http://www.shirazu.ac.ir/en

Characterizations of semigroups by the properties of their $(\in_{v}, \in_{v} \lor q_{\delta})$ -fuzzy ideals

M. Shabir and M. Ali*

Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan E-mail: mshabirbhatti@yahoo.co.uk & umaidali@yahoo.com

Abstract

Generalizing the notions of $(\in, \in \lor q)$ -fuzzy left (right) ideal, $(\in, \in \lor q)$ -fuzzy quasi-ideal, and $(\in, \in \lor q)$ -fuzzy bi-ideal, the notions of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal, $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal and $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of semigroups are defined. Regular, intra regular and semisimple semigroups are characterized by the properties of these fuzzy ideals.

Keywords: $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal; $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal; $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal; regular semigroups; intra regular semigroups; semisimple semigroups

1. Introduction

Many researchers used the concept of fuzzy set, introduced by Zadeh [1] in 1965, to generalize some of the notions of algebra. Rosenfeld [2] laid the foundations of fuzzy algebra in 1971. He introduced the notion of fuzzy subgroup (subgroupoid) of a group (groupoid). Kuroki [3, 4] initiated the study of fuzzy semigroups. Bhakat and Das [5, 6] used the "belongs to" relation and "quasicoincidence with" relation, given in [7, 8], and defined $(\in, \in \lor q)$ -fuzzy subgroups which are generalizations of Rosenfeld fuzzy subgroups. Many authors applied this idea to define $(\in, \in \lor q)$ -fuzzy substructures of different algebraic structures (see [9-20]). Generalizing the concept of the quasi-coincidence of a fuzzy point with a fuzzy set, Jun [21] defined $(\in, \in \lor q_k)$ -fuzzy subalgebras in BCK/ BCI-algebras. In [22] Shabir et al. characterized semigroups by the properties of $(\in, \in \lor q_k)$ -fuzzy ideals, $(\in, \in \lor q_k)$ -fuzzy quasiideals and $(\in, \in \lor q_k)$ -fuzzy bi-ideals. Recently, Shabir and Rehman [23], studied $(\in, \in \lor q_k)$ -fuzzy ideals of ternary semigroups. In this paper, generalizing the notions of $(\in, \in \lor q)$ -fuzzy left

*Corresponding author Received: 26 March 2012 / Accepted: 3 July 2012 (right) ideal, $(\in, \in \lor q)$ -fuzzy quasi-ideal, and $(\in, \in \lor q)$ -fuzzy bi-ideal, the notions of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal, $(\in_{\nu}, \in_{\nu} \lor q_{\delta})$ -fuzzy quasi-ideal and $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of semigroup are defined. Also, regular, intra regular, and semisimple semigroups are characterized by the properties of these fuzzy ideals.

2. Preliminaries

An algebraic system (S,.) consisting of a nonempty set S together with an associative binary operation "." is called a semigroup. A non-empty subset A of a semigroup S is called a subsemigroup of S if $ab \in A$ for all $a, b \in A$, that is $A^2 \subseteq A$. A non-empty subset A of a semigroup S is called a left (right) ideal of S if $sa \in A$ ($as \in A$) for all $a \in A$ and $s \in S$. Ais called a two sided ideal or simply an ideal of Sif it is both a left ideal and a right ideal of S. A non-empty subset Q of a semigroup S is called a quasi-ideal of S if $QS \cap SQ \subseteq Q$. A subsemigroup B of a semigroup S is called a biideal of S if $BSB \subseteq B$. A non-empty subset B of a semigroup S is called a generalized bi-ideal of S if $BSB \subseteq B$. A non-empty subset I of a semigroup S is called an interior ideal of S if $SIS \subseteq S$. Every ideal of a semigroup S is an interior ideal of S but the converse is not true. Every left (right) ideal of a semigroup S is a quasi-ideal. Every quasi-ideal is a bi-ideal and every bi-ideal is a generalized bi-ideal of S. But the converse is not true.

A semigroup *S* is called regular if for each $x \in S$ there exists $a \in S$ such that x = xax. A semigroup *S* is called intra regular if for each $x \in S$ there exist $a, b \in S$ such that $x = ax^2b$. In general, neither regular semigroup is intra regular nor is intra regular semigroup regular. But in commutative semigroups both the concepts coincide. A semigroup *S* is called semisimple if every ideal of *S* is idempotent. It is clear that *S* is semisimple if and only if $x \in (SxS)(SxS)$ for every $x \in S$, that is there exist $a, b, c \in S$ such that x = axbxc. In general, every regular semigroup is semisimple but the converse is not true. However in a commutative semigroup both the concepts coincide.

The following results are well known.

2.1. Theorem The following assertions for a semigroup S are equivalent.

(1) S is regular.

(2) $RL = R \cap L$ for every right ideal R and left ideal L of S.

(3) Q = QSQ for every quasi-ideal Q of S.

2.2. Theorem The following assertions for a semigroup S are equivalent.

(1) S is intra regular.

(2) $R \cap L \subseteq LR$ for every right ideal R and left ideal L of S.

2.3. Theorem The following assertions for a semigroup S are equivalent.

(1) S is both regular and intra regular.

(2) Every quasi-ideal of S is idempotent.

(3) Every bi-ideal of S is idempotent.

A fuzzy subset f of a set X is a function from X into the unit closed interval [0,1], that is $f : X \rightarrow [0,1]$. If f and g are fuzzy subsets

of X, then $f \leq g$ means that $f(x) \leq g(x)$ for all $x \in X$. The fuzzy subsets $f \wedge g$ and $f \vee g$ of X are defined as $(f \wedge g)(x) = f(x) \wedge g(x)$ and $(f \vee g)(x) = f(x) \vee g(x)$ for all $x \in X$. If $\{f_i\}_{i \in I}$ is a family of fuzzy subsets of X, then $\bigwedge f_i$ and $\bigvee f_i$ are fuzzy subsets of X defined by $(\bigwedge_{i \in I} f_i)(x) = \inf\{f_i(x)\}_{i \in I}$ and $(\bigvee_{i \in I} f_i)(x) = \sup\{f_i(x)\}_{i \in I}$

for all $x \in X$.

Let f be a fuzzy subset of X and $t \in (0,1]$. Then

$$U(f;t) = \{x \in S : f(x) \ge t\}$$

is called the level subset of f.

A fuzzy subset f of X of the form

$$f(a)\begin{cases} t \neq 0 \text{ if } a = x\\ 0 \text{ otherwise} \end{cases}$$

is called a fuzzy point with support x and value tand is denoted by x_t .

A fuzzy point x_t "belongs to" (resp. "quasicoincident with") a fuzzy set f, written as $x_t \in f$ (resp. x_tqf) if $f(x) \ge t$ (resp. f(x)+t>1) (cf. [8]). If $x_t \in f$ or x_tqf , then we write $x_t \in \lor qf$. If $x_t \in f$ and x_tqf then we write $x_t \in \land qf$. If f(x) < t (resp. $f(x)+t \le 1$), then we say that $x_t \in f$ (resp. $x_t qf$). Similarly $\overline{\in \lor q}$ (resp. $\overline{\in \land q}$) means that $\in \lor q$ (resp. $\in \land q$) does not hold.

Let $\gamma, \delta \in [0,1]$ be such that $\gamma < \delta$. For a fuzzy point x_t and a fuzzy subset f of X, we say

(1)
$$x_t \in_{\gamma} f$$
 if $f(x) \ge t > \gamma$.

- (2) $x_t q_{\delta} f$ if $f(x) + t > 2\delta$.
- (3) $x_t \in_{\gamma} \lor q_{\delta} f$ if $x_t \in_{\gamma} f$ or $x_t q_{\delta} f$.
- (4) $x_t \in_{\gamma} \land q_{\delta} f$ if $x_t \in_{\gamma} f$ and $x_t q_{\delta} f$.

