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Abstract– In this paper, a novel cost-sensitive learning algorithm is proposed to improve the 
performance of the nearest neighbor for intrusion detection. The goal of the learning algorithm is 
to minimize the total cost in leave-one-out classification of the given training set. This is important 
since intrusion detection is a problem in which the costs of different misclassifications are not the 
same. To optimize the nearest neighbor for intrusion detection, the distance function is defined in a 
parametric form. The free parameters of the distance function (i.e., the weights of features and 
instances) are adjusted by our proposed feature-weighting and instance-weighting algorithms. The 
proposed feature-weighting algorithm can be viewed as general purpose wrapper approach for 
feature weighting. The instance-weighting algorithm is designed to remove noisy and redundant 
training instances from the training set. This, in turn improves the speed and performance of the 
nearest neighbor in the generalization phase, which is quite important in real-time applications 
such as intrusion detection. Using the KDD99 dataset, we show that the scheme is quite effective 
in designing a cost-sensitive nearest neighbor for intrusion detection.           

 
Keywords– Distance metric learning, feature-weighting, instance-weighting, intrusion detection systems, nearest 
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1. INTRODUCTION 
 

Nowadays, security plays a strategic role in modern computer network systems. Intrusion detection 
systems are effective security tools that look for known or potential threats in network traffic and/or audit 
data recorded by hosts [1]. Basically, an IDS analyzes user's behavior using the information from various 
sources such as audit trail, system table, and network usage data [2, 3]. The problem of intrusion detection 
has been studied extensively in computer security, and has received a lot of attention in the fields of 
machine learning and data mining [4-8]. 

In its basic form, the nearest neighbor (NN) rule, which is a non-parametric classification method, 
has been used for intrusion detection. The basic rationale for the NN rule is both simple and intuitive: 
patterns close in the feature space are likely to belong to the same class. Therefore, its performance relies 
on the locally constant class conditional probability [9]. A variety of distance measures has been used in 
NN classification and various methods have been proposed to adapt the distance measure to the 
application at hand. 

The NN classifier has many advantages over other methods: It leads to a very simple approximation 
of the Bayes classifier. Therefore it is nearly optimal in the large sample limit. On the other hand, it can 
learn from a small set of examples. The state-of-the-art NN classifier uses local information, which can 
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yield highly adaptive behavior. Moreover, it performs well in real-world problems compared to many 
complex and costly implemented methods. As a lazy learner, new examples could be incrementally added 
as they become available. The classifier is interpretable and gives competitive performance with other 
methods such as decision trees or neural nets [10]. However, the NN classification method suffers from 
the following major problems:  

1. The NN algorithm is very sensitive to the features used by the classification algorithm. Irrelevant 
features degrade the performance of the algorithm as they contribute equally in the distance function. 
Many feature selection/weighting algorithms are proposed in the literature that attempt to solve this 
problem by controlling the contribution of each feature in the distance function. These methods can be 
categorized into two main groups: filter and wrapper approaches [11-18]. 

2. The NN algorithm is very sensitive to the quality of the training samples. Noisy (i.e., mislabeled) 
training examples can cause misclassification of many test instances. To solve this problem, many 
algorithms have been proposed in the past research [19- 24]. 

3. The basic NN algorithm memorizes all of the training samples for use in the generalization phase. 
To classify a query pattern, its distance from all training examples should be calculated. This makes the 
algorithm slow when the number of training examples is large. Many algorithms proposed in the literature 
attempt to solve this problem by selecting a small subset of training data [25-28].  

In the following, we briefly address some recent techniques proposed in the literature to tackle the 
problems mentioned above. These techniques define the distance function in a certain form to incorporate 
different kinds of information. For this purpose, the distance function is usually defined in a parametric 
form. The procedure of adapting the distance function (i.e., tuning the parameters), based on a set of 
training data, is usually called distance metric learning [29]. 

In [30], a scheme is proposed to learn weighted metrics to improve the generalization accuracy of the 
NN algorithm. The weights (i.e., the parameters of the distance measure) may be specified for each class, 
feature, or individual instance. To specify the parameters of the distance function, a learning algorithm is 
proposed that uses gradient descent to minimize a performance index that is an approximation to leave-
one-out (LOO) classification error-rate. 

In [19], an adaptive K-NN classification algorithm is proposed that is based on the concept of 
statistical confidence from hypotheses testing. This method takes into account the effective influence size 
of each training example and the statistical confidence with which the label of each training example can 
be trusted. In  [20], a locally adaptive distance measure is used that is based on assigning a weight to each 
training instance. The parameters of the distance measure (i.e., the weights of the training instances) are 
specified by a simple heuristic. This scheme is shown to be effective in improving the performance of the 
basic NN, but it suffers from sensitivity to noise. 

In [24], an adaptive NN classifier is proposed for noisy environments. This instance weighting 
algorithm attempts to consider class separability by minimizing entropy in the deciding area of each 
instance. In [18] an algorithm is proposed to tackle the first and second problem mentioned above. This 
was achieved by assigning a weight to each feature and each training instance. The weight parameters are 
tuned by means of a hill-climbing search method. In [21], an algorithm is proposed to tackle the second 
and third problems. The algorithm is designed to select a small subset of weighted prototypes from 
training data. To specify the weights of the prototypes, a learning algorithm is proposed that attempts to 
directly minimize the LOO classification error-rate of the given training set.  

In this paper, based on our mentioned contributions [18, 21], a general method is proposed to 
simultaneously tackle all of the three problems of the NN algorithm mentioned above. The algorithm is 
designed to efficiently improve the performance of the NN algorithm in cost-sensitive problems such as 
intrusion detection. 
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Most learning algorithms used to tune a classifier attempt to minimize the error-rate of the classifier 
on the training data. These algorithms implicitly assume that class-to-class misclassification costs are the 
same. In many real-world applications such as medical diagnosis of a certain disease, this assumption is 
not true. It is obvious that misclassifying a patient as healthy (i.e., false negative) is much more costly than 
misclassifying a normal case as patient (i.e., false positive). 

Intrusion detection is another typical problem in which the cost of different misclassifications are 
different [31, 32]. Obviously, failing to detect an intruder is more costly than misclassifying a normal user 
as intruder. Indeed, if a normal user's logon fails due to false-positive prediction, the imposed cost is not 
more than a further try by the user. On the other hand, granting the permission to an intruder may result in 
the breakdown of the security system. Therefore, cost-sensitive learning algorithms are applied to 
minimize the total cost of misclassifications by taking different misclassification costs into account [33, 
34].  

