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Abstract– Although several studies have been conducted toward quantitative measuring depth of 
anesthesia (DOA), the state of art DOA indexes sometimes fail in practice. Hence, specialists are 
looking to find a new source of information, rather than modifying the former indexes, to 
introduce an accurate DOA index. In this regard, here, a new horizon to this field has been 
unveiled by photic stimulating the anesthetized patients’ eyelashes during surgical operations. In 
this way, this paper presents a new recording protocol to produce the depth-related visual evoke 
potential (VEP). Another contribution of this paper is to introduce an efficient method to elicit the 
VEPs within short trials (10 seconds). The suggested VEP extraction method can explain and 
detect the deterioration of VEP waveform through the successive trials. Finally, a novel DOA 
measure based on features of the clean VEPs is presented. Specificity and sensitivity of the 
proposed DOA is assessed by measuring its statistical similarity to the gold-standard BIS index 
over six patients. The presented VEP-based DOA index can be considered as an alternative of BIS 
index in the light and moderate anesthetic depth.           
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1. INTRODUCTION 
 

There is growing evidence of dose-related harmful effects of anesthetic agents that may drive the patient 
into coma state, leading to increased mortality rates. In contrast, injection of inadequate anesthetic agent 
carries the potential for intraoperative awareness [1-3]. This imposes a high legal risk for anesthetists and 
is usually considered as a failure to deliver adequate general anesthesia. In some occasions, the mentioned 
shortcoming might lead to a severe post-operative psychosomatic dysfunction [4]. Therefore, accurate 
estimation of depth of anesthesia (DOA) index is still a significant and complex issue within the anesthetic 
community. 

Up to now, several attempts have been made to develop an efficient physiological-based index to 
monitor DOA [5]. Anesthesiologists previously relied on conventional clinical observations such as rate of 
breathing, blood pressure and pulse rate. Nevertheless, these quantitative indexes suffer greatly from lack 
of acceptable sensitivity and specificity in presence or absence of consciousness.  

As the central nervous system (CNS) is the main target of anesthetic drugs, Electroencephalogram 
(EEG) based indexes seem to be more informative due to considering the factor of pain (burst pattern) to 
calculate DOA rather than those indexes that just work based on simple vital signs. The main flaw of the 
clinical observations is that they cannot demonstrate the level of pain during complex and painful 
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surgeries [6], as heart rate and blood pressure are also affected by intravascular volume of the patients and 
breathing rate is externally controlled by the ventilator.  

The effects of anesthetic drugs on EEG signals have been comprehensively investigated since 1940 
[3]. It has been shown that there exist reversible invariant EEG changes, related to the patient’s 
consciousness state change, independent of the drug type and the anesthesia protocol [4]. Recently, a 
number of EEG-based DOA indexes have been developed to quantitatively monitor the patient’s state 
during painful surgeries. The most popular one is BIS index [7-12] which has received considerable 
attention from the anesthesiology community. BIS equipment (mostly termed as BIS monitor), calculates 
and displays a dimensionless index, referred to as the bispectral index scale (BIS). 

It has been shown that the incidence of intra-operative awareness can be reduced up to 80%, if 
specialists relay to BIS index such that they control the anesthetic drug dose according to the BIS in every 
day practice [8]. Moreover, a BIS guided titration can reduce anesthetic drug up to 30% during the 
maintenance phase [9], which results in a lower drug usage, faster recovery and, finally, improves the 
quality of the anesthetic process. Furthermore, an association between BIS value and long term post-
operative mortality rate has been investigated in older non-cardiac patients [10]. Related studies reveal 
that the mortality rate among older people is increased when the anesthetic level goes deep (e.g. BIS < 
45). To avoid repeating these bitter events, anesthesiologists should be equipped with reliable tools to 
monitor DOA more precisely and not allow their patients’ DOA to go very deep. 

In the last decade, it has been shown that BIS has some limitations in terms of high dependence on 
the type of anesthetic agents [11]. Another shortcoming of BIS is that the reported index is determined 
after each 10 seconds, which might be long in crucial circumstances. Moreover, BIS value crosses the 
defined anesthetic levels repeatedly during painful surgeries. In other words, BIS suffers from a significant 
lack of robustness [12-13].  