(5) $x_t \alpha f$ if $x_t \alpha f$ does not hold for $\alpha \in \{ \in_{\gamma}, q_{\delta}, \in_{\gamma} \lor q_{\delta}, \in_{\gamma} \land q_{\delta} \}.$

Let f and g be fuzzy subsets of a semigroup S. Then their product fg is a fuzzy subset of S

defined by

 $(fg)(x) = \begin{cases} \bigvee_{x = yz} \{f(y) \land g(z)\} \text{ if } x \text{ is expressible as } x = yz \text{ for some } y, z \in S \\ 0 \text{ otherwise.} \end{cases}$

3. (α, β) -fuzzy ideals

Throughout the remaining paper $\gamma, \delta \in [0,1]$, where $\gamma < \delta \cdot \alpha, \beta \in \{\in_{\gamma}, q_{\delta}, \in_{\gamma} \lor q_{\delta}, \in_{\gamma} \land q_{\delta}\}$ and $\alpha \neq \in_{\gamma} \land q_{\delta}$.

Let f be a fuzzy subset of a semigroup S such that $f(x) \leq \delta$. Let $x \in S$ and $t \in [0,1]$ be such that $x_t \in_{\gamma} \land q_{\delta} f$. Then $f(x) \geq t > \gamma$ and $f(x)+t > 2\delta$. It follows that $2\delta < f(x)+t \leq f(x)+f(x) = 2f(x)$, that is $f(x) > \delta$. This means that $\{x_t : x_t \in_{\gamma} \land q_{\delta} f\} = \phi$. Therefore we are not taking $\alpha = \in_{\gamma} \land q_{\delta}$.

3.1. Definition A fuzzy subset f of a semigroup S is called an (α, β) -fuzzy subsemigroup of S, if it satisfies

(F1) $x_t \alpha f$ and $y_r \alpha f \Longrightarrow (xy)_{\min\{t,r\}} \beta f$ for all $x, y \in S$ and $t, r \in (\gamma, 1]$.

3.2. Definition A fuzzy subset f of a semigroup S is called an (α, β) -fuzzy left (right) ideal of S, if it satisfies

(F2) $x_t \alpha f \Rightarrow (yx)_t \beta f$ (resp. $(xy)_t \beta f$) for all $x, y \in S$ and $t \in (\gamma, 1]$.

A fuzzy subset f of a semigroup S is called an (α, β) -fuzzy ideal of S, if it is both (α, β) -fuzzy left ideal and (α, β) -fuzzy right ideal of S.

3.3. Definition A fuzzy subset f of a semigroup S is called an (α, β) -fuzzy interior ideal of S, if it satisfies

(F3) $x_t \alpha f \implies (yxz)_t \beta f$ for all $x, y, z \in S$ and $t \in (\gamma, 1]$.

3.4. Definition A fuzzy subset f of a semigroup S is called an (α, β) -fuzzy generalized bi-ideal of S, if it satisfies

(F4) $x_t \alpha f$ and $y_r \alpha f \Rightarrow (xzy)_{\min\{t,r\}} \beta f$ for

all $x, y, z \in S$ and $t, r \in (\gamma, 1]$.

3.5. Definition A fuzzy subset f of a semigroup S is called an (α, β) -fuzzy bi-ideal of S, if it satisfies conditions (F1) and (F4).

3.6. Theorem Let $2\delta = 1 + \gamma$ and f be an (α, β) -fuzzy subsemigroup of S. Then $f_{\gamma} = \{x \in S : f(x) > \gamma\}$ is a subsemigroup of S.

Proof: Let $x, y \in f_{\gamma}$. Then $f(x) > \gamma$ and $f(y) > \gamma$. Suppose that $f(xy) \le \gamma$. If $\alpha \in \{ \in_{\scriptscriptstyle \gamma}, \in_{\scriptscriptstyle \gamma} \lor q_{\delta} \}, \text{ then } x_{f(x)} \alpha f \text{ and } y_{f(x)} \alpha f$ $(xy)_{\min\{f(x),f(y)\}}\overline{\beta}f$ every for $\beta \in \{ \in_{\gamma}, q_{\delta}, \in_{\gamma} \lor q_{\delta}, \in_{\gamma} \land q_{\delta} \}$ (because $f(xy) \le \gamma < \min$ $\{f(x), f(y)\},$ so $(xy)_{\min\{f(x), f(y)\}} \in f$ and $f(xy) + \min\{f(x), f(y)\} \le \gamma + \min\{f(x), f(y)\} \le \gamma + 1 = 2\delta$ so $(xy)_{\min\{f(x), f(y)\}}q_{\delta}f$), a contradiction. Hence $f(xy) > \gamma$, that is $xy \in f_{\gamma}$. If $\alpha = q_{\delta}$ then $x_1q_{\delta}f$ and $y_1q_{\delta}f$ (because $f(x) + 1 > 1 + \gamma = 2\delta$ and $f(y) + 1 > 1 + \gamma = 2\delta$). But $(xy)_1\beta f$ for every $\beta \in \{ \in_{\gamma}, q_{\delta}, \in_{\gamma} \lor q_{\delta}, \in_{\gamma} \land q_{\delta} \}$ (because $f(xy) \le \gamma$, so $(xy)_1 \in f$ and $f(xy) + 1 \leq \gamma + 1 = 2\delta$, so $(xy)_1 q_{\delta} f$), a contradiction. Hence $f(xy) > \gamma$, that is $xy \in f_{\gamma}$. This shows that f_{γ} is a subsemigroup of *S* .

3.7. Theorem Let $2\delta = 1 + \gamma$ and f be an (α, β) -fuzzy left (right) ideal of S. Then $f_{\gamma} = \{x \in S : f(x) > \gamma\}$ is a left (right) ideal of S.

Proof: The proof is similar to the proof of Theorem 3.6.

3.8. Theorem (1) Let $2\delta = 1 + \gamma$ and f be an (α, β) -fuzzy generalized bi-ideal of S. Then f_{γ} is a generalized bi-ideal of S.

(2) Let $2\delta = 1 + \gamma$ and f be an (α, β) -fuzzy bi-ideal of S. Then f_{γ} is a bi-ideal of S.

(3) Let $2\delta = 1 + \gamma$ and f be an (α, β) -fuzzy

interior ideal of S . Then f_γ is an interior ideal of S .

Proof: The proof is similar to the proof of Theorem 3.6.

3.9. Theorem Let $2\delta = 1 + \gamma$ and A be a nonempty subset of S. Then A is a subsemigroup of S if and only if the fuzzy subset f of S defined by

$$f(x) = \begin{cases} \geq \delta \text{ if } x \in A \\ \leq \gamma \text{ otherwise} \end{cases}$$

is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S.

Proof: Let A be a subsemigroup of S.

(1) Let $x, y \in S$ and $t, r \in (\gamma, 1]$ be such that $x_t \in_{\gamma} f, y_r \in_{\gamma} f$. Then $f(x) \ge t > \gamma$ and $f(y) \ge r > \gamma$. Thus $x, y \in A$ and so $xy \in A$, that is $f(xy) \ge \delta$. If $\min\{t, r\} \le \delta$, then $f(xy) \ge \delta \ge \min\{t, r\} > \gamma$. This implies $(xy)_{\min\{t, r\}} \in_{\gamma} f$. If $\min\{t, r\} > \delta$, then $f(xy) + \min\{t, r\} > \delta + \delta = 2\delta$. This implies $(xy)_{\min\{t, r\}} q_{\delta}f$. Hence f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy subsemigroup of S.