For an m-class cost-sensitive problem, with n training data, assume that an m by m cost matrix, C, is 
available. Each element Ci,j of this matrix represents the cost of predicting an element of class i in class j. 
The performance of a classification algorithm can be represented by an m by m matrix denoted as 
Confusion Matrix (CM). Each element CMi,j of this matrix represents the number of elements (i.e., test 
instances) of class i predicted as class j. Given the cost and confusion matrices, the CPE measure is 
calculated as:  

 
 


m

i

m

j
jiji CCM

n
CPE

1 1
,,

1
        (1) 

where n is the number of examples used to test the classifier. 
The 1998 DARPA Intrusion Detection Evaluation Program, managed by the MIT Lincoln Labs, 

prepared a standard dataset for the intrusion detection learning task [35]. The prepared dataset was 
originally used in the KDD Cup 99, International Knowledge Discovery and Data Mining Competition. 
The KDD Cup 99 dataset is the most widely used benchmark [8, 36, 37]. 

Various intrusion detection methods have been proposed in the literature. There are two major trends 
for intrusion detection: Signature based and anomaly based. The signature based, also called Misuse 
detection, treat intrusion detection as a classification problem. The KDD Cup 99 was a cost based misuse 
detection contest. In this trend, the attacks are classified based on perfectly learned patterns of abnormal 
usage or signatures [38]. The approach is reliable, economical and has low false-positive error rate [39]. 

Although classification algorithms have been extensively used for the intrusion classification problem 
[40], there are few reports about misuse detection methods that perform better than the winner of the KDD 
99 contest. Moreover, many of the proposed methods require high computational or memory demands.  

Researchers usually use the following techniques to alleviate the complexity of the problem:  
1. Ensemble learning: combining different techniques in hybrid systems. Some of the proposed 

methods use different classification techniques to accurately classify different attack types [41-42] and 
some others try to combine the advantages of signature based and anomaly detection systems [43]. The 
best reported results to date are from hybrid systems of decision trees. In fact, the contest winner fused 
50x10 C5 decision trees using cost-sensitive bagged boosting algorithm [44] and is yet the state of the art 
method for the KDD 99 dataset. 

2. Evolutionary classifiers: Many fuzzy rule based classifiers are proposed for intrusion detection. 
While usual rule based techniques fail in the case of the KDD 99, major rule based IDS use genetic 
algorithms for introducing new rules into the population or tuning rule weights [42, 45]. Some of the well-
known and state-of-the art evolutionary systems are too time consuming or use a huge rule base.  
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3. Sampling or data generation: Many of the intrusion detection systems reported their results on a 
subset of the prepared dataset (training and test datasets) or used a sampling method to extract two subsets 
for train and test from the original KDD dataset. Many others used datasets generated by their simulation 
or gathered data from their own network.  

Our proposed method is obviously notable since it is a basic algorithm which improves the CPE 
without using these popular techniques. In fact, improving the CPE on the KDD test set is an arduous task. 
The basic methods could be further improved using the anomaly based paradigm [46], the online 
(incremental) learning problem [47] or data preprocessing techniques [37].  

The proposed algorithm, in this paper, attempts to minimize the overall cost of misclassification in 
LOO classification of the given training set using NN rule. This is achieved by specifying the weights of 
features and training instances.  

We propose two algorithms for this purpose: feature-weighting and instance-weighting. Both of these 
algorithms attempt to improve the performance of the NN algorithm in cost-sensitive problems by directly 
minimizing the CPE in LOO classification of the given training set. 

The rest of the paper is organized as follows. In Section 2, the NN algorithm with weighted features 
and instances is presented to introduce the notation. In Section 3, we introduce the last-runner problem. 
Our feature-weighting algorithm makes use of the efficient solution that we provide for this problem. In 
Section 4, the details of our feature and instance weighting algorithms are presented. The results of our 
experiments on KDD99 intrusion detection dataset are presented in Section 5. Finally, conclusions are 
remarked in Section 6. 
 

2. NEAREST NEIGHBOR CLASSIFICATION WITH WEIGHTED 
 FEATURES AND INSTANCES 

  
For an m-class problem, assume that a set of training examples of the form = {( , ) | = 1,..., }i iT X l i n  is 
given, where, 

1 2
= [ , ,..., ]T

i i i id
X x x x  is a d-dimensional vector of attributes and {1,2,..., }il m  specifies 

the class label of iX . To identify the NN of a query pattern, a variety of distance functions has been 
proposed in the literature [48]. The Euclidean distance function has often been used for this purpose. The 
Euclidean distance, Ed , between two patterns iX  and jX  can be expressed as:  

 2

=1
( )( , ) = d

ik jkE i j k
x xd X X   (2) 

It must be noticed that the square root of the distance function is removed in (2) without affecting the 
functionality of the NN algorithm. In this paper we use the following distance function to measure the 
distance between a query pattern Q , and a stored instance, iX :  

 2
=1

( , ) = (1/ ) ( )d
i i k k ikk

d Q X u w q x  (3) 

where, kw  is used to denote the weight assigned to the k-th feature and iu  denotes the weight assigned to 
the training instance iX . 

The weight assigned to an instance controls its influence in the feature space for classifying test 
instances. An instance pX  having a zero weight (i.e., pu =0) appears to be far away from all instances, 
such that, it is not the NN of any query pattern. In this way, noisy and redundant training patterns can be 
effectively removed from the training set by setting their weights to zero. Also, in (3), the contribution of 
each feature in the distance function can be controlled by its weight. This way, irrelevant features can be 
easily removed from the feature space by setting their weights to zero. 
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The contribution of this paper is in the algorithms that we propose to learn the parameters of the 
distance function = { |1 }kW w k d   and = { |1 }iU u i n  . 
 

3. THE LAST-RUNNER PROBLEM 
 

In this section, the last-runner problem is introduced. Our feature weighting algorithm presented in the 
next section makes use of the efficient solution that we propose for this problem. 

 
a) Problem statement 

 
Assume that n  runners = { | = 1, 2,.., }iR r i n  participate in a competition by running in a pre-

specified path away from the point O. The initial distance of runners (i.e., at the time = 0t ) from point O 
(denoted as offsets) are given as { | = 1, 2,.., }ia i n  where, it is assumed that 1 2< < ... < na a a . We also 
know that all runners run at constant velocities { | = 1,2,.., }iv i n . An example of the last-runner problem 
with three runners is shown in Fig. 1. 

As time (t) goes from zero to infinity, we are interested in tracking the last-runner (i.e., the runner 
that is behind all others). Our aim is to design an efficient algorithm to identify the last-runner as a 
function of time. The algorithm should output a list S expressed as: 1 1 2 3= [( , ),( , ),( , ),.....]j kS r s r s r s . The 
first element 1 1( , )r s  denotes that 1r  is the last-runner at the start of the competition (i.e., at 1= = 0t s ). 
The next two elements 2( , )jr s  and 3( , )kr s  denote that the jr  and kr  are the next last-runners occupying 
the last position at 2=t s  and 3=t s , respectively. In other words, 1r  and jr  are the last-runners in the 
time intervals 1 2< <s t s  and 2 3< <s t s , respectively. 

