involving fractional time derivatives leads to 
equations of motion with non conservative classical 
forces such as friction using certain functionals. In 
these references, fractional derivative terms were 
introduced in functionals to obtain nonconservative 
terms in the desired differential equation. Agrawal 
in a very interesting series of papers, see Agrawall 
[22-24] has developed fractional calculus of 
variations dealing with Lagrangian involving 
Riemann-Liouville (R-L) fractional derivatives. He 
has presented fractional Euler-Lagrange equations 
involving Caputo derivatives. Baleanu and Muslih 
[25], [26] developed a fractional Hamiltonian in 
terms of Caputo derivatives. Baleanu [27] 
compared the results of fractional Euler-Lagrange 
equations corresponding to several fractional 
generalized derivatives. He presented fractional 
Lagrangians which differ by a fractional Riesz 
derivative. He showed the difference of the 
obtained fractional Euler-Lagrange equations when 
several fractional derivatives are used, namely the 
Riemann-Liouville, Caputo and Riesz derivatives.  

In fact, Poisson brackets constitute an important 
part of Hamiltonian mechanics. Therefore a 
generalization of Poisson-bracket (fractional 
version) is introduced. Using this fractional 
Poisson-bracket, some very useful theorems and 
Lemmas that are required for Lie series and 
transform are proved. A final word is with the 
fractional mechanics. In a forthcoming work we 
hope to prove both conservative and non-
conservative systems with only one equation of 
motion. 

2. Riemann-Liouville Fractional Operator 

The development of the FC theory is due to the 
contributions of many mathematicians such as 
Euler, Liouville, Riemann, and Letnikov. Several 
definitions of a fractional derivative have been 
proposed. These definitions include Riemann-
Liouville, Grunwald-Letnikov,Weyl, Caputo, 
Marchaud, and Riesz fractional derivatives, see 
Miller and Ross [19], Riewe [20], and Baleanu 
[27]. Riemann-Liouville derivative is the most used 
generalization of the derivative. It is based on the 
direct generalization of Cauchy's formula for 
calculating an n -fold or repeated integral. The 
right and the left Riemann-Liouville fractional 
derivatives, in brief are denoted by RRLFD and 
LRLFD respectively, [28] can be written as, 
 

   

    1

1
=

(1)

n

a x

x
n

a

d
D f x

n d x

f t x t d t







 

 
    

 
 

   

    1

1
=

(2)

n

x b

b
n

x

d
D f x

n dx

f t x t dt







 

     

 
 

 
where   represents the Euler gamma function,   
is the order of the derivative such that 

1 <n n  . If   is an integer, these derivatives 
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The fractional operator a xD  can be written as 

[29], 
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where the number of additional differentiations  n  
is equal to [ ] 1  , where [ ] is the whole part of 

 . The operator a xD  is a generalization of 

differential and integral operators and can be 
introduced as follows: 
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Definition 1. Let  
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real analytic functions of 3n  canonically 
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  . The Fractional Lie 

derivative WL  generated by W  over the fractional 

phase space is defined by the generalized Poission 
bracket  = ;W WL   [30]  
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where U  and U  the fractional canonical 

momenta are obtained by replacing the ordinary 
differentiation of the generalized coordinates u  
with respect to time by the fractional differentiation 
as 
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note that U  and U  are independent, and   is 

the Lagrangian of the problem. 
  

2.1 Properties of the Fractional Lie derivative 

Let  , ,
, ,W

 


u U U
    and ,   ,   be the 

real numbers, then the following properties hold 
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The first two properties of (5) can be proved 

directly and the last two properties of (5) can be 
proved as follows: 
 
Proof: The third property can be proved as;  
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After some lengthy algebraic manipulation we 

can verify that the Jacobi identity holds true in case 
of using the fractional operator 
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Proof: The fourth property can be proved as: 
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The n th  iterate of the Lie derivative is defined as 
follows 
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and the corresponding first three properties are 
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2.2. The Exponential Operator 

Definition 2. Since  , ,
W

 


u U U
  is real analytic, 

we may choose   sufficiently small such that the 

exponential operator  exp WL  exists at all points 

 , , u U U  of the fractional phase space as an 

operator function analytic at = 0.  Now we can 
define the exponential operator as 
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The formulas corresponding to (6) are 
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Theorem 3. The transformation 
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symmetric simplectic identity matrix, and hence the 
  is a canonical set. This is of course because 

 exp WL  acting on the constant matrix J   just 

leaves it invariant. 
 