(2) Let $x, y \in S$ and $t, r \in (\gamma, 1]$ be such that $x_t q_{\delta} f, y_r q_{\delta} f$. Then $f(x) + t > 2\delta$ and $f(y) + r > 2\delta$. This implies $f(x) > 2\delta - t \ge 2\delta - 1 = \gamma$ and $f(y) > 2\delta - r \ge 2\delta - 1 = \gamma$. Thus $x, y \in A$ and so $xy \in A$. This implies $f(xy) \ge \delta$. Now if $\min\{t, r\} \le \delta$, then $f(xy) \ge \delta \ge \min\{t, r\} > \gamma$, so $(xy)_{\min\{t, r\}} \in f$. If $\min\{t, r\} > \delta$, then $f(xy) + \min\{t, r\} > \delta + \delta = 2\delta$. Thus $(xy)_{\min\{t, r\}} q_{\delta} f$. Hence f is a $(q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S.

(3) Let $x, y \in S$ and $t, r \in (\gamma, 1]$ be such that $x_t \in_{\gamma} f$ and $y_r q_{\delta} f$. Then $f(x) \ge t > \gamma$ and $f(y)+r>2\delta$. Thus $f(y)+r>2\delta \Rightarrow f(y)>2\delta-r\ge 2\delta-1=\gamma$. This implies $x, y \in A$ and so $xy \in A$. Analogous to (1) and (2) we obtain $(xy)_{\min\{t,r\}} \in_{\gamma} \lor q_{\delta} f$, that is f is an $(\in_{\gamma} \lor q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S.

Conversely, assume that f is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S. Then $A = f_{\gamma}$. It follows from Theorem 3.6 that A is a subsemigroup of S.

3.10. Corollary Let $2\delta = 1 + \gamma$ and A be a nonempty subset of S. Then A is a subsemigroup of S if and only if χ_A , the characteristic function of A is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S. Similarly we can prove the following theorem.

3.11 Theorem Let $2\delta = 1 + \gamma$ and A be a nonempty subset of S. Define a fuzzy subset f of S as

$$f(x) = \begin{cases} \geq \delta \text{ if } x \in A \\ \leq \gamma \text{ otherwise} \end{cases}$$

Then

(1) f is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of S if and only if A is a left (right) ideal of S.

(2) f is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized biideal (bi-ideal) of S if and only if A is a generalized bi-ideal (bi-ideal) of S.

(3) f is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of S if and only if A is an interior ideal of S.

3.12. Corollary (1) Let $2\delta = 1 + \gamma$ and A be a non-empty subset of S. Then A is a left (right) ideal of S if and only if χ_A , the characteristic function of A is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of S.

(2) Let $2\delta = 1 + \gamma$ and A be a non-empty subset of S. Then A is a generalized bi-ideal (bi-ideal) of S if and only if χ_A , the characteristic function of A is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized biideal (bi-ideal) of S.

(3) Let $2\delta = 1 + \gamma$ and A be a non-empty subset of S. Then A is an interior ideal of S if and only if χ_A , the characteristic function of A is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of S.

It is easy to see that each (α, β) -fuzzy subsemigroup (left ideal, right ideal, generalized biideal, bi-ideal, interior ideal) of S is an $(\alpha, \in \lor q)$ -fuzzy subsemigroup (left ideal, right ideal, generalized bi-ideal, bi-ideal, interior ideal) of S.

The following example shows that the converse is not true.

3.13	Example	Consider	the	semigroup
$S = \{$	a,b,c,d			

	a	b	С	d
а	а	а	а	а
b	а	а	а	а
С	а	а	b	a
d	а	а	b	b

Define a fuzzy subset f of S as follows

f(a) = 0.5, f(b) = 0.4, f(c) = 0.6 and f(d) = 0.3.

Thus

$$U(f;t) = \begin{cases} S & \text{if } 0 < t \le 0.3 \\ \{a,b,c\} & \text{if } 0.3 < t \le 0.4 \\ \{a,c\} & \text{if } 0.4 < t \le 0.5 \\ \{c\} & \text{if } 0.5 < t \le 0.6 \\ \varphi & \text{if } 0.6 < t \end{cases}$$

Then

(1) f is an $(\in_0, \in_0 \lor q_{0.4})$ -fuzzy ideal of S. (2) f is not an (\in_0, \in_0) -fuzzy ideal of S, because $c_{0.5} \in_0 f$ but $(cc)_{0.5} \in_0 f$. (3) f is not an $(\in_0, q_{0.4})$ -fuzzy ideal of S, because $c_{0.25} \in_0 f$ but $(cc)_{0.25} \overline{q_{0.4}} f$.

3.14. Theorem (1) Every $(\in_{\gamma} \lor q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S.

(2) Every $(\in_{\gamma} \lor q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of S.

(3) Every $(\in_{\gamma} \lor q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal (bi-ideal) of *S* is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal (bi-ideal) of *S*.

(4) Every $(\in_{\gamma} \lor q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal

of S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of S.

Proof: The proof follows from the fact that if $x_t \in_{\gamma} f$ then $x_t \in_{\gamma} \lor q_{\delta} f$.

3.15 Theorem (1) Every $(q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S.

(2) Every (q_δ, ∈_γ ∨ q_δ)-fuzzy left (right) ideal of
 S is an (∈_γ, ∈_γ ∨ q_δ)-fuzzy left (right) ideal of
 S.

(3) Every $(q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal (bi-ideal) of *S* is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal (bi-ideal) of *S*.

(4) Every $(q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of Sis an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of S.

Proof: We prove only (1). Proofs of (2), (3) and (4) are similar to the proof of (1).

Let f be a $(q_{\delta}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S. Let $x, y \in S$ and $t, r \in (\gamma, 1]$ be such that $x_t \in_{\gamma} f, y_r \in_{\gamma} f$. Then $f(x) \ge t > \gamma$ and $f(y) \ge r > \gamma$. Suppose $(xy)_{\min\{t,r\}} \in_{\gamma} \lor q_{\delta}$ then $f(xy) < \min\{t,r\}$ and $f(xy) + \min\{t,r\} \le 2\delta \Rightarrow f(xy) < \delta$. Now $\max\{f(xy), \gamma\} < \min\{f(x), f(y), \delta\}$. Then select an $s \in (\gamma, 1]$ such that

$$2\delta - \max\{f(xy), \gamma\} > s \ge 2\delta - \min\{f(x), f(y), \delta\}$$

$$\Rightarrow 2\delta - f(xy) \ge 2\delta - \max\{f(xy), \gamma\}$$

$$> s \ge \max\{2\delta - f(x), 2\delta - f(y), \delta\}$$

$$\Rightarrow f(x) + s \ge 2\delta, f(y) + s \ge 2\delta$$

and $f(xy) + s < 2\delta$ and $f(xy) < \delta < s$. Hence $x_s q_{\delta} f, y_s q_{\delta} f$ but $(xy)_s \overline{\in_{\gamma} \lor q_{\delta}} f$. This is a contradiction. Hence $(xy)_{\min\{t,r\}} \in_{\gamma} \lor q_{\delta} f$, that is f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S.

The above discussion shows that every (α, β) -fuzzy subsemigroup (left ideal, right ideal, generalized bi-ideal, bi-ideal, interior ideal) of a semigroup S is an $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy

subsemigroup (left ideal, right ideal, generalized biideal, bi-ideal, interior ideal) of S. Also every $(\alpha, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup (left ideal, right ideal, generalized bi-ideal, bi-ideal, interior ideal) of a semigroup S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup (left ideal, right ideal, generalized biideal, bi-ideal, interior ideal) of S. Thus in the theory of (α, β) -fuzzy subsemigroups (left ideals, right ideals, generalized bi-ideals, bi-ideals, interior ideals) of S, $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroups (left ideals, right ideals, generalized bi-ideals, biideals, interior ideals) play a central role.

4. $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideals

We start this section with the following theorem.