 
Fig.  1. An example of the last-runner problem 

 
b) Solution 

 
The distance of each runner ir  from point O  as a function of time t  can be expressed as:  

   =i i id t a v t  (4) 

In general, the time ,i jt  in which ir  passes jr  (assuming <i j ) can be expressed as:  

 , = j i
i j

i j

a a
t

v v



 (5) 

Note that in the above equation, if i jv v , the runner ir  cannot pass jr . Therefore jr  can never 
occupy the last position. In this case, Eq. (5) gives a negative value for ,i jt . On the other hand, if >i jv v , 

ir  will definitely overtake jr  at a positive time ,i jt . It must be noted that ir  will not be the last-runner 
again ( ,> i jt t ). In other words, each runner can only occupy the last position once during the 
competition. 
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We denote the times that the last-runner is changed as critical-times. The algorithm should produce 
the list of runners and their associated critical times. This list is denoted as 

= [( , ) | , > ]i i i i jS r s r R s s j i   , where is  is the time that ir  occupies that last position (i.e., critical-
time for ir ). 

 
Example 1.  Consider the example shown in Fig. 2 with four runners [ = ( , ) | = 1, 2,3, 4]i i ir a v i . The 
initial distance from point O  and also the speed of runners are specified as: [(8,24),(15,25),(24,16), 
(28,12)]. In this example, 2r  and 3r  pass 4r  (at the time = 1.0t ) before 1r  passes 4r  (at the time 

= 1.67t ). The runner 1r  is the last runner for < 1.67t , when it passes 4r . Hence, 4r  is the last-runner 
thereafter. In  Fig. 2, runners 2r  and 3r  are displayed with dashed lines to denote that they never occupy 
the last position. For this example, the algorithm should produce the list 1 4= [( ,0), ( ,1.67)]S r r  as output.   
  

 
Fig.  2. A last-runner problem example 

 
A simple solution for the last-runner problem can be expressed as follows. Initially (i.e., at = 0t ), 1r  

is the last-runner. To find the next last-runner (and its associated critical-time) the time at which 1r  passes 
each of the other runners (i.e. 1, > 1it i ) can be easily calculated using Eq. (5). As mentioned before, a 
negative value of 1, jt  indicates that 1r  cannot pass jr  (since 1r  is slower than jr ). Ignoring the negative 
values, the time at which the last-runner is changed can be easily determined by finding the minimum of 
these times. Assuming that 1,kt  is the minimum of these times, the next last-runner is identified as kr , and 

1,kt  is the time that kr  becomes the last-runner ( 1r  is the last-runner for time interval 1,0 < < kt t ). To find 
the next last-runner (for 1,> kt t ) and its associated critical-time, we should repeat the above-mentioned 
procedure by finding the times at which kr  passes each of the other runners. 

It is obvious that the worst-case time complexity of the above simple solution is 2( )O n , where n  is 
the number of runners. In the following, we provide an efficient algorithm to solve this problem in ( )n . 
This algorithm consists of two steps: removing the fast-runners and removing the lucky-runners. The aim 
of these two steps is to identify (and remove from the list) those runners that can never be the last-runner. 
After these steps, each runner that is left in the reduced list will definitely be the last-runner at some time 
interval in the competition. 

 
1. Removing the fast-runners: It is very easy to identify a group of runners (denoted as fast-runners) that 
can never be the last-runner during the competition. The aim of this step is to reduce the list of runners by 
removing the fast-runners from the list. A runner kr  is a fast-runner if:  
  

<
mink i

i k
v v  (6) 
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Equation (6) states that a runner kr  can never be the last-runner if one of the runners that is located 
behind kr  (at the start of the competition) has a speed less than kr . The list L that excludes all fast-runners 
can be easily constructed by one pass over all runners in the order that they appear in the list R. It must be 
noted that the runners in the constructed list L are now simultaneously sorted in descending order of their 
velocities ( > , <i jv v i j ) and ascending order of their offsets ( < , <i ja a i j ). 

As the list of runners R is initially sorted in ascending order of the offsets, a simple way to construct 
the list L  is to remove all runners from R  that violate the condition: 1 2> > ... > nv v v . Note that this is a 
one-pass algorithm with complexity of ( )n . 

 
Example 2.  As an example, consider the list of runners given below.  

 = (8, 24), (15, 25), (24,16), (28,12), (30,14), (31,13),(32,8), (36,6),(38, 20),(41, 4),(42,3)R  

The list L  that excludes all fast-runners is constructed by removing 2 5 6, ,r r r  and 9r .  
 = (8, 24), (24,16), (28,12), (32,8), (36,6), (41, 4),(42,3)L  

2. Removing the lucky-runners:  A lucky-runner is referred to a runner that is not a fast-runner but can 
never be a last-runner (i.e., does not satisfy the condition given in Eq. (6) but still cannot occupy the last 
position). The aim of this phase is to identify and remove the lucky-runners from the list L (constructed in 
the previous section). 

It is obvious that the necessary condition for a runner kr  to be the last-runner is that all runners 
located behind it at the start of the competition (i.e., 1 2 1{ , ,.., }kr r r  ) pass kr . Now, kr , is said to be a lucky-
runner if it can pass another runner before all the runners 1 2 1{ , ,.., }kr r r   have passed it. 

 
Example 3.  To illustrate this situation, consider an example with three runners: 1 2 3= [ , , ]R r r r  where 

1 2 3< <a a a  and 1 2 3> >v v v  (i.e. there is no fast-runner in the list R ). Assuming that 2,3 1,2t t , the 

runner 2r  is a lucky-runner (and can never be the last-runner). This runner is lucky since by the time that 

1r  overtakes 2r , the runner 2r  has already passed 3r . Therefore 1r  and 3r  will be the last-runners for 

1,3<t t  and 1,3>t t , respectively. In this example, the only critical-time is 1,3t  (i.e., 3r  becomes the last-

runner at 1,3=t t  and remains in the last position until the end of the competition).                

Assume that the list L  is constructed from R  by excluding all fast-runners (as explained in the 
previous section). In general, we can state that for every three consecutive runners in L  (i.e., 1 1, ,i i ir r r   ), 

ir  is a lucky-runner (and can be removed) if the condition , 1 1,i i i it t   is satisfied. The algorithm for 
removing fast-runners makes use of this condition to identify and remove all lucky runners. 