BIS is a complex index because it seems to be constructed based on a combination of features in time 
domain (burst suppression ratio), frequency domain (relative β ratio (RBR) and spectral edge frequency 
(SEF95)), and higher order spectral sub-parameters (sync-fast-slow) [14]. Thus, it has employed most 
aspects of the EEG content. Nevertheless, BIS still suffers from lack of robustness, sensitivity, and 
specificity. Hence, in order to overcome its drawbacks, employing other physiological-based signals 
during surgery may increase the DOA accuracy.  

In the last decade, some research teams applied a certain stimulus during the surgery and focused on 
analyzing the extracted evoked potentials (EPs) to present a new EEG-based DOA index. EPs are the 
alterations of the ongoing EEG due to stimulation (e.g. tone, light flash, etc.) [15]. The amplitude of the 
EPs vary from tenths of a microvolt to 1µV, and are hidden through the ongoing EEG signals whose 
amplitude is typically 10 to 30 µV. In practice, the signal to noise ratio (SNR) is less than 1:10 (-20 dB); 
consequently, this small SNR implies that the evoke elicitation process is very complicated [16]. 
Moreover, EEG signals of a patient vary from trial to trial due to the fluctuation of patients’ consciousness 
state, during surgical operations. Thus the traditional averaging methods cannot act efficiently to extract 
the single trial evoke patterns. 

To extract an EP occurring in each single trial (e.g. 10 seconds), a well-known approach that is 
repeatedly utilized in different studies, is to design a specific filtering technique [15-20]. A group of 
traditional methods is suggested to take the average from EPs and then filter the averaged template, but 
among these methods, those needing a fewer number of trials and capable of eliciting the single trial evoke 
are more applicable. Many studies deploy wiener filtering (or a “minimum mean square error filter”) 
which has the common flaw of considering the signal to be stationary. Regarding the fact that DOA 
monitoring is an online process and therefore any further processing cannot be tolerated, determining the 
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stationary interval is time consuming and cannot be applied. In contrast, employing wavelet transform to 
elicit the EPs can overcome the former drawbacks [3, 17-18]. 

Some recent studies have been performed to monitor DOA by analyzing the auditory response of the 
brain system leading to developing an index with fairly acceptable reliability. It is also shown that this 
index is more accurate than BIS just in tracking the transitions in DOA levels through the anesthesia; 
however, this index is noisier than BIS when the level of anesthesia is constant [16].  

Corresponding to the fact that all patients’ eyes during the surgery are closed, there is no report about 
probable study of visual evoked potential for DOA application. In this article, a new horizon is opened and 
capability of VEPs in tracking the state of the patient during anesthesia has been investigated. To achieve 
this goal, for the first time a method is proposed for intraoperative visually stimulating using high lux 
photic stimulator flicking over the closed eyelashes. After recording the excited EEG signals, the VEPs 
are elicited and analyzed to achieve an on-line accurate DOA index. In other words, the objective of the 
present study is to investigate whether the VEPs features can be used as a measure of DOA or not? And 
what the pros and cons of using visual stimulating for this purpose are in comparison with the BIS index 
which is repeatedly utilized as the EEG-based gold standard index [2, 3, and 7]. The main contributions of 
this study are briefly listed as follows: 

1- Presenting a new protocol for recording intraoperative VEPs during the surgery. 
2- Suggesting a method to efficiently extract the VEPs from the background EEG, even in very low 

SNR situation.  
3- Introducing a new VEP-based feature capable of tracking DOA, especially in sedation, light and 

moderate anesthesia.   
The rest of this paper is structured as follows. In Section 2 the novel method of our data acquisition is 

explained. Pre-processing and processing schemes are brought in Section 3. Experimental results of evoke 
extraction and feature selection of the VEPs are described in Section 4. Next, a comparison between the 
ability of the EEG and VEP based features in monitoring DOA is discussed in section 5. Finally section 6 
concludes the paper, and also opens a new vision to the future of this study. 
 

2. DATA ACQUISITION 
       

In this part, a new protocol is introduced for recording the VEP signal of the patients under surgery. 
Although at first glance it might be strange since patients’ eyes are closed, there is a possibility of exciting 
retina cells by imposing a high lux light. Everybody has experienced looking directly at the sun when their 
eyelashes are closed. Nevertheless, human eyes can see the sunlight even behind the eyelashes.  