4.1. Theorem For any fuzzy subset f of a semigroup S and for all $x, y, z \in S$ and $t, r \in (\gamma, 1]$ (1*a*) is equivalent to (1*b*), (2*a*) is equivalent to (2*b*), (3*a*) is equivalent to (3*b*) and (4*a*) is equivalent to (4*b*), where (1*a*) $x_t, y_r \in_{\gamma} f \Rightarrow (xy)_{\min\{t,r\}} \in_{\gamma} \lor q_{\delta} f$. (1b) max{ $f(xy), \gamma$ } $\ge \min\{f(x), f(y), \delta\}$. (2*a*) $x_t \in_{\gamma} f \Rightarrow (yx)_t \in_{\gamma} \lor q_{\delta} f$ ((*xy*)_t $\in_{\gamma} \lor q_{\delta} f$). (2*b*) max{ $f(yx), \gamma$ } $\ge \min\{f(x), \delta\}$ (max{ $f(xy), \gamma$ } $\ge \min\{f(x), \delta\}$. (3*a*) $x_t, y_r \in_{\gamma} f \Rightarrow (xzy)_{\min\{t,r\}} \in_{\gamma} \lor q_{\delta} f$. (3*b*) max{ $f(xzy), \gamma$ } $\ge \min\{f(x), f(y), \delta\}$. (4*a*) $x_t \in_{\gamma} f \Rightarrow (yxz)_t \in_{\gamma} \lor q_{\delta} f$. (4*b*) max{ $f(yzz), \gamma$ } $\ge \min\{f(x), \delta\}$.

Proof: We prove only $(1a) \Leftrightarrow (1b)$. Proofs of the remaining parts are similar to this.

 $\begin{array}{ll} (1a) \Rightarrow (1b) \ \text{Let} \ f \ \text{be a fuzzy subset of} \ S \ \text{which} \\ \text{satisfies} & (1a). \ \text{Let} \ x, y \in S \ \text{be such that} \\ \max\{f(xy),\gamma\} < \min\{f(x), f(y),\delta\}. \ \text{Select} \ t \in (\gamma, 1] \\ \text{such that} \ \max\{f(xy),\gamma\} < t \leq \min\{f(x), f(y),\delta\}. \\ \text{Then} \ f(x) \geq t > \gamma, f(y) \geq t > \gamma, f(xy) < t \ \text{and} \\ f(xy) + t < \delta + \delta = 2\delta, \ \text{that is} \ x_t \in_{\gamma} f, y_t \in_{\gamma} f \\ \text{but} \ (xy)_t \overleftarrow{\in_{\gamma}} \lor q_{\delta} f. \\ \text{Which is a contradiction.} \\ \text{Hence} \ \max\{f(xy),\gamma\} \geq \min\{f(x), f(y),\delta\}. \\ (1b) \Rightarrow (1a) \ \text{Let} \ f \ \text{be a fuzzy subset of} \ S \\ \text{which satisfies} \ (1b). \ \text{Let} \ x, y \in S \ \text{and} \end{array}$

 $t, r \in (\gamma, 1]$ be such that $x_t \in_{\gamma} f, y_r \in_{\gamma} f$ but $(xy)_{\min\{t,r\}} \overline{\in_{\gamma} \lor q_{\delta}} f$. Then

$$f(x) \ge t > \gamma \tag{1}$$

 $f(y) \ge r > \gamma \tag{2}$

$$f(xy) < \min\{t, r\}$$
(3)

and
$$f(xy) + \min\{t, r\} \le 2\delta$$
 (4).

It follows from (3) and (4) that $f(xy) < \delta$. Now $\max\{f(xy), \gamma\} < \delta$ and $\max\{f(xy), \gamma\} < \min\{f(x), f(y)\}$. Thus $\max\{f(xy), \gamma\} < \min\{f(x), f(y), \delta\}$. Which is a contradiction. Hence $(xy)_{\min\{t,r\}} \in_{\gamma} \lor q_{\delta}f$. From the above theorem we deduce that

4.2. Definition A fuzzy subset f of a semigroup S is called an

• $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S if it satisfies (1b).

• $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of S if it satisfies (2b).

• $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal of *S* if it satisfies (3*b*).

• $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of *S* if it satisfies (1*b*) and (3*b*).

• $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of S if it satisfies (4b).

4.3. Definition Let f be a fuzzy subset of a semigroup S. We define

$$\begin{split} f_r &= \{x \in S \ : \ x_r \in_{\gamma} f\} = \{x \in S \ : \ f(x) \ge r > \gamma\} = U(f;r) \cdot \\ f_r^{\delta} &= \{x \in S \ : \ x_r q_{\delta} f\} = \{x \in S \ : \ f(x) + r > 2\delta\} \cdot \\ [f]_r^{\delta} &= \{x \in S \ : \ x_r \in_{\gamma} \lor q_{\delta} f\} = f_r \cup f_r^{\delta} \quad \text{for} \\ \text{all } r \in (\gamma, 1] \,. \end{split}$$

4.4. Theorem Let f be a fuzzy subset of a semigroup S. Then

(1) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S if and only if $U(f;t) \neq \phi$ is a subsemigroup of S for all $t \in (\gamma, \delta]$.

(2) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of S if and only if $U(f;t)(\neq \phi)$ is a left (right) ideal of S for all $t \in (\gamma, \delta]$. (3) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized biideal (bi-ideal) of S if and only if $U(f;t)(\neq \phi)$ is a generalized bi-ideal (bi-ideal) of S for all $t \in (\gamma, \delta]$.

(4) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of S if and only if $U(f;t) \neq \phi$ is a interior ideal of S for all $t \in (\gamma, \delta]$.

Proof: (1) Let f be an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S and $x, y \in U(f;t)$ for some $t \in (\gamma, \delta]$. Then $f(x) \ge t$ and $f(y) \ge t$. By hypothesis $\max\{f(xy), \gamma\} \ge \min\{f(x), f(y), \delta\} \ge \min\{t, \delta\} = t \Rightarrow f(xy) \ge t$. Hence $xy \in U(f;t)$, that is U(f;t) is a subsemigroup of S.

Conversely, assume that $U(f;t) \neq \phi$ is a subsemigroup of S for all $t \in (\gamma, \delta]$. Suppose there exist $x, y \in S$ such that that $\max\{f(xy), \gamma\} < \min\{f(x), f(y), \delta\}.$ Choose $t \in (\gamma, \delta]$ such that $\max\{f(xy), \gamma\} < t \le \min\{f(x), f(y), \delta\}$. $f(x) \ge t$, $f(y) \ge t$ This implies and f(xy) < t, that is $x, y \in U(f;t)$ but $xy \notin U(f;t)$ which is a contradiction. Hence $\max{f(xy), \gamma} \ge \min{f(x), f(y), \delta}$, that is f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S. Similarly we can prove (2), (3) and (4).

From the above Theorem it follows that

(1) Every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal of a semigroup S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of S.

(2) Every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of a semigroup S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal ideal of S.

(3) Every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of a semigroup S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal of S.