A general procedure for identifying the lucky-runners is a sequential processing of the list L and can 
be stated as follows. Starting with = 1i , we calculate , 1i it   and continue until the condition , 1 1,i i i it t   is 
satisfied for some value of i  (i.e., =i k ). This means that kr  is a lucky-runner and must be removed. As 
the removal of kr  makes the three runners 2 1 1, ,k k kr r r    consecutive in the list, we need to check if 1kr   is 
a lucky-runner or not. To do this, we need to calculate 1, 1k kt    and check to see if 1, 1 2, 1k k k kt t    . If this 
condition is satisfied, 1kr   is a lucky-runner and must be removed. After removing 1kr   , the process 
continues by checking to see if 2kr   is a lucky-runner or not. This backward traversal continues until the 
examined runner is not a lucky-runner.  
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Example 4. To illustrate this procedure, identifying the lucky-runners of list L  in example 2 is presented 
here. 2,3 1,2 2 3,4 1,3 3 6,7 5,6 6 4,5 5,7 5; ; ; ;t t r is lucky t t r is lucky t t r is lucky t t r is lucky         
 1 4 7{( ,0), ( ,1.5), ( , 2.0)}S r r r     

 
After removing the lucky-runners, each runner in the resultant list will definitely be the last-runner at 

some stage during the competition. If we re-index the list of retained runners as [ |1 , ]ir i m m n   , the 
inequality 1, , 1<i i i it t   is valid for all of the runners in this list. In fact, the runners in this list are also 
sorted in ascending order of times , 1i it   for 1 1i m   . 

Initially, 1r  is the last-runner. The first change in ranking occurs when 1r  passes 2r  at 1,2=t t . This 
makes 2r  the last-runner. Therefore 1,2t  is the first critical-time. After this time the runner 1r  is in the front 
of 2r  forever and can be ignored. Similarly, the next change in ranking occurs at 2,3t  when 2r  passes 3r . 
In fact, the time interval that each runner occupies the last position is readily available, since we have 
already computed the values of critical-times , 1i it   (for 1 1i m   ) during the process of identifying the 
lucky-runners. 

Figure 3 presents our proposed algorithm for finding the last-runners and corresponding critical 
times. In the algorithm of Fig. 3, .ir a  and .ir v  denote the offset and velocity of the runner ir . Also, 
indices first and last are used to refer to the first and the last element of a list, respectively. 

 

 

1:  function CRITICALTIMECOMPUTATION(R) returns S    Input: the list of runners: R = [ri = (ai,vi)|i = 1, 2,..n] where ai ≤ 
ai+1 (and vi < vi+1 if ai = ai+1 ). Output: the list of runners and their associated critical-times S = [(ri,si)|ri ∈ R,∀j > i,si ≤ sj]  
2:    L = [r1]  
3:    for each r ∈ R do  
4:         if r.v < Llast.v then  
5:               add r to L  
6:    S = [(r1, 0)]  
7:    remove Lfirst form L            remove r1  
8:    for each r ∈ L do  

9:         
. .

. .
last

last

r a S a
t

S v r v





    

10:        while t ≤ Slast.s do  
11:               remove Slast from S  

12:              
. .

. .
last

last

r a S a
t

S v r v





 

13:         add(r , t) to S  
       return S  
    

Fig. 3. The algorithm for calculating the list of last-runners and their associated critical-time 
 
To analyze the time complexity of the algorithm, suppose the list R includes n runners. In general, the 

procedure of identifying the lucky-runners (in a list L containing n runners) consists of two types of 
computation. One is the forward traversal of computing , 1i it   for = 1,..., 1i n   and the other is the 
backward traversal of computing the new times when a lucky-runner is spotted. The backward traversal 
consists of computing p new times (where p < n) and each time removing the visited runner from the list. 
The time taken by the list construction and pruning (lines 3 to 6) is ( )n . In the line 7, at most n elements 
exist in the list L, and consequently, lines 9 and 13 are iterated ( )O n  times. There are at most n-2 lucky 
runners (i.e. all of the runners excluding the first and the last one), hence n-2 passes through the whole 
loop (lines 10 to 12). Therefore, in the worst-case using an amortized analysis [49], line 11 never executes 
more than line 13. It means that the second loop started at line 8 is of ( )n . 
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4. LEARNING THE DISTANCE FUNCTION PARAMETERS 
 

In this section, we introduce our proposed method for specifying the parameters of the distance function 
expressed in (3). The parameters are specified in two steps. In the first step, the weights of features (i.e., 

= { | = 1, 2,.., }kW w k d ) are determined assuming that the weights of instances are fixed (i.e. 
= { = 1|1 }iU u i n  ). In the second step, the weights of instances (i.e., = { | = 1, 2,.., }iU u i n ) are 

specified, assuming that the weights of features are given and fixed. The overall scheme consists of two 
algorithms: feature-weighing and instance-weighting. Both of these algorithms attempt to minimize the 
average cost in LOO classification of the given training set. 

 
a) The proposed feature weighting algorithm 

 
Our aim in this section is to propose an algorithm that attempts to minimize the CPE in LOO 

classification of the given training set by specifying the weights of features { | = 1, 2,..., }fw f d . 
In its basic form, the proposed algorithm is a greedy search method. The algorithm starts with an 

initial solution to the problem (i.e., { = 1| = 1, 2,..., }kw k d ) and attempts to improve the solution by 
adjusting the weight of one feature in each iteration. The basic component of the learning scheme is an 
algorithm that provides the answer to the following question:  

What is the optimal weight of feature k (i.e., wk ) assuming that the weights of all other features are 
given and fixed?  

The weight kw  is optimal in the sense that it results in minimum CPE in LOO classification of the 
training data. In this way, the overall learning algorithm consists of visiting each feature in turn to adjust 
its weight. It must be noted that the weight specified for a feature is optimal if the weights of other 
features remain fixed. That is why the second pass and subsequent passes over the features can reduce the 
CPE. In experiments, we simply stop the search after a pre-specified number of passes over all features. 

In the following, we explain how the proposed algorithm specifies the weight wf of feature f 
(assuming that the weights of other features are fixed), as shown in  Fig. 4. 