EEG signal is the spatio-temporal integration of all neurons activities reaching each electrode by 
different conductivity, and one of the best strategies for testing the brain activity is to investigate how the 
large neuronal assemblies react to external stimuli. Therefore, detecting variations of EEGs seems to be 
proper in applications like DOA estimation in which evaluation of brain activity is of interest. VEPs are 
the changes in the ongoing EEG due to an external visual stimulation in the form of flicking flash or 
specific image patterns such as a checkerboard. They are time locked to the stimulus and they have a 
characteristic pattern of response that is more or less reproducible under similar experimental conditions. 

Similar to other experiments, signal recording is performed according to the international 10-20 
recording protocol as shown in Fig. 1. The recording of evoked potentials is performed by EEG recording 
that should be processed to eliminate the background EEG and elicit the evoke pattern [19]. The extracted 
VEPs are characterized by their polarity and latency, for example, P100 meaning a positive deflection (P 
for positive) occurring 100ms after stimulation.  
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Fig. 1. Electrode montage of the 10-20 system. (a) Location of active and reference electrodes for standard  

       VEP responses. The active electrode is located along the midline at Oz. the reference electrode is  
located at location Fz. (b) the locations of the lateral active electrodes, O1, O2, PO7,  

PO8 are indicated along with the midline active electrode location [17] 
 
In this study, after approval by the ethical committee of Shiraz University of Medical Sciences, the 

raw EEG signals, and visual evoked potentials were taken from 7 adult patients in the Namazi Hospital 
operating room (training center). All patients underwent general anesthesia induced with clinically 
appropriate doses of conventional pharmaceuticals including midazolam, remifentanil, fentanyl, propofol 
and isoflurane. The utilized muscle relaxant drugs were pancuronium and/or atracuriom. Morphine was 
used as indicated for post-operative analgesia. The airway was supported by endotracheal intubation. 
Anesthesia was maintained with propofol or isoflurane in combination with o2. All intravenous dosing and 
significant intraoperative events were recorded by an attending expert anesthetist.  

To obtain a clinically useful method for intraoperative monitoring of VEPs, several methods were 
examined. Since eyes are closed during every surgery, using pattern stimulation is impossible; 
consequently, the only extant method for incitement is to use luminance stimulation which is usually 
delivered as a uniform flash or light. Hence, a light stimulating device (called photic) consisting of 16 
white light-emitting diodes (LEDs), in the form of a rectangular array, was employed. This device was 
placed in front of a patient’s eyelashes during surgery while flashing at a frequency of 1 Hz. The initial 
assumption, which we attempted to prove, was that these flashes are able to visually stimulate the patient, 
even with eyes closed; similar to the situation when a person looks at the sunlight with closed eyes. 

To the best of the authors’ knowledge, this is the first time that such an experiment has been executed 
for measuring DOA. There is, therefore, no prior knowledge found to respond to the question of whether 
the patient’s brain reflex to visual stimulation appears similar to auditory stimuli or not. 

To record scalp EEG signals of the patients, IEI-Neuroset- E110 setup was used. Sampling rate was 
500 Hz and after applying band pass filtering within the range 0.3-70 Hz, and imposing notch filter to 
eliminate 50 Hz power line interference, the data were real-time saved, along with the indicators showing 
the photic trigger times on the recorded signals. For extracting the VEPs from the background EEG, the 
signal of the left occipital (O1) electrode (near the location of the visual primary sensory area) was chosen. 
Figure 2 shows the proposed protocol along with an image in the operating room and a sample of 
multichannel recorded signals during the anesthesia. EEG signals are recorded from two different types of 
equipment (BIS sensors and those electrodes molded according to the 10-20 recording system). 

Since a reference DOA index is required, in order to evaluate the final results of the proposed 
protocol, the BIS index as a mostly accepted index for DOA or a gold-standard in this field, was also 
recorded during the surgery. Moreover, the EEG signal used by the BIS system was recorded for further 
analysis. Hence, a BIS-QUATRO Sensor (Aspect medical Systems) composed of self-adhering flexible 
bands holding four electrodes, is applied to the forehead of the patients with a frontal temporal montage. 
This sensor was connected to a BIS monitor (A-2000) and raw EEG data and log file of BIS indexes were 
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O1 

recorded via an RS232 port interface on a laptop using BSA for A2000 software developed by Hagihira et 
al. [20]. These raw EEGs were saved as Ascii data files and down sampled to 128 Hz. 