4.5. Theorem Let f be a fuzzy subset of a semigroup S and $2\delta = 1 + \gamma$. Then

(1) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S if and only if $f_r^{\delta} \neq \phi$ is a subsemigroup of S for all $r \in (\gamma, \delta]$

(2) f is an (∈_γ, ∈_γ ∨ q_δ)-fuzzy left(right) ideal of S if and only if f^δ_r (≠ φ) is a left(right) ideal of S for all r ∈ (γ, δ]

(3) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized biideal (bi-ideal) of S if and only if $f_{r}^{\delta} (\neq \phi)$ is a generalized bi-ideal (bi-ideal) of S for all $r \in (\gamma, \delta]$

(4) f is an (∈_γ, ∈_γ ∨q_δ)-fuzzy interior ideal of
 S if and only if f^δ_r(≠φ) is an interior ideal of
 S for all r∈(γ,δ]

Proof: (1) Suppose f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S and $x, y \in f_r^{\delta}$. Then $x_r, y_r q_{\delta} f$, that is $f(x) + r > 2\delta$ and $f(y) + r > 2\delta \Longrightarrow f(x) > 2\delta - r \ge 2\delta - 1 = \gamma$ and similarly $f(y) > \gamma$. By hypothesis $\max\{f(xy), \gamma\} \ge \min\{f(x), f(y), \delta\}$ $\Rightarrow f(xy) \ge \min\{f(x), f(y), \delta\}$ $\Rightarrow f(xy) > \min\{2\delta - r, 2\delta - r, \delta\}.$ Since $r \in (\gamma, \delta]$, $\delta < r \le 1 \Longrightarrow 2\delta - r < \delta$. Thus $f(xy) > 2\delta - r \Longrightarrow f(xy) + r > 2\delta \Longrightarrow xy \in$ $f_{\scriptscriptstyle r}^{\,\delta}$. Hence $\,f_{\scriptscriptstyle r}^{\,\delta}\,$ is a subsemigroup of $\,S$. Conversely, assume that $f_r^{\delta} \neq \phi$ is a subsemigroup of S for all $r \in (\delta, 1]$. Let $x, y \in S$ be such that $\max\{f(xy), \gamma\} < \min\{f(x), f(y), \delta\} \Longrightarrow$ $2\delta - \min\{f(x), f(y), \delta\} < 2\delta - \max\{f(xy), \gamma\}$ $\implies \max\{2\delta - f(x), 2\delta - f(y), \delta\} < \min\{2\delta - f(xy), 2\delta - \gamma\}.$ Take $r \in (\gamma, \delta]$ such that $\max\{2\delta - f(x), 2\delta - f(y), \delta\} < r \le \min\{2\delta - f(xy), 2\delta - \gamma\}.$ $2\delta - f(x) < r, 2\delta - f(y) < r$ Then and $r \leq 2\delta - f(xy) \Rightarrow$ $f(x) + r > 2\delta$ and $f(y) + r > 2\delta$ but $f(xy) + r \le 2\delta$, that is $x_r q_{\delta} f, y_r q_{\delta} f$ but $(xy)_r q_{\delta} f$. Which is a contradiction. Hence $\max\{f(xy), \gamma\} \ge \min\{f(x), f(y), \delta\}$. Similarly, we can prove the parts (2), (3) and (4).

4.6. Theorem Let f be a fuzzy subset of a semigroup S and $2\delta = 1 + \gamma$. Then

(1) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S if and only if $[f]_{r}^{\delta} (\neq \phi)$ is a subsemigroup of *S* for all $r \in (\gamma, 1]$.

(2) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left(right) ideal of S if and only if $[f]_{r}^{\delta} (\neq \phi)$ is a left(right) ideal of S for all $r \in (\gamma, 1]$.

(3) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized biideal (bi-ideal) of S if and only if $[f]_{r}^{\delta} (\neq \phi)$ is a generalized bi-ideal (bi-ideal) of S for all $r \in (\gamma, 1]$.

(4) f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of *S* if and only if $[f]_r^{\delta} (\neq \phi)$ is an interior ideal of *S* for all $r \in (\gamma, 1]$.

Proof: (1) Suppose f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S and $x, y \in [f]_{r}^{\delta}$. Then $x_{r} \in_{\gamma} \lor q_{\delta} f$ and $y_{r} \in_{\gamma} \lor q_{\delta} f$, that is $f(x) \ge r > \gamma$ or $f(x) + r > 2\delta$ and $f(y) \ge r > \gamma$ or $f(y) + r > 2\delta$. Thus $f(x) \ge r > \gamma$ or $f(x) > 2\delta - r \ge 2\delta - 1 = \gamma$ and $f(y) \ge r > \gamma$ or $f(y) > 2\delta - r \ge 2\delta - 1 = \gamma$. If $r \in (\gamma, \delta]$, then $\gamma < r \le \delta$. This implies $2\delta - r \ge \delta \ge r$. Then it follows from the above that $f(x) \ge r$ and $f(y) \ge r$. By hypothesis $\max\{f(xy), \gamma\} \ge \min\{f(x), f(y), \delta\}$ $\Rightarrow f(xy) \ge \min\{f(x), f(y), \delta\} \ge \min\{r, r, r\} = r$ and so $(xy)_{r} \in_{\gamma} f$. Thus $xy \in [f]_{r}^{\delta}$.

If $r \in (\delta, 1]$, then $\delta < r \le 1$. This implies $2\delta - r < \delta < r$. Then it follows that $f(x) > 2\delta - r$ and $f(y) > 2\delta - r$. Now by hypothesis $\max\{f(xy), \gamma\} \ge \min\{f(x), f(y), \delta\}$

 $\Rightarrow f(xy) \ge \min\{f(x), f(y), \delta\} >$

 $\min\{2\delta - r, 2\delta - r, 2\delta - r\} = 2\delta - r$

 $\Rightarrow f(xy) + r > 2\delta \Rightarrow (xy)_r q_\delta f \; .$

This implies $xy \in [f]_r^{\delta}$. Thus $[f]_r^{\delta}$ is a subsemigroup of S.

Conversely, assume that $[f]_r^{\delta}$ is a subsemigroup of *S* for all $r \in (\gamma, 1]$. Let $x, y \in S$ be such that $\max\{f(xy), \gamma\} < \min\{f(x), f(y), \delta\}$. Select $r \in (\gamma, 1]$ such that $\max\{f(xy), \gamma\} < r \le \min\{f(x), f(y), \delta\}$. Then $x_r \in_{\gamma} f, y_r \in_{\gamma} f$ but $(xy)_r \in_{\gamma} \lor q_{\delta} f$. Which contradicts our hypothesis. Hence $\max\{f(xy), \gamma\} \ge \min\{f(x), f(y), \delta\} \text{, that is}$ $f \text{ is an } (\in_{\gamma}, \in_{\gamma} \lor q_{\delta}) \text{-fuzzy subsemigroup of } S \text{.}$ Similarly, we can prove the parts (2), (3) and (4).

4.7. Theorem (1) The intersection of any family of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroups of *S* is again an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of *S*.

(2) The intersection of any family of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideals of S is again an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of S.

(3) The intersection of any family of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal (bi-ideal) of *S* is again an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal (bi-ideal) of *S*.

(4) The intersection of any family of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideals of *S* is again an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of *S*.

Proof: Straightforward.

4.8. Theorem The union of any family of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideals of *S* is again an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of *S*.

Proof: Straightforward.

4.9. Proposition Let f be an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal of S and g be an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal of S. Then fg is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal of S.

Proof: Straightforward.

Next we show that if f and g are $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideals of S, then $fg \leq f \land g$.

4.10. Example Let $S = \{a, b, c, d\}$ be a semigroup with the following multiplication table

	а	b	С	d
а	a	a	а	а
b	a	a	a	а
С	а	a	b	a
d	a	a	b	b

Define fuzzy subset f, g of S by f(a) = 0.6, f(b) = 0.3, f(c) = 0.4, f(d) = 0.1, g(a) = 0.65, g(b) = 0.3, g(c) = 0.4, g(d) = 0.2. Then

$$U(f;t) = \begin{cases} \{a,b,c,d\} \text{if } 0 < t \le 0.1 \\ \{a,b,c\} & \text{if } 0.1 < t \le 0.3 \\ \{a,c\} & \text{if } 0.3 < t \le 0.4 \\ \{a\} & \text{if } 0.4 < t \le 0.6 \\ \phi & \text{if } 0.6 < t \end{cases}$$
$$U(g;t) = \begin{cases} \{a,b,c,d\} & \text{if } 0 < t \le 0.2 \\ \{a,b,c\} & \text{if } 0.2 < t \le 0.3 \\ \{a,c\} & \text{if } 0.3 < t \le 0.4 \\ \{a\} & \text{if } 0.4 < t \le 0.65 \\ \phi & \text{if } 0.65 < t \end{cases}$$

By Theorem 4.4, f and g are $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideals of S for $\gamma = 0$ and $\delta = 0.3$. But $f_{g(b)} = \bigvee_{b=xy} \{f(x) \land g(y)\} = \lor \{0.4, 0.1, 0.1\} = 0.4 \le (f \land g)(b) = 0.3$. Hence $fg \le f \land g$ in general.