As we increase wf from 0 to  , the predicted class (and classification cost) of each training instance 
Xt may change several times in LOO test. This is due to the fact that the distance function used to find the 
nearest neighbor of Xt is a function of wf. Obviously, the classification cost of Xt depends on its nearest 
neighbor in LOO test. We are interested in finding those values of wf that change the nearest neighbor of 
Xt. As we increase wf from 0 to  , all training instances move away from Xt. The situation is analogous to 
the last-runner problem discussed in Section 3. Training instances (analogous to runners) are moving away 
from Xt (point O) as wf (analogous to time) is increased from 0 to  . Each training instance Xk moves 
away from Xt at constant velocity kv  specified by:  

2= (1/ )( ) = ( , )k k kf tf f t kv u x x d X X                                                   (7) 

where kfx  and tfx  represent the values of feature f for instances Xk and Xt, respectively. The term 
( , )f t kd X X  is used to denote the distance between the instances Xt and Xk in feature f. The initial distance 

of each training instance Xk from Xt (denoted as ak ) is the distance between Xk and Xt when wf is set to 
zero:  

  2

( )
= (1/ ) = ( , )k k i ti ki t kf

i i f
a u w x x d X X



               (8) 

where ( , )t kfd X X  denotes the distance between Xt and Xk ignoring feature f (i.e. their distance while wf = 0). 
In LOO classification of each training instance Xt, we can now use the solution that we provided for 

the last-runner problem to find the critical-values of wf that cause a change in NN of Xt. Using these 
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critical-values, we can easily construct the nearest neighbors list (NN-list) of Xt as wf is increased from 0 
to  . Having this list, for any value of wf, we can calculate the cost of classifying Xt in LOO test. 

As an example, assume that the NN-list of Xt is given by 1 2 3= [( , = 0), ( , ), ( , )]k p mS X c X c X c ). The 
first element of each pair identifies the NN and the second element gives the value of fw . From the list, 
we can easily conclude that Xk, Xp and Xm are the nearest neighbors of Xt for intervals 20 < <fw c , 

2 3< <fc w c  and 3>fw c , respectively. As we know the true classes of Xt, Xk, Xp and Xm, we can use the 
cost matrix to calculate the cost of classifying Xt for any value of wf. 

To find the best weight of the feature under consideration (i.e., f) , the NN-list of all training instances 
are merged into a global list (denoted as GSf). This list is then sorted in ascending order of the critical-
values of wf. 

For any specific value of wf, we know the NN of each training instance. Each critical-value in this list 
indicates a change in the NN of one of the instances in the training set. Assuming that GSf has n′′ critical-
values (i.e., 1 2, ,..,f f ''fn

w w w ), we need to check n′′+1 thresholds to find the best value of wf. The 
thresholds tested are 1 2= 0,( ), ( ),.., ( )f f f ''fn

w w w w     , where   is a very small positive number. 
The best value of wf is simply the threshold resulting in minimum cost. 

 
 1:  function FEATUREWEIGHTING(T,U) returns W    Input: Training set T = {Xi |1 ≤ i ≤ n} , instance weights U = {ui = 

1|1 ≤ i ≤ n}    Output: Feature Weights W = {wf |i = 1, 2,..,d}  
2:    for iter=1 to no. of iterations do  
3:    for each feature f ∈ featurespace do  
4:          let wf = 0        i.e. remove the feature f from the feature space  
5:          GSf = []  
6:          for each instance Xt ∈ T do  
7:                construct list Lt by sorting all training instances in ascending order of their distance from Xt  
8:                listt = []  
9:                for each instance Xk ∈ Lt  do  
10:                    add (df(Xt,Xk),df(Xt,Xk)) to listt  
11:    
12:               St = CriticalTimeComputation(listt)  
13:               add critical-times of St to the global list GSf  
14:          sort GSf  in ascending order of critical-times  
15:          for each  different threshold th in GSf  do       th = 0,GSf(i) + ε  
16:               find the overall CPE (assuming wf = th)        using equation (1)  
17:          wf = th with minimum overall CPE  
       return W    

  
Fig. 4. The feature-weighting algorithm 

 
To analyze the time complexity, suppose the feature-weighting algorithm includes i iterations to 

assign weight to d features. The overall complexity of this algorithm is 2( ( ))O idn lg n , described in the 
following. In each iteration for each feature, the loop on Xt starting at the line 6 iterates n times. This loop 
has a sorting function of ( ( ))O nlg n  in line 7 and a complexity of ( )O n  for lines 9-13. Thus, the overall 
complexity of the loop at line 6 is 2( ( ))O n lg n . Then, line 14 sorts a list with maximum length 2n . This 
sorting procedure has a complexity of 2( ( ))O n lg n . Finally the loop at line 15, which is a sequential pass 
over the list GS can be ignored in comparison with 2( ( ))O n lg n . 

In data mining applications with very large training set, using the feature-weighting algorithm 
presented in this section may not be feasible due to time constraints. One simple solution for this problem 
is to select a subset Tr of the full training set T. Using Tr, instead of T, in the feature-weighting algorithm 
of  Fig. 4, the overall complexity of the algorithm is 2( ( ))O idn lg n  , where n′ is the number of selected 
instances. 
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b) The instance weighting algorithm  
 

The WDNN algorithm presented in [21] attempts to minimize the LOO error-rate of NN classifier by 
specifying the weight of each training instance. Given the class-to-class misclassification costs, this 
algorithm can be easily modified to minimize the cost in LOO classification of the training set. However, 
in applications with very large training set (such as KDD99), it is not feasible to specify the weight of all 
training instances due to time requirement. One simple solution to this problem is to select a small subset, 
Tr, from the full training set T as candidate prototypes and use the algorithm to specify the weights of 
instances in Tr rather than T. In other words, the instance-weighting algorithm proposed in this section 
attempts to minimize the total cost in LOO classification of the full training set by specifying the weights 
of the instances in = {( , ) |1 , , }r i i iT X l i n X T n n     . Obviously, in applications with small training 
set, the full training set can be selected as the prototype set (i.e, Tr =T). Therefore, in this paper, the terms 
instance-weighting and prototype-weighting are used interchangeably. In prototype-weighting, the weight 
of instances not present in Tr are assumed to be zero. It must be noted that after the application of 
instance-weighting algorithm, the number of prototypes left (i.e., having non-zero weight) is usually much 
less than n′ since the algorithm sets the weight of redundant candidate prototypes to zero. 

The algorithm that constructs the prototype set Tr from the full training set T is presented in section 
5.2. Here, we assume that a prototype set = {( , ) |1 , , }r i i iT X l i n X T n n      is available. Further, 
we assume that the weights of the features have been specified using the algorithm of Fig. 4. In the 
following, we present the prototype-weighting algorithm, which attempts to minimize the CPE in LOO 
classification of the full training data by specifying the weights of prototypes = { | = 1, 2,..., }iU u i n . 

For a problem with n′ prototypes and known cost matrix, the algorithm starts with an initial solution 
to the problem (i.e., { = 1| = 1, 2,..., }ku k n ) and attempts to improve the solution by adjusting the weight 
of one prototype in each iteration. Basically, this is a greedy optimization method and the CPE never 
increases during this process. The overall learning algorithm consists of passing over the entire prototype 
set for a pre-specified number of iterations or until no improvement is observed over previous iteration. 