 
 

 
 

      
 

 
 

(a) 
 

 
(b) 

 
(c)  

Fig. 2. Data acquisition protocol. (a) Block diagram of data acquiring systems. (b) A real image of a patient  
during surgery under visual stimulation. (c) 10 seconds of recorded EEG in channels O1, O2, P3, P4  

and Fz. The frequency of photic stimulator is 1 Hz and its start time is recorded precisely by the 
 IEI- Neuroset system, therefore synchronous averaging becomes possible 

 
3. METHODOLOGY 

       
a) Description of the VEP standard transient response 

       
The VEP waveform depends on the temporal frequency of the stimulus. At rapid rates, the waveform 
becomes approximately sinusoidal and is termed steady state. In low temporal frequency scenario, the 
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waveform consists of a number of discrete deflections and is termed a transient VEP. In this study, 
analysis of transient VEPs is of interest due to better revealing of its differences through various anesthetic 
states. 

 
Fig. 3. The standard VEP waveform in response to flash stimuli [17] 

 
According to the ISCEV standard for VEPs [21], the visual evoked potential in response to flash 

stimulation consists of a series of negative and positive waves. The earliest detectable response has a peak 
latency of approximately 30ms post-stimulus and components are recordable with peak latencies up to 
300ms as illustrated in Fig. 4. For the flash VEP the most robust components are the N2 and P2 peaks. 

 

 
Fig. 4. Quadratic B-spline wavelet function [12] 

Another explanation of VEP waveform, with a slight change to that mentioned above is described as 
follows [15,19]: Two evoked responses can be totally observed: first, a sensory related positive peak at 
about 100ms after stimulation (P100) followed by a negative rebound (N200), both of which appear on 
non-target and target stimuli. Second, a positive peak at about 400-500ms after stimulation (P300) 
appearing only upon target stimuli. Therefore, in our application, we do not envisage the P300 component 
in the extracted VEPs.  

       
b) Multi-resolution Decomposition of EEG by Wavelet transform 

       
Wavelet transform of a signal ࢞ ∈  ;is similar to Fourier transform with two main exceptions (ࡾ)ࡸ

first, the basis functions in wavelet are localized while the basis functions of Fourier transform have 
infinite length. Wavelet transform is able to decompose the signal components in different time and 
frequency resolution, while the time resolution is lost in Fourier domain. However, both transforms try to 
construct the original signal by summation of their basis functions. Due to the limited nature of VEP 
pattern in time domain, wavelet transform seems suitable to locally characterize the VEP patterns. The 
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wavelet transform of signal ࢞ in the frequency resolution a, and time shift b, is defined as the inner 
product between the signal and the wavelet function શ࢈,ࢇ(. )[22]: 

(࢈,ࢇ)(࢞શࢃ)                = ൻ࢞,શ࢈,ࢇൿࡸ (1) 

Where શ࢈,ࢇ(. ) are dilated and shifted versions of a unique basic (mother) wavelet function	શ ∈  :(ࡾ)ࡸ

                                     		શ࢈,ࢇ(. ) = ି|ࢇ| ⁄ શቀ.ି࢈
ࢇ
ቁ (2) 

Here ࢈,ࢇ ∈ ࢇ,ࡾ ≠  are the scale and translation parameters, respectively.  
The main advantage of wavelet transform is that they can exhibit characteristics of a signal in 

different time intervals, being wide for low frequencies and narrow for the high ones. Another advantage 
of the wavelet over Fourier  method is that their basis functions contain a frequency band within a finite 
interval while in Fourier, each signal is represented by summation of monotonic sinusoids expanding 
infinitely. In fact, a few different functions that satisfy 16 constraints can be considered as mother 
wavelets, each has a specific structure.   

A basic requirement for selecting a mother wavelet for a specific signal (e.g. EEG) is to measure their 
infrastructures’ similarity. Selecting a suitable mother wavelet minimizes spurious effects in the 
reconstruction of the signal via the inverse wavelet transform [15]. In order to avoid redundancy and to 
increase the efficiency of algorithm implementations, it is usually defined at discrete frequency scales a, 
and discrete time shift b by choosing the dyadic set of parameters ࢇ = ି,࢈,=ି, for integers j and 
k.  