4.11. Definition Let f, g be fuzzy subsets of a semigroup S. We define the fuzzy subsets $f^*, f \wedge^* g, f \vee^* g$ and f * g of S as follows: $f^*(x) = (f(x) \vee \gamma) \wedge \delta$ $(f \wedge^* g)(x) = (((f \wedge g)(x)) \vee \gamma) \wedge \delta$ $(f \vee^* g)(x) = (((f \vee g)(x)) \vee \gamma) \wedge \delta$ $(f * g)(x) = (((fg)(x)) \vee \gamma) \wedge \delta$ for all $x \in S$.

4.12. Lemma Let f, g be fuzzy subsets of a semigroup S. Then the following hold:

(1)
$$f \wedge^{*} g = f^{*} \wedge g^{*}$$

(2) $f \vee^{*} g = f^{*} \vee g^{*}$
(3) $f * g \ge f^{*} g^{*}$.

Proof: Proofs of (1) and (2) are straightforward. (3) Let $x \in S$. If x is not expressible as x = yz for all $y, z \in S$, then $(f * g)(x) = (((fg)(x)) \vee \gamma) \wedge \delta = \gamma \wedge \delta \ge 0 = f^*g^*(x)$. Otherwise

$$(f * g)(x) = ((fg(x)) \lor \gamma) \land \delta = \left(\left(\bigvee_{x = yz} fg(x) \right) \lor \gamma \right) \land \delta$$
$$= \left(\bigvee_{x = yz} ((f(y) \lor \gamma) \land ((g(z) \lor \gamma)))) \land \delta$$
$$= \left(\bigvee_{x = yz} (\left[(f(y) \lor \gamma) \land \delta \right] \land (\left[(g(z) \lor \gamma) \land \delta \right]) \right)$$
$$= \bigvee_{x = yz} \left(f^{*}(y) \land g^{*}(z) \right) = \left(f^{*}g^{*} \right) (x)$$

4.13. Lemma Let A, B be non-empty subsets of a semigroup S. Then the following hold.

(1)
$$\chi_A \wedge \chi_B = \chi_{A \cap B}$$

(2) $\chi_A * \chi_B = \overset{*}{\chi}_{AB}$.

4.14. Theorem (1) A fuzzy subset f of a semigroup S is an (∈_γ, ∈_γ ∨ q_δ)-fuzzy subsemigroup of S if and only if f * f ≤ f*.
(2) A fuzzy subset f of a semigroup S is an

 $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal of S if and only if $f * \mathbf{S} * f \leq f^*$.

(3) A fuzzy subset f of a semigroup S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy left (right) ideal of S if and only if $\mathbf{S} * f \leq f^*$. $(f * \mathbf{S} \leq f^*)$.

(4) A fuzzy subset f of a semigroup S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of S if and only if $f * f \le f^*$ and $f * \mathbf{S} * f \le f^*$.

Where **S** is the fuzzy subset of *S* mapping every element of *S* on 1.

Proof: Straightforward.

4.15. Definition A fuzzy subset f of a semigroup S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal of S if and only if $(f * \mathbf{S}) \land (\mathbf{S} * f) \leq f^*$.

4.16. Lemma A non-empty subset A of a semigroup S is a quasi-ideal of S if and only if the characteristic function of A is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal of S. **Proof:** Straightforward.

5. Regular Semigroups

Recall that a semigroup S is regular if for each

 $x \in S$ there exists $a \in S$ such that x = xax.

5.1. Proposition In a regular semigroup S, every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal of S.

Proof: Straightforward.

5.2. Proposition In a regular semigroup *S*, every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of *S*.

Proof: Straightforward.

5.3. Theorem The following assertions are equivalent for a semigroup S:

(1) S is regular.

(2) $f \wedge g = f * g$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal g of S.

Proof: (1) \Rightarrow (2) Let f be an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal and g be an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal of S. Then by Lemma 4.12, $f * g \leq f \wedge g$.

Let $x \in S$. Then there exists $a \in S$ such that x = xax. Now

$$(f * g)(x) = \left(\left(\bigvee_{x=yz} (f(y) \land g(z)) \right) \lor \gamma \right) \land \delta$$

$$\geq \left((f(x) \land g(ax)) \lor \gamma \right) \land \delta$$

$$= \left((f(x) \land (g(ax) \lor \gamma)) \lor \gamma \right) \land \delta$$

$$\geq \left((f(x) \land (g(x) \land \delta)) \lor \gamma \right) \land \delta$$

$$= \left((f(x) \land g(x)) \lor \gamma \right) \land \delta$$

$$= \left((f(x) \land g(x)) \lor \gamma \right) \land \delta$$

Thus $f * g \ge f \land g$. Hence $f * g = f \land g$. (2) \Rightarrow (1) Let R be a right ideal and L a left ideal of S. Then χ_R and χ_L are $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ - fuzzy right and $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideals of S, respectively. By hypothesis $\chi_{R} * \chi_{L} = \chi_{R} \land \chi_{L}$. By Lemma 4.13, this implies that $\overset{*}{\chi}_{RL} = \overset{*}{\chi}_{R \cap L} \Longrightarrow RL = R \cap L$. Hence S is a regular semigroup.

5.4. Theorem The following assertions are equivalent for a semigroup S:

(1) S is regular.

 $\begin{array}{ll} \left(2\right) & f \wedge g \wedge h \leq f \ast g \ast h & \text{for every} \\ \left(\in_{\gamma}, \in_{\gamma} \lor q_{\delta}\right) \text{-fuzzy right ideal } f \text{, every} \\ \left(\in_{\gamma}, \in_{\gamma} \lor q_{\delta}\right) \text{-fuzzy generalized bi-ideal } g \text{ and} \\ \text{every } \left(\in_{\gamma}, \in_{\gamma} \lor q_{\delta}\right) \text{-fuzzy left ideal } h \text{ of } S \text{.} \end{array}$

(3) $f \wedge g \wedge h \leq f * g * h$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal f, every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal g and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal h of S.

(4) $f \wedge g \wedge h \leq f * g * h$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal f, every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal g and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal h of S.