The prototype-weighting algorithm, presented in Fig. 5, starts by finding the associates of each 
prototype. The associates of a prototype Xl (denoted as A(Xl)) are those training instances that have Xl as 
their nearest prototype in LOO test. The algorithm keeps the associate list of each prototype in memory 
and updates them as the weights of prototypes change during the execution of the algorithm. 

The prototype-weighting algorithm specifies the weight up of a typical prototype Xp, as follows. In 
the first step, Xp is removed from the instance space by setting its weight to zero (i.e., up = 0). This forces 
each of its associates (for example Xi) to use a new nearest neighbor (i.e., Xk). Then, the algorithm finds 
and stores the predicted class of each associate of Xp, which is used along with the true class of Xp and 
each of its associates to calculate its effect in classification cost. The best value of up is specified in such a 
way that classification cost of instances in the association list is minimum. To do this, in the next step, the 
Score s of each training instance, Xi in the association list of Xp is calculated with the following definition 
of Score:  

 
( , )

( ) =
( , )

k p i
i

k i

u d X X
s X

d X X




 (9) 

 where 2
=1

( , ) = ( )d
p i k pk ikk

d X X w x x  . 
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1:  function PROTOTYPEWEIGHTING(T,Tr,W) returns U                 Input: Training set  T = {Xi|1 ≤ i ≤ n}, Prototype 
set (a subset of Training set) Tr = {Xi|1 ≤ i ≤ n′},  feature weights W = {wi|1 ≤ i ≤ d}                              
                         Output: Prototype Weights U = {ui|i = 1, 2,..,n′}  
2:    for each training Instance Xk ∈ T do  
3:    find Xl, that is the nearest prototype of Xk  
4:    add Xk to A(Xl)  
5:   for iter=1 to no. of iterations do  
6:   for each prototype Xp ∈ Tr do  
7:    let up = 0        i.e., remove the instance from the feature space  
8:    for each instance Xi ∈ A(Xp) do  
9:     find Xk that is the nearest prototype of Xi  

10:     
( , )

( ) =
( , )

p i
i k

k i

d X X
s X u

d X X




 

11:   sort all instances in A(Xp) in ascending order of their score, s  
12:     for each different threshold th = 0,th = s(p) + ϵ,p = 1,..,n′′ do    
                                                                                                                       ϵ is a very small positive number  
13:              calculate the CPE (assuming up = th)                    using equation (1)  
14:     up = best_th       best_th is the th resulting in minimum CPE  
15:     for each instance Xi ∈ A(Xp) do            updating the associate list of Xp  
16:         if s(Xi) > best_th then  
17:     find Xk, the nearest neighbor of Xi  
18:     remove Xi from A(Xp)  
19:     add Xi to A(Xk)  
   return U  
 

Fig. 5. The prototype-weighting algorithm 
 

The score of an instance defined in (9) has an interesting property. For an instance having score 
( ) =is X a , if we choose >pu a , the instance Xi will stay in associate list of Xp. Otherwise (i.e., if 

<pu a ), it moves to the associate list of another instance (that we have already found and stored in the 
previous step). Using this, the predicted classes of any training instance ( )i pX A X  for the two cases of 

< ( )p iu s X  and > ( )p iu s X  are known. As we know the true class of Xi, we can easily calculate the cost 
of classifying Xi for any value of pu . 

For instance, Xi (in the associate list) with ( ) =is X a , assume that L is the true class of Xi (i.e., L = 
li), T is the predicted class for <pu a  and P is the predicted class for >pu a  (i.e., P = lp , the class label 
of Xp). Then, the cost of classifying Xi can be expressed as:  

 
,

,

<
( ) =

>
L T p

t
L P p

C if u a
Cost X

C if u a




 (10) 

where, CI,J is used to represent the cost of classifying an instance of class I in class J, as given in the cost 
matrix. 

Having the relation between a certain value of up and the corresponding cost of classifying each 
associate of Xp, the best value for up can be easily found by sorting the associates in ascending order of 
their scores (i.e., 1 2( ) < ( ) < ... < ( )''n

s X s X s X ), assuming the list contains n′′ instances. Considering any 
value of up between s(Xj) and s(Xj+1), the first j instances in the list will stay in associate list of Xp and 
the rest will have a new nearest neighbor. In this way, n′′ + 1 different values (i.e., 

1 2{0, ( ) , ( ) ,.., ( ) }''n
s X s X s X     ) should be examined to find the best value of up. After 
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specifying the best weight up of Xp, the associate lists should be updated. This is done by moving those 
associates of Xp whose score are greater than up to their new neighbor’s list. 

The worst-case time complexity of the prototype-weighting algorithm can be expressed as follows. 
Suppose that the distances between all pairs of the training instances are calculated before execution of the 
algorithm. Also, let λp and t denote the number of associates of Xp and the number of iterations, 
respectively. In each iteration, the loop starting at line 6 repeats n′ times. The statements at lines 8 and 12 
are executed λp times. The sorting procedure of line 11 has a complexity of ( ( ))p pO lg  . Updating the 
associate list of Xp at line 15 has a worst-case time complexity of ( )pO n  . Therefore, the overall 
complexity can be expressed as: 

 

=1 =1

=1 =1 =1

( ( lg( ) )) ( ( lg( ) ))

( ( lg( ) )) ( lg( ) 1 )

n n

p p p p p p p p
p p

n n n

p p p p
p p p

O t n O t n

O t n n O t n n

       

   

 

  

     

 
     

 

 

  
 

 
As updating the weight of each prototype could change the length of associate lists, the summation 

=1

n
pp


  is greater than n. However, as the NN of each instance does not change many times, the 

summation is linearly related with parameter n. Therefore, the time complexity can be simply expressed as 
( lg( ))O tn n . 
 

5. EXPERIMENTS 
 

Most techniques are evaluated based on KDD Cup 1999 intrusion detection dataset [8, 38]. The 
experiments on KDD99 dataset are reported in this section to evaluate the effectiveness of the proposed 
feature and prototype weighting algorithms. 

 
a) KDD99 intrusion detection dataset 

 
The KDD99 intrusion detection dataset is based on the 1998 DARPA initiative, which provides 

designers of intrusion detection systems (IDS) with a benchmark on which to evaluate different 
methodologies [50, 51, 52]. To build the dataset, a simulation was made including three ’target’ machines 
running various operating systems and services. To simulate network traffic, three additional machines 
were used to spoof different IP addresses. Finally, a sniffer was used to record all network traffic using the 
TCP dump format [35, 53]. The data set consists of 4,898,430 connection records. Each record has 41 
attributes and a label indicating the status of the records as either normal or a specific attack type. These 
features have different forms of continuous, discrete, and symbolic, with significantly varying ranges and 
ability to separate various classes. There are four groups of features: Basic Features, Content Features, 
Time-based Traffic Features and Host-based Traffic Features. The training set contains various attack 
types. Each attack falls into one of the following major categories: Denial of Service (DOS), Remote to 
Local (R2L), User to Root (U2R) and Probe. More details about the dataset could be found in intrusion 
detection literature [54, 55, 56]. The cost matrix used to score entries in KDD99 contest is given in Table 
1. This cost matrix is used to evaluate the performance of various IDS schemes proposed in the literature 
[57]. 

 
b) Experimental setup 

 
The KDD99 dataset is used as a benchmark to compare different intrusion detection methods [36], 

but the dataset suffers from some quality problems [58, 59]. Some pre-process procedures, such as data 
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cleaning and prototype selection, could be used to improve the quality of the dataset.  Figure 6 shows the 
block diagram of various steps used in our experiments. The details of each step are presented in the 
following. 