The information given by the wavelet transform can be organized according to a hierarchical scheme 
called multi resolution analysis [3]. This method gives a decomposition of the signal in different level of 
details (i.e. components in consecutive frequency bands) and a final approximation that is the difference 
between the original signal and sum of all details. One main advantage of multi-resolution decomposition 
is that it can be implemented with recursive and fast algorithms. Moreover, components corresponding to 
the different frequency bands can be reconstructed separately by applying an inverse transform.  

In this study, the sampling rate of the recorded EEG is 500 Hz and seven levels of decomposition are 
used, thus having seven scales of details. The decomposed levels are mostly based on the dominant 
frequency components of the EEG signal (see Table 1). The accordance of decomposed levels with EEG 
dominant bands is one of the advantages of using wavelet transform in the study of EEG signal. 
 

Table 1. Frequencies corresponding to decomposition levels 

Subband j Decomposed 
signal 

Frequency 
band (Hz) 

Clinical 
band 

1 D1 125-250 - 
2 D2 64-125 - 
3 D3 32-64 γ -band 
4 D4 16-32 β -band 
5 D5 8-16 α -band 
6 D6 4-8 θ -band 
7 D7 2-4 δ- band 

       
c) Preprocessing 

       
 As proposed by Donoho [23], the conventional definition of denoising implies a thresholding 

criterion in the wavelet domain. The signal is recovered from background noise just by setting 
zero those wavelet coefficients below a certain threshold (hard thresholding) or with the use of 
a smoother transformation (soft thresholding). Due to low amplitude of the EPs compared to 
that of background EEG, the traditional wavelet denoising procedure is not adequate to recover 
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them. Therefore, instead of using this thresholding to denoise our signals, method [23], a more 
proper method based on the specific time and frequency localization of the EPs proposed by 
Quiroga et al [19], is implemented in this research. The procedure of this algorithm [19] is 
briefly described as follows: The averaged EP is decomposed by using the wavelet multi-
resolution decomposition. 

 The wavelet coefficients which occur within the time frame or frequency range of VEPs is 
selected and others are removed.  

 The clean VEP is obtained by recovering the signals from the selected wavelet coefficients. 
 Finally, validity of the results can be assessed by applying the above method to the blind data. 

       
The criteria for choosing which wavelet coefficients are correlated with the signal and which ones 

with noise, is the key feature of the different denoising implementations. 
       

d) Comparison of the implemented denoising scheme [19] with other state of the art methods 
       

Although the method proposed by Donoho et al. [23] is not suitable for separating EPs from the 
background, this idea established a foundation that further denoising methods adopted. From another 
angle, the aim of methods utilizing time-variant, time invariant and wavelet based wiener filtering is to 
clean averaged EPs (e.g. 100 trials) rather than obtaining single trial EPs. In other words, they do not 
consider EPs features in terms of latency and amplitude variations between the trials, whereas these 
variations are of interest for anesthesiologists.  

Recently, much research has been conducted to estimate DOA according to the elicited AEP features 
[16-17]. A traditional parametric signal modeling by ARX (autoregressive with exogenous input) method 
is employed to identify the underlying information in each trial. To obtain the clean AEP waveform, the 
basic estimation of the information is taken from an average which should be carried out on a sufficient 
number of trials.  

Regarding the on-line nature of DOA monitoring, VEPs have to be extracted using an average of 
limited number of trials. Because an average with a high SNR is not available (as can be seen in Fig. 6a), 
it is necessary to develop a method that acts properly, even in the case of having a noisy ensemble 
average. The suggested wavelet based method [15, 19] seems to be more suitable considering our terms. 
          
e) Feature extraction 

       
The suggested features for each single trial VEP are the amplitudes of the P100 (ࡼ), 

N200(ࡺ), latencies of P100	(ࡼࡸ) and N200 (ࡺࡸ), and finally the average of amplitudes of 
P100 and N200 so called ࢋ࢜ࢇ: 

ࢋ࢜ࢇ									 =
ࡼ + ࡺ


 (3) 

f) Statistical scheme used for validation 
       

The employed feature selection method in this study (in the context of better estimation of DOA) was 
sequential forward selection method, executed under the criterion of “maximizing the correlation of each 
feature to the BIS index”. In order to compute the correlation (r) between matrices A and B, the following 
equation is used: 

 

࢘                        = ∑ ∑ (ഥି)(ഥି)