Remark 4. An intermediate result is that 
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Theorem 5. The image of a real analytic function 

    under the mapping  exp W= ZL  is 

        = exp = expW W Z, Z Z L L     
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and the thn - iterates give  
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Corollary 6. The generator W  is conserved under 

the canonical mapping  exp W= ZL  such that 
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Theorem 7. If the function  ,   depends 

analytically on   (i.e. admits Taylor series in the 

neighborhood of = 0 ) so that 
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then the transform under the canonical mapping 
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Proof: From theorem 4 
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Theorem 8. The inverse of the fractional canonical 
mapping  exp W= ZL  is  exp W Z = L   
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Using the relation 
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therefore equation (20) retaining the terms up to the 
second order in   becomes 
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3.1. The Fractional Lie Operator 

Any perturbation theory usually depends on a 
small parameter, ,  and the solution of the problem 
is known at = 0  (or at any other specified value). 
In the Lie transformation theory just described, this 
parameter is not allowed for, however, this can be 
accomplished by introducing the fractional Lie 
operator 
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The proofs of the first three properties are clear, 

to prove the last property we introduce the 
following Lemmas: 
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Now we are going to prove the last property 

mentioned above 
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These relations can be obtained from the 

successive applications of the operator W  

4. Lie Transform Depending on a parameter 
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Theorem 12. The transformation  , Z ,  

defined by = WE Z  is completely canonical  
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Theorem 14. The image of real analytic function 

 , ,  u,U U  under the mapping 

 ,WE  = u,U U  is 
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Proof: The proof follows directly from (31) since 
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5. Recurrence Relations 

When both  , , W   u, U U  and  , ,   u, U U  

can be expanded in power series in ,  the 

coefficients    , , 0n
 u, U U  can be constructed 

recurrsively. Using 
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to simplify the notation set = ,Wp pL L  1,p   then 
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We can thus represent  W a bu, U , U ,   by the 

series 
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Consequently 
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Consequently 
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This can be represented by the following 

recursive diagram. 

5.1. The Recursive Diagram 
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any element is obtained from those in the column 
just to the left and in the same row and those above 
the considered element, e.g. 
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       2 1 1 1
1 2 1 1 2 0=  L L   

 
     3 2 2

1 1 0= L  
  

Then the function  n  can be constructed 
recursively as Deprit did in [2] as follows 
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Now we can consider the transformation 
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the fundamental transformation equation can be 
obtained as  
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The inverse transformation can be written as 
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5.2. Simplified General Algorithm 

To simplify the algorithm for evaluating the 
transformation and its inverse, set equation (48) in 
the form 
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We then proceed to write the right-hand side of 

equation (55) such that  k
n  may be obtained in 

terms of   ,k n   1 ,...k n    k  

Thus it can be assumed 
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where jG  is a linear operator which is a function of 

,jL  1,jL  2 1,........,jL L  

 
Substituting equation (56) into equation (55) 

yields the following recursive relationship; 
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Successive application of equations (55) and (56) 

yield the required relations for the vector 
transformation. 

5.3. Vector Transformations 

The vector functions  nu  and    n n
a t t bD D u u  

required to implement the transformation (50), (51), 
(53) and (54) are given for 1n   by  
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For the inverse transformation (53) and (54) we 

find that 
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6. Conclusion 

We presented the right and the left Riemann-
Liouville fractional differintegral operator. Also, 
we defined the fractional Poisson bracket over the 
fractional phase space as 3N state vector. As usual 
in celestial mechanics literature we defined the 
fractional Lie derivative WL   generated by W  as 

the fractional Poisson bracket  ; .W   

The properties of the fractional Lie derivative are 
outlined and proved. We defied the exponential 
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operator over the fractional phase space. A theorem 
of a transformation using the exponential operator 
over the fractional phase space is proved to be 
completely canonical. The conserved generator W  
under this canonical mapping is proved in a 
corollary. A Theorem for the inverse fractional 
canonical mapping is proved. The composite 
mappings of two successive transformations is 
defined. The fractional Lie operator W   and its 

properties are introduced. Some useful lemmas on 
this operator are proved as a preceding step to its nth 
iterate. Lie transform depending on a parameter 
over the fractional phase space 
 

   
0

: = ,0
!

n
n

W W
n

E E
n  




  u, U , U    

 
is presented and its relations are proved. Two 
theorems proved that the transformation = WE Z  

is completely canonical and is a solution of the 
Hamiltonian system (30). Recurrence relations are 
obtained. A simplified algorithm for evaluating the 

vectors  nu  and    n n
 U U  transformations and its 

inverse Kamel [3] is verified to apply in our case. 
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