 
Table 1. The cost matrix used to evaluate the performance of various 

 IDS schemes on the KDD99 dataset 

Cost Matrix Predicted Class 

A
ct

ua
l C

la
ss

 

 Normal DOS U2R R2L Probe 

Normal 0 2 2 2 1 

DOS 2 0 2 2 1 

U2R 3 2 0 2 2 

R2L 4 2 2 0 2 

Probe 1 2 2 2 0 

 
 

Data cleaning and normalization: In this step, all duplicate training instances were removed from the 
training set to solve some of the problems concerning the original dataset [58]. Moreover, each categorical 
feature was replaced by P binary features, where P is the number of values that the feature can assume. 

Data normalization must correct the bias in favour of features having large values and can be regarded 
as a way of assigning weights to different features. In this way, a normalization method that is suitable for 
one feature may not be suitable for another. In KDD99 dataset, features 4 and 5 (namely src_bytes and 
dst_bytes) are spanned over a very large range in the interval [0,1.3 billion]. The value of these features 
for most data samples is in a small range, while a very few samples have very large values. To normalize 
these two features, a logarithmic measure was used as follows [60]: 

 
 = ( ( ) 1) ( ( ) ( ) 1)maxmin minnormalized

if if if if if
i ii

x log x x log x x     (11) 
 

where, ( )min if
i

x  is used to denote the minimum value of feature f. Other features were simply normalized 
using their mean and standard deviation: 

 
 = ( ( )) (8 ( )) 0.5normalized

if if jf jf
j j

x x x xmean stdev    (12) 
 

 
Fig. 6. Block diagram of various steps in the experiments 

 
Selection of candidate prototypes: A simple heuristic was used to select a small candidate prototype 
subset Tr from the full training set T. The prototype selection algorithm starts with Tr = T. For each train 
data Xi in T, the algorithm considers each of its k nearest neighbors for removal. An instance Xj in the 
neighborhood of Xi is removed from Tr if both of the following conditions are satisfied: 1) Its distance 
from Xi is less than a predetermined threshold r and 2) Both Xi and Xj have the same class label. It must 
be noted that this is a one pass algorithm and we used the Euclidean distance measure and k = 3000 and r 
= 0.15 in experiments reported in this paper. 

 

Selection of 
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prototypes 

Prototype 
weighting 

Test        
data 

KDD99  
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Data     
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Feature 
weighting 
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c) Experimental results 
 

In experiments reported in this section, duplicate training instances were first removed from the 
training set. Following this, all features were normalized as described in Section 5.2. In the next step, our 
prototype selection algorithm was used to select a small subset of the training set. The application of this 
algorithm selects 3314 instances from training data as prototype subset. Table 2 show the distribution of 
data in different classes for different data sets used in the experiments. Using this prototype set, our 
feature-weighting algorithm of Section 4.1 was used to specify the weights of the features. Then, the 
instance-weighting algorithm of Section 4.2 was used to specify the weights of the prototypes. Using 
prototype and instance weights, the performance of our method was evaluated by classifying the KDD99 
test data.  

 
Table 2. Distribution of data in different classes at various stages of the experiments 

 
Dataset Normal DOS U2R R2L Probe Total 

Original train set (10% KDD) 97277 391458 52 1126 4107 494020 
Duplicate training instances removed 87831 54572 52 999 2131 145585 
Selected prototype subset 2556 372 41 103 242 3314 
Test set (Corrected KDD) 60593 229853 70 16347 4166 311029 
Full KDD dataset 972780 3883370 52 1126 41102 4898430 

 
To compare the outcome, we first report the results of the KDD99 contest [57]. The results of the basic 

1-NN classifier on KDD99 test data is shown in Table 3. Also, Table 4 shows the results obtained by the 
winner of the KDD99 contest [44], which was discussed in the introduction section. Considering CPE as 
the major evaluation criterion, the basic 1-NN classifier, ranked ninth in the contest, achieves an average 
cost of 0.2523, while the average cost for the winner of the contest is 0.2331. 

 
Table  3. Results of the basic 1-NN classifier on KDD99 test data 

 
Confusion Matrix Predicted Class 

A
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la
ss

 

 Normal DOS U2R R2L Probe %Correct 
Normal 60322 57 1 1 212 99.55 

DOS 6144 223633 0 0 76 97.29 
U2R 209 1 8 5 5 3.51 
R2L 15785 1 0 95 308 0.59 

Probe 697 342 0 2 3125 75.01 
CPE=0.2523 

 
Table  4. Classification results obtained by the winner of KDD99 contest 

 
Confusion Matrix Predicted Class 

A
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 Normal DOS U2R R2L Probe %Correct 
Normal 60262 78 4 6 243 99.45 

DOS 5299 223226 0 0 1328 97.12 
U2R 168 0 30 10 20 13.16 
R2L 14527 0 8 1360 294 8.40 

Probe 511 184 0 0 3471 83.32 
CPE=0.2331 

 
In Table 5, we report the classification results when the selected prototypes are used to classify the 

KDD99 test data (i.e., nearest prototype classification, without weighting).  
Comparing the results of Tables 3 and 5, we observe that reducing the number of training instances 

did not have a drastic effect on classification results. In fact, we observe a small drop in average cost when 
using the prototype subset instead of the full training set.  
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Table  5. Classification of the KDD99 test data using the selected prototype subset 
 

Confusion matrix Predicted class 

A
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 Normal DOS U2R R2L Probe %Correct 
Normal 60254 70 14 4 251 99.44 

DOS 5857 223929 0 0 67 97.42 
U2R 68 0 29 9 122 12.72 
R2L 15735 0 100 352 2 2.17 

Probe 894 206 0 1 3065 73.57 
CPE=0.2480 

 
In Table 6, we report the classification results of the nearest prototype classifier after the application 

of feature-weighting algorithm for 2 iterations. Comparing the results of Tables 5 and 6, we observe that 
our feature-weighting algorithm could improve the performance by reducing the CPE from 0.2480 to 
0.2309 ( 6.9% relative improvement). In fact, the KDD99 test data comes from a distribution that is very 
different from the training data. Our feature weighting algorithm is expected to reduce the average cost by 
a larger amount when test data have the same distribution as the training data. 