ඥ(∑ ∑ (ഥି) )(∑ ∑ (ഥି) )
 

 
(4) 
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4. EXPERIMENTS  
       

a) Select a mother wavelet 
       

      It has been shown that the quadratic bi-orthogonal B-splines are suitable to be chosen as mother 
wavelet as depicted in Fig. 4, due to their similarity to the evoked responses; consequently, it is expected 
to achieve a better EPs elicitation performance [19]. B-splines are piecewise polynomials that can form a 
signal space in L2 and their properties such as being symmetric, smooth, having proper time-frequency 
resolution, and compact support, make them suitable in signal analysis [24]. 
       
b) Implementing the denoising scheme for VEPs recorded during surgery 
 

First of all, trials with artifacts (motion artifact leading to electrode movement) and noises (induced 
with other electrical instruments in operating room, especially electric cutter and so on) were rejected from 
the recorded signals.  

As the first step in the denoising method, 100 consecutive trials were averaged and then decomposed 
into 7 scales. Since we look for the VEPs information, just the wavelet coefficients of the scales of 4 to 6 
(see Table 1) which cover the frequency range of about 8-20 Hz within the expected time interval of VEP 
occurrence are selected. Our experiment shows the time interval of EPs occurrence is about 70 to 500 ms 
after the visual stimulus).  

After selecting the proper coefficients, those 100 trials were split into 10 segments and the average of 
each segment was considered as a trial (this procedure is done because of the very noisy nature of the 
signal, considering that the SNR is even lower than VEPs of a conscious patient due to lower amplitude of 
VEPs and higher amplitude of the background EEG in the anesthetized state which makes real single trial 
extraction impossible). It should be noted that the suggested denoising procedure takes an average of ten 
trials at the cost of a 10 second delay in demonstrating the proposed VEP index. The mentioned procedure 
is displayed in Fig. 5 to show the ability of the proposed denoising method, Fig. 6 represents four 
extracted VEPs in comparison with their noisy state. In other words, it can be called a semi-single trial 
extraction in a quasi-online manner, after passage of 100 seconds, the next average is obtained from a time 
interval of 10 to 110 seconds (overlapped windowing) and the same procedure is successively performed 
for the rest of the signal. 
 
c) Selection of the best feature 

       
Since this study aimed at estimating a reliable DOA, the next step after extracting VEPs is to look for 

a good feature which is able to follow the patient’s state. It is expected that, as the patient’s anesthetic 
depth is increased, the amplitude of their corresponding VEPs decrease while their latency is prolonged 
[25]. As we can see in Fig. 6, our assumption is confirmed by demonstrating two real extracted VEPs in 
two different anesthetic states (of course with different BIS index). In the real case, in addition to the 
famous VEP features (amplitude and latency), some other features were also investigated in order to find 
the most capable ones to follow the DOA trend. 

Since BIS is the most reliable index in this field, the state estimated by BIS is considered as the state 
label of the patient. Figure 7 shows the DOA changes of a patient produced by the BIS system.  This figure 
exhibits the BIS index of that patient over a ten minute period. The mainspring of demonstrating this time 
interval is that, there are noticeable changes in DOA during this interval and it is suitable to exhibit how 
the proposed feature tracks the BIS variation. 
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Fig. 5. (a) the noisy average of VEP (thin line) and the VEP after denoising (thick line). (b) Multi-resolution 

decomposition of an averaged VEP. Gray curves: original decomposition, black curves:  
denoised decomposition. (c) Single trials corresponding to the average shown in (a) 
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Fig. 6. Representation of the results of the VEP Extraction method. Here some of the extracted VEPs are 

demonstrated in thick lines while their noisy state is shown in thin lines for comparison and  
as evidence of the capability of the employed denoising method. Each of the plots show  

1 s of the signal, therefore sample number 512 is equivalent to 1000 ms 

 
Fig. 7. Comparison of VEP patterns in two different states. It can obviously be seen that increase in depth of 

anesthesia causes the amplitudes of the VEP’s peaks to decrease and their latency to increase 
 
In Fig. 8 different features can be compared regarding variation of the counterpart BIS indexes 

formerly shown in Fig. 7.  