Proof: (1) \Rightarrow (2) Let f, g, h be any $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal, $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal and $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal of S, respectively. Let $x \in S$. Then there exists $a \in S$ such that x = xax. Thus we have

$$(f * g * h)(x) = \left[\left(\left(\bigvee_{x=yz} (f(y) \land (g * h)(z)) \right) \lor \gamma \right) \land \delta \right] \\ \ge \left[\left(\left(f(xa) \land (g * h)(x) \right) \lor \gamma \right) \land \delta \right] \\ = \left[\left(\left((f(xa) \lor \gamma) \land (g * h)(x) \right) \lor \gamma \right) \land \delta \right] \\ \ge \left[\left(\left((f(x) \land \delta) \land (g * h)(x) \right) \lor \gamma \right) \land \delta \right] \\ = \left[\left(\left((f(x) \land \delta) \land (g * h)(x) \right) \lor \gamma \right) \land \delta \right] \\ \ge \left[\left(\left((f(x) \land ((g(x) \land h(z))) \lor \gamma \right) \land \delta \right) \lor \gamma \right) \land \delta \right] \\ \ge \left[\left(\left((f(x) \land ((g(x) \land h(ax)) \lor \gamma \right) \land \delta \right) \lor \gamma \right) \land \delta \right]$$

$$= \left[\left(\left(f(x) \land \left(\left(g(x) \land \left(h(ax) \lor \gamma \right) \right) \right) \land \delta \right) \lor \gamma \right) \land \delta \right] \right]$$

$$\geq \left[\left(\left(f(x) \land \left(\left(g(x) \land \left(h(x) \land \delta \right) \right) \right) \land \delta \right) \lor \gamma \right) \land \delta \right] \right]$$

$$= \left[\left(\left(f(x) \land g(x) \land h(x) \right) \lor \gamma \right) \land \delta \right]$$

$$= \left(f \stackrel{*}{\land} g \stackrel{*}{\land} h \right) (x).$$

Thus $f \wedge g \wedge h \leq f * g * h$.

 $(2) \Rightarrow (3) \Rightarrow (4)$ are straightforward.

 $(4) \Rightarrow (1)$ Let f be an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal and g be an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal of S. Since **S** is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal of S, so by hypothesis we have

$$\begin{pmatrix} f & g \\ f & g \end{pmatrix}(x) = \begin{pmatrix} f & g \\ f & g \end{pmatrix}(x) \le (f * g * g)(x) \le (f * g)(x) \ge (f * g)(x) \le (f *$$

Thus $f \wedge g = f * g$. Hence by Theorem 5.3, S is regular.

5.5. Theorem The following assertions are equivalent for a semigroup S:

(1) S is regular.

(2) $f = f * \mathbf{S} * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy generalized bi-ideal f of S.

(3) $\stackrel{*}{f} = f * \mathbf{S} * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal f of S.

(4) $\stackrel{*}{f} = f * \mathbf{S} * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal f of S.

Proof: The proof is similar to the proof of Theorem 5.4.

5.6. Theorem The following assertions are equivalent for a semigroup S:

(1) S is regular.

(2) $f \wedge g = f * g * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal g of S.

(3) $f \wedge g = f * g * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy quasi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy interior ideal g of S.

(4) $f \wedge g = f * g * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal g of S.

(5) $f \wedge g = f * g * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal g of S.

(6) $f \wedge g = f * g * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal g of S.

(7) $f \wedge g = f * g * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy generalized bi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal g of S.

Proof: The proof is similar to the proof of Theorem 5.4.

5.7. Theorem The following assertions are equivalent for a semigroup S:

(1) S is regular.

(2) $f \wedge g \leq f * g$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy quasi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy left ideal g of S.

(3) $f \wedge g \leq f * g$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal g of S.

(4) $f \wedge g \leq f * g$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy generalized bi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal g of S.

Proof: The proof is similar to the proof of Theorem 5.4.

6. Intra regular Semigroups

A semigroup S is said to be intra regular if for each $x \in S$ there exist $a, b \in S$ such that x = axxb. In general, neither regular semigroup is intra regular nor is intra regular semigroup regular. If S is commutative then both the concepts coincide.

6.1. Example Let *A* be a countably infinite set and $S = \{\alpha : A \rightarrow A : \alpha \text{ is one one and } A - \alpha(A) \text{ is infinite} \}$

Then S is a semigroup with respect to the composition of functions and is called Baer-Levi Semigroup (cf. 24). This semigroup is right cancellative, right simple without idempotents (cf. [24, Th. 8.2). Thus S is not regular but intra regular.

6.2. Example Consider the semigroup $S = \{0, 1, 2, 3, 4\}$.

_	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	1	2
2	0	1	2	0	0
3	0	0	0	3	4
4	0	3	4	0	0

This semigroup S is regular but not intra regular.

6.3. Theorem The following assertions are equivalent for a semigroup S:

(1) S is intra regular.

(2) $f \wedge g \leq f * g$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal g of S.

Proof: (1) \Rightarrow (2) Let f be an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal and g be an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal of S. Let $x \in S$. Then there exist $a, b \in S$ such that x = axxb. Now

 $(f * g)(x) = \left(\left(\bigvee_{x=yz} (f(y) \land g(z)) \right) \lor \gamma \right) \land \delta$ $\ge \left((f(ax) \land g(xb)) \lor \gamma \right) \land \delta$ $= \left(\left((f(ax) \lor \gamma) \land (g(xb) \lor \gamma) \right) \lor \gamma \right) \land \delta$ $\ge \left(\left((f(x) \land \delta) \land (g(x) \land \delta) \right) \lor \gamma \right) \land \delta$ $= \left((f(x) \land g(x)) \lor \gamma \right) \land \delta$

$$=\left(f\wedge g\right)(x).$$

Thus $f * g \ge f \land g$.

 $(2) \Rightarrow (1)$ Let R be any right ideal and L be any left ideal of S. Then χ_R and χ_L are $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right and $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy left ideals of S, respectively. By hypothesis $\chi_L * \chi_R \ge \chi_L \land \chi_R$. By Lemma 4.13, this implies that $\chi_{LR} \ge \chi_{L\cap R} \Rightarrow LR \supseteq L \cap R$. Hence S is an intra regular semigroup.

6.4. Theorem The following assertions are equivalent for a semigroup S:

(1) S is both regular and intra regular.

(2) f = f * f for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal f of S.

(3) $\overset{*}{f} = f * f$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal f of S.

(4) $f \wedge g \leq f * g$ for all $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideals f, g of S.

(5) $f \wedge g \leq f * g$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy quasi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy bi-ideal g of S.

(6) $f \wedge g \leq f * g$ for all $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideals f, g of S.

Proof: (1) \Rightarrow (6) Let f, g be $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy bi-ideals of S. Let $x \in S$. Then there exist $a, b, c \in S$ such that x = axxb and x = xcx. Thus

x = xcx = xcxcx = xc(axxb)cx = (xcax)(xbcx). Thus we have

$$(f * g)(x) = \left(\left(\bigvee_{x=yz} (f(y) \land g(z)) \right) \lor \gamma \right) \land \delta$$

$$\geq \left(\left(f(xcax) \land g(xbcx) \right) \lor \gamma \right) \land \delta$$

$$= \left(\left(\left(f(xcax) \lor \gamma \right) \land \left(g(xbcx) \lor \gamma \right) \right) \lor \gamma \right) \land \delta$$

$$\geq \left(\left(\left(f(x) \land \delta \right) \land \left(g(x) \land \delta \right) \right) \lor \gamma \right) \land \delta \\= \left(\left(f(x) \land g(x) \right) \lor \gamma \right) \land \delta \\= \left(f \overset{*}{\land} g \right) (x).$$

Thus $f * g \ge f \land g$. $(6) \Rightarrow (5) \Rightarrow (4)$ are obvious. $(4) \Rightarrow (2)$ Take f = g in (4), we get $f * f \ge f$. Since every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal of S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S, $f * f \le f$. Thus f * f = f. $(6) \Rightarrow (3)$ Take f = g in (6), we get $f * f \ge f$. Since every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy biideal of S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy subsemigroup of S, so $f * f \leq f$. Thus f * f = f. $(3) \Rightarrow (2)$ Obvious. $(2) \Rightarrow (1)$ Let Q be a quasi-ideal of S. Then χ_Q is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal of S. Hence by hypothesis $\chi_O * \chi_O = \chi_O$. This implies that $\chi_{OO} = \chi_O$, that is QQ = Q. Hence by Theorem 2.3, S is both regular and intra regular.

6.5. Theorem The following assertions are equivalent for a semigroup S:

(1) S is both regular and intra regular.

(2) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal g of S.