 
Table  6. Nearest prototype classification results of KDD99 data, after feature-weighting 

 
Confusion matrix 

Predicted class 
 LOO classification of training data Test results 

A
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nPts=3314 Normal DOS U2R R2L Probe %Correct Normal DOS U2R R2L Probe %Correct 
Normal 87806 0 2 15 8 99.97 60158 86 4 12 333 99.28 

DOS 26 54381 0 0 165 99.65 6023 222780 0 0 1050 96.92 
U2R 0 0 52 0 0 100.00 39 1 45 8 135 19.74 
R2L 31 0 0 968 0 96.90 12743 4 2713 725 4 4.48 

Probe 0 3 0 0 2128 99.86 333 448 0 68 3317 79.62 
 CPE=0.0027 CPE=0.2309 

 
It must be noted that our feature-weighting algorithm reduced the number of features from 41 to 30. 

This is due to the fact that the algorithm removes redundant/irrelevant features by setting their weights to 
zero. 

Figure 7 shows the value of CPE during the first pass of our feature-weighting algorithm. As seen, 
the algorithm has reduced the CPE from 0.0498 to 0.0232 in LOO classification of the prototype set. The 
CPE is monotonically decreasing. This is due to the fact that our algorithm is a greedy optimization 
method. 

In the last step, we used the algorithm of Section 4.2 to specify the weights of selected prototypes. In 
this step, the weights of features are assumed to be fixed and set to the values specified by the feature-
weighting algorithm. Table 7 gives the classification results when the instance weighting algorithm is 
applied for 3 iterations. Comparing the results of Tables 6 and 7, we observe that the average cost is 
further reduced from 0.2309 to 0.1967 (14.8% relative improvement).   

The number of prototypes is reduced from 3314 to 236. This is because our instance-weighting 
algorithm removes redundant prototypes (and noisy instances) by setting their weights to zero. The 
reduction of prototypes can significantly reduce the classification time which is an important issue in on-
line intrusion detection systems. 

In Table 8, a summary of the results obtained at various stages of our experiments is presented. In 
this table we report the number of stored instances (i.e. prototypes) for classifying test data, the number of 
features used and the CPE. 
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Table  7. NN classification results on KDD99 data after the application of  
                   feature-weighting and prototype-weighting algorithms 

 

Confusion matrix 
Predicted class 

 LOO classification of training data Test results 

A
ct

ua
l c

la
ss

 

nPts=236 Normal DOS U2R R2L Probe %Correct Normal DOS U2R R2L Probe %Correct 

Normal 87815 3 1 6 6 99.9818 60217 67 5 20 284 99.3795 
DOS 3 54448 0 0 121 99.7728 5359 224007 0 0 487 97.4566 
U2R 3 0 49 0 0 94.2308 157 0 44 9 18 19.2982 
R2L 12 1 2 984 0 98.4985 8879 0 146 1279 5885 7.9004 

Probe 10 4 1 1 2115 99.2492 243 576 4 1 3342 80.2208 
 CPE=0. 0016 CPE=0. 1967 

 
 

Table 8. Summary of the NN results obtained on KDD99 at different stages 
 

Stage no. of 
prototypes 

no. of 
features 

train 
CPE  

test 
CPE  

Using the KDD full training set (duplicate instances removed) 145585 41 0.0018 0.2484 
Using the prototype subset 3314 41 0.0039 0.2480 
After application of the feature-weighting algorithm 3314 30 0.0027 0.2309 
After application of feature & prototype-weighting algorithms 236 30 0.0016 0.1967 
 

To evaluate the effectiveness of our algorithms, we compared the results with other basic and major 
methods in Table 9. In [66] a feature selection method is proposed for LSSVM, which uses a least square 
cost function and RBF kernel. Although the interpretability of the system is good, its improvement is due 
to sampling the dataset. Moreover, LSSVM perform binary classification and lead to high computation 
demand as the number of attack types increases. 

 
Table  9. Comparison of the results with other major methods 

 
Method CPE  Method CPE 
1-NN 0.2523  Multi-classifier [61] 0.2285 
5-NN 0.2459  MOGFIDS [62] 0.2317 
C4.5 0.2426  XCSR [63] 0.2660 
SVM 0.2474  ESC-IDS [64] 0.1579 

PNrule [65] 0.2371  PLSSVM [66] 0.1807 
KDD Cup Runner up [67] 0.2356    

KDD Cup Winner [44] 0.2331  The proposed method 0.1967 
 

In [64] a neuro-fuzzy classifier was proposed. Different ANFIS networks are used for different 
intrusion classes. They have also used subtractive clustering to determine the number of rules and initial 
locations for membership functions. At last, a genetic algorithm is used to optimize the system. Even 
though using fuzzy rules has a good comprehensibility, tuning the membership functions and using a 
complex decision making engine decrease the interpretability of the system in comparison to the size of 
our prototype set. Moreover, training several ANFIS networks and using genetic algorithm leads to heavy 
computational challenges. XCSR [63] is also a rule based system which uses GA to generate new rules. 
Finally, MOGFIDS fuzzy rule-based system is evolved from an agent based evolutionary framework and 
can act as a genetic feature selection wrapper [62]. 

Overall, our proposed method could reduce the CPE from 0.2523 (using original training set and NN 
algorithm) to 0.1967. This is a 22% relative improvement, which is quite significant in the KDD99 cost-
sensitive classification problem. 
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Fig. 7. The CPE on train data during the application of the feature-weighting algorithm (the first pass) 

     
6. CONCLUSION 

 
In this paper, we proposed a method of adapting the nearest neighbor classifier for cost-sensitive 
problems. For this purpose, the distance function was defined in a parametric form. The free parameters of 
the distance function (weights of features and instances) are used for tuning the NN classifier for cost 
sensitive problems. Using the given cost matrix, the proposed feature and instance weighting algorithms 
attempt to minimize the average cost in leave-one-out classification of the training data. 

Using KDD99 intrusion detection dataset, we showed that the scheme is successful in reducing the 
average cost of classification on previously unseen data. Apart from this, the scheme removes redundant 
features and instances by setting their weights to zero. In other words, the scheme not only reduces the 
average cost of classification in comparison with basic NN, but also it can significantly improve the 
classification time of basic NN by removing redundant features and instances. 
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