  
Fig. 8. The changes in BIS index of patient #1 
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It is obvious that ࢋ࢜ࢇ has a very good correlation with the BIS just in those states that their BIS>45. 
When BIS value goes under 45, approximately all the VEP features are faded and cannot follow the BIS 
behavior. We can come to the conclusion that visual sensors of human are blocked and cannot respond to 
any visual stimulus when the patients are in deep and very deep anesthetic levels. Thus, it can be claimed 
that ࢋ࢜ࢇ can finely estimate DOA in sedation, light and general anesthesia. Since estimating the DOA in 
transition from conscious to unconscious state is very important for anesthetists, this feature would be very 
helpful in this context and can be considered as an alternative index beside BIS.    

 
5. DISCUSSION 

       
 In this study, EEG signals are considered as a raw physiological-based source capturing the spatio-
temporal activation of all neurons. To estimate the brain state of patients during surgical operation, EEG 
signals should be decoded in order to measure the consciousness level. In this way, several attempts have 
been made to deploy and also develop signal processing methods to present a reliable EEG-based index. 
To the best of the authors’ knowledge, among EEG-based indexes, BIS is considered as the most reliable 
index. Although  BIS is one of the most popular EEG-based DOA indexes, the measurement of depth of 
anesthesia is still an unsolved problem due to observation of some conflicts between the BIS index and 
other clinical signs (e.g. Isolated Forearm Technique(IFT)) during orthopedic and neurosurgical 
operations. That is why the primary version of BIS index has been updated more than 15 times and the 
designers of this secret (patent) algorithm are still working to enhance its performance in terms of giving a 
faster feedback and improving its reliability. The achievements of similar research teams confirm that 
solving this conflict is still one of the open problems in finding an accurate DOA index such that most of 
the current research is conducted to overcome this kind of conflict.   

Each of the applicable EEG-based indexes [1-3, 5, 8 &25] is composed of several features to 
quantitatively project the signal information onto different domains. For instance, AAI index [26, 27] 
which is constructed based on the auditory nervous response is composed of relative beta ratio (RBR), 
burst suppression ratio (BSR) and features driven from the elicited AEP patterns. Moreover, to determine 
AAI index, a fuzzy logic classifier is applied to the mentioned features. It should be pointed out that AAI 
index behaves very noisily and is not as robust as the BIS one.  

Some attempts are conducted to inspect and discover the main constructive factors of BIS. According 
to the Rampil et al. [14] research, the constructive parameters of BIS index are explained below. In 
addition, the necessity of each parameter and its relation to specific anesthetic states is described:  

  Sync-fast-slow parameter: This feature measures the non-linearity and phase coupling of EEG 
signals in the bispectral domain. In addition, the additive Gaussian noise is eliminated when 
higher order statistics of signals as in the form of cummulant function are calculated. The role of 
this parameter is highlighted during the excitement phase. Moreover, the value of this parameter is 
considerably changed when the anesthetic state changes. The reason for the remarkable changes of 
this value in both mentioned states is that it employs the third power of signal amplitude; 
therefore, when the anesthetic index is changed the related EEG amplitude is accordingly 
changed, leading to high sensitivity of this feature to the status change. Similarly, when an 
excitement is received by the visual nervous system, (an excitement), the corresponding amplitude 
on that part of scalp definitely highlights their input variations [20].  

 Burst suppression ratio (BSR): this parameter preserves time domain information of EEG signals. 
Since burst suppression patterns happen in deep and very deep anesthesia, in these states EEG 
waves become almost flat and frequency-based features are not informative; therefore, BSR is 
used to detect deep anesthesia in the BIS index. 
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 Relative beta ratio (RBR): this parameter captures the frequency domain information. The PBR 
variation is highlighted when BIS index moves in the light sedation state. The same phenomenon 
is similar to what happens in sleep EEG signals when the sleep status of a subject goes from one 
stage to another, the corresponding frequency content is significant in both amplitude and the 
effective frequency band.     

 Spectral edge frequency (SEF95): This is the frequency below which 95% of the EEG power 
spectrum resides [28]. As it can be seen in Table 2, its correlation with the final BIS index is 
higher than other parameters and SEF95 is quite useful during all anesthetic states. 