(3) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal g of S. (4) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal g of S. (5) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal g of S.

(6) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal g of S.

(7) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal g of S.

(8) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal g of S. (9) $f \wedge g \leq (f * g) \wedge (g * f)$ for all

(9) $f \wedge g \leq (f * g) \wedge (g * f)$ for all $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal f, g of S.

(10) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal g of S.

(11) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy quasi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal g of S.

(12) $f \wedge g \leq (f * g) \wedge (g * f)$ for all $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideals f, g of S.

(13) $f \wedge g \leq (f * g) \wedge (g * f)$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy generalized bi-ideal g of S.

(14)
$$f \wedge g \leq (f * g) \wedge (g * f)$$
 for all

 $(\in_{\scriptscriptstyle \gamma}, \in_{\scriptscriptstyle \gamma} \lor q_{\scriptscriptstyle \delta})$ -fuzzy generalized bi-ideal $\,f,g\,$ of S .

Proof: The proof is similar to the proof of Theorem 6.4.

7. Semisimple Semigroups

Recall that a semigroup *S* is semisimple if every two sided ideal of *S* is idempotent. It is clear that a semigroup *S* is semisimple if and only if $a \in (SaS)(SaS)$ for every $a \in S$, that is there exist *x*, *y*, *z*, *t* \in *S* such that a = (xay)(taz).

7.1. Theorem In a semisimple semigroup S, a fuzzy subset f of S is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal of S if and only if it is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of S.

Proof: Straightforward.

7.2. Theorem For a semigroup S the following assertions are equivalent

(1) S is semisimple.

(2) f * f = f for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal f of S.

(3) f * f = f for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal f of S.

(4) $f \wedge g = f * g$ for all $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideals f, g of S.

(5) $f \wedge g = f * g$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal g of S.

(6) $f \wedge g = f * g$ for every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy interior ideal f and every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy ideal g of S.

(7) $f \wedge g = f * g$ for all $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideals f, g of S.

Proof: $(1) \Rightarrow (7)$ Let S be a semisimple

semigroup and f, g be $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideals of S. Let $x \in S$. Then there exist $a, b, c, d \in S$ such that x = (axb)(cxd). Thus we have

$$(f * g)(x) = \left(\left(\bigvee_{x=yz} (f(y) \land g(z)) \right) \lor \gamma \right) \land \delta$$

$$\ge \left((f(axb) \land g(cxd)) \lor \gamma \right) \land \delta$$

$$= \left(\left((f(axb) \lor \gamma) \land (g(cxd) \lor \gamma) \right) \lor \gamma \right) \land \delta$$

$$\ge \left(\left((f(x) \land \delta) \land (g(x) \land \delta) \right) \lor \gamma \right) \land \delta$$

$$= \left((f(x) \land g(x)) \lor \gamma \right) \land \delta$$

$$= \left((f^* \otimes g(x)) \lor \gamma \right) \land \delta$$

Thus $f * g \ge f \land g$. Since every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy interior ideal of S in a semisimple semigroup is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal of S,

so $f * g \le f \land g$. Hence $f * g = f \land g$. $(7) \Rightarrow (6) \Rightarrow (4) \Rightarrow (2), (7) \Rightarrow (3) \Rightarrow (2)$ and $(7) \Rightarrow (5) \Rightarrow (4)$ are obvious.

 $(2) \Rightarrow (1)$ Let A be any ideal of S. Then χ_A is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal of S. Thus by hypothesis $\chi_A * \chi_A = \chi_A^*$, that is AA = A. Hence S is a semisimple semigroup.

References

- [1] Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 339-353.
- [2] Rosenfeld, A. (1971). Fuzzy Subgroups. J. Math. Anal. Appl., 35, 512-517.
- [3] Kuroki, N. (1979). Fuzzy bi-ideals in Semigroups. Comment. Math. Univ. St. Paul, 28, 17-21.
- [4] Kuroki, N. (1981). On fuzzy ideals and fuzzy biideals in semigroups. *Fuzzy Sets and Systems*, 5, 203-215.
- [5] Bhakat, S. K. & Das, P. (1992). On the definition of a fuzzy subgroup. *Fuzzy Sets and Systems*, 51, 235-241.
- [6] Bhakat, S. K. & Das, P. (1996). $(\in, \in \lor q)$ -fuzzy subgroups. *Fuzzy Sets and Systems*, 80, 359-368.
- [7] Murali, V. (2004). Fuzzy points of equivalent fuzzy subsets. *Inform. Sci.*, 158, 277-288.
- [8] Pu, P. M. & Liu, Y. M. (1980). Fuzzy topology I, neighborhood structure of a fuzzy point and Moor-Smith convergence. J. Math. Analysis Appl., 571-599.

- [9] Bhakat, S. K. (2000). $(\in, \in \lor q)$ -fuzzy normal, quasinormal and maximal subgroups. *Fuzzy Sets and Systems*, 112, 299-312.
- [10] Bhakat, S. K. & Das, P. (1996). Fuzzy subrings and ideals redefined. *Fuzzy Sets and Systems*, 81, 383-393.
- [11] Davvaz, B. (2006). $(\in, \in \lor q)$ -fuzzy subnearrings and ideals. *Soft Comput*, 10, 206-211.
- [12] Davvaz, B. & Khan, A. (2011). Characterizations of regular ordered semigroups in terms of (α, β) -fuzzy generalized bi-ideals. *Inform. Sci.*, 181, 1759-1770.
- [13] Jun, Y. B., Khan, A. & Shabir, M. (2009). Ordered Semigroups characterized by their $(\in, \in \lor q)$ -fuzzy bi-ideals. *Bull. Malays. Math. Sci. Soc.*, 32, 391-406.
- [14] Jun, Y. B. & Song, S. Z. (2006). Generalized fuzzy interior ideals in semigroups. *Inform. Sci.*, 176, 3079-3093.
- [15] Kazanci, O. & Yamak, S. Generalized fuzzy biideals of semigroup. *Soft Comput*, DOI 10.1007/s00500-008-0280-5.
- [16] Ma, X., Zhan, J. & Jun, Y. B. (2009). On $(\in, \in \lor q)$ -fuzzy filters of R0-algebras. *Math. Log. Quart.* 55, 493-508.
- [17] Jun, Y. B., Dudek, W. A., Shabir, M. & Kang, M. S. (2010). General form of (α, β) -fuzzy ideals of hemirings. *Honam Math. J.*, 32, 413-439.
- [18] Shabir, M., Jun, Y. B. & Nawaz, Y. (2009). Characterizations of regular semigroups by Semigroups (α, β) -fuzzy ideals. *Comput. Math. Appl.* 6, 1473-1493.
- [19] Rehman, N. & Shabir, M. (2012). Characterizations of ternary semigroups by (α, β) -fuzzy ideals. *World Applied Sciences Journal*, To appear.
- [20] Bhakat, S. K. (1999). $(\in \lor q)$ -level subset. *Fuzzy Sets and Systems, 103, 529-533.*
- [21] Jun, Y. B. (2009). Generalizations of $(\in, \in \lor q)$ -fuzzy subalgebras in BCK/BCI-algebras. *Comput. Math. Appl.*, 58, 1383-1390.
- [22] Shabir, M., Jun, Y. B. & Nawaz, Y. (2010). Semigroups characterized by $(\in, \in \lor q_k)$ -fuzzy ideals. *Comput. Math. Appl.*, 60, 1473-1493.
- [23] Shabir, M. & Rehman, N. (2012). Characterizations of ternary semigroups by $(\in, \in \lor q_k)$ -fuzzy ideals. *IJST*, *Trans. A*, *36*(A3).
- [24] Clifford, A. H. & Preston, G. B. (1967). *The Algebraic Theory of Semigroups. Vol. II*, American Mathematical Society.