Table 2. Correlation of different features with BIS index as calculated with eq. (4) 

 Feature ܣ௩  SEF95 BSR RBR BISPR 
Correlation with BIS  

Patient #1 0.5886 0.8714 0 0.3893 0.5412 
Patient #2 0.6143 0.8428 -0.167 0.3868 0.3186 
Patient #3 0.6587 0.7338 0 0.4729 0.6901 
Patient #4 0.5745 0.2953 0 -0.1353 0.7030 
Patient #5 0.6322 0.7166 0 0.3321 0.0264 
Patient #6 0.5542 0.0116 0 0.4146 0.5446 

 

  
Fig. 9. Different features extracted from VEPs. (a) ࡼࡸ, (b) ࡼ, (c) ࡺࡸ, (d) ࡺ,  

(e) ࢋ࢜ࢇ of the extracted VEPs of patient #1 
 
By accepting the hypothesis that the BIS value reveals the true state of anesthesia, each developed 

EEG-based index that provides high correlation with this index can be considered as a sub-BIS index that 
should fairly track the patient’s state during surgery.  

In the current study, the BIS log-file was simultaneously recorded with the above mentioned feature 
along with the proposed VEP index during the surgery to make a fair comparison. To measure the 
similarity of each of the above features, the correlation of these features (constructive features and VEP) 
with the BIS index is separately determined according to Eq. (4). Next, these features are prioritized 
according to how well they correlate with the BIS index.  

Figure 10 illustrates these features which are constituents of the BIS index of Fig. 8, and the 
correlation of each with the BIS is illustrated in Table 2.  As shown in Table 2 the correlation of the 
proposed VEP index with BIS is higher than most other parameters. This superiority is good evidence for 
proving the capability of the proposed feature as an estimator of DOA compared to others, especially in 
light, moderate and general anesthesia and in tracking the transition between conscious and unconscious 
state. 
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Fig. 10. The constituent features of the BIS index for figure 7. (a) SEF95, (b) Burst suppression ratio  

(BSR), (c) Relative Beta ratio (RBR), (d) Bispectral ratio (BISPR). All the sub figures show  
 a ratio which is a dimensionless number except part (a) which is frequency 

 
Since correlation of VEP-based feature with the BIS index is higher than other BIS constituent 

features, it can be concluded that this feature carries useful information and is determined independent of 
what BIS is estimated. In other words, accurate revealing of the anesthetic depth can be achieved via 
different ways. Since anesthetic agents try to block all sensory inputs, measuring the response of each 
sensory to its related stimuli can measure how much this nervous channel is blocked. That is why indexes 
such as AAI or IFT are suggested to check how inhibited the auditory sensory.  Since patients’ eyes are 
closed, researchers did not try to measure the inhabitation rate of visual system as an anesthetic depth 
index. Thus, we propose a novel paradigm in which patients eyelashes are exposed to a fairly high lux 
light flicking by 1Hz throughout the anesthesia. In other words, the current study opens a new horizon 
which results in the fact that VEPs are informative in the field of estimating DOA and are capable of 
resolving the deficiencies of existed indexes. As seen, the robustness of the proposed index is acceptable 
and its response time is quite similar to the BIS one. 
 

6. CONCLUSION AND FUTURE WORK 
       
 This paper proposes a new approach to monitor depth of anesthesia using visual evoked potentials. In 
order to visually stimulate a patient during surgery (eyes closed), this novel hypothesis was investigated to 
show whether flashing LEDs in front of the eyelashes of anesthetized patients can excite the visual nerves 
and produce a depth-related VEP pattern or not. In this way, first, an improved method for intraoperative 
recording of VEPs is introduced. Further, since VEP amplitude is low compared to background and the 
SNR problem is even more critical in a noisy environment like surgical operation rooms (due to several  
noise sources generated by simultaneous working of many electrical apparatus), extraction of clean VEPs 
becomes more complicated. 

To overcome this problem, here a wavelet based technique is proposed to decompose synchronously 
averaged EEG signals into seven scales. Afterwards just those coefficients that occurred within the 
efficient frequency range of VEPs are selected. The introduced procedure has the ability of eliciting a 
clean VEP signal every 10s. Finally the proposed VEP-based index supports the assumption on six 
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patients that this index is able to accurately follow patients’ DOA. This index is highly correlated with the 
BIS one, in sedation and light, moderate and general anesthetic states.  

Since each of the EEG-based indexes has some shortcomings, for future work, it is suggested that the 
proposed VEP-based DOA be combined with the spectral-based, fractal-based, and also non-linear time 
frequency features in order to have a more comprehensive index for determining DOA. 
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