
Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 29, No. B6 
Printed in The Islamic Republic of Iran, 2005 
© Shiraz University 
 

 
 

FINITE ELEMENT MODEL UPDATING OF ROTATING STRUCTURES  
USING DIFFERENT OPTIMISATION TECHNIQUES* 

 
 

S. ZIAEI-RAD**   
Dept. of Mechanical Engineering, Isfahan University of Technology, Isfahan, I. R. of Iran 

Email:szrad@cc.iut.ac.ir  
 

Abstract– This paper is concerned with finite element model updating of rotating structures using 
measured vibration test data. The use of both deterministic and stochastic optimisation techniques 
was investigated in order to minimise the difference between the measured and analytical data. 
First, a theoretical basis was developed for frequency response functions (FRFs) updating 
techniques. The standard linear least-square (LLS) formulation was applied to the FRF updating 
formulation where the element mass, damping, gyroscopic and stiffness matrices are corrected by 
using a single multiplier, the so-called p-value. A new residue was then proposed and formulated 
to improve the convergence rate of the FRF-based model updating in the presence of noise. Next, 
two well-known stochastic optimisation methods that require no gradient and can achieve a global 
optimal solution in solving non-smooth and highly non-linear optimisation problems, namely 
genetic algorithm (GA) and adaptive simulated annealing (ASA), were introduced and 
implemented to the developed rotating structure code. The findings were illustrated in the case of a 
test rotor and the advantages and disadvantages of the proposed techniques were discussed in some 
detail.           
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1. INTRODUCTION 
 

Model updating can be defined as the adjustment of an existing analytical model in light of a measured 
vibration test. After adjustment, the updated model is expected to represent the dynamic behaviour of the 
structure more accurately. 

Over the last twenty years, a significant number of model updating techniques have been proposed 
which have become important tools for correcting models of vibrating structures [1-3]. However, no 
reliable and generally applicable procedures have been formulated so far.  

Updating models of rotating structures did not receive the same attention as non-rotating structures. 
Models for non-rotating structures are usually self-adjoint and thus possess certain symmetries which 
considerably simplify their analysis and the experimental extraction of dynamic models. However, high-
speed rotating structures exhibit gyroscopic forces which create non-self-adjoint (non-symmetric) 
matrices. A non self-adjoint system is represented by natural frequencies and both right and left-hand 
eigenvectors. This additional set of vectors makes experimental extraction of a model difficult, or even 
impossible [4-6]. As an immediate consequence of this different form of modal model, conventional 
model updating procedures can not be applied directly without taking into account the basic differences in 
the model structure. Therefore, an FRF based model updating seems to be more suitable for rotating 
machinery as it uses the data directly from measurements.  

In this study, in order to do model updating, minimization between measured and analytical FRFs of 
rotating structures were carried out using three different optimization techniques, namely linear-least-
squares (LLS), Genetic Algorithm (GA), and adaptive simulated annealing (ASA). The standard FRF 
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based formulation was modified to cope with ill-conditioning and noise in a better manner. Although GA 
was used by some researchers for model updating of non-rotating structures, to the best knowledge of the 
author, developing and using a real-number GA code for model updating of a rotating structure has not 
been reported so far. Simulated annealing has also been used in different branches of engineering as an 
optimization tool. However, combining an adaptive version with an FRF based model updating code for a 
rotating structure is a novel approach which is used here. 
 

2. FRF BASED MODEL UPDATING OF ROTATING STRUCTURE  
USING LEAST-SQUARES METHOD 

 
The use of frequency response functions instead of modal parameters for model updating is relatively 
recent and presents some advantages [7-12]. Since the FRF is a measured quantity, errors due to modal 
parameter extraction are avoided. Furthermore, a large amount of data can be used to improve the stability 
of the updating equations. In other words, the problem can be made overdetermined due to the availability 
of FRF data at a large number of frequency points. Although it is not possible to write down as many 
independent equations as there are frequency points. 
 
a) Formulation of FRF based model updating using linear-least-squares 
 

A fundamental difference between various methods of model updating is related to the definition of 
the residual terms. In a specified frequency, one can define the residual as the difference between the 
forces acting on the real structure and those predicted by the analytical model [13]. Based on the exact 
dynamically reduced matrix, it is possible to define such a residue as [13] 
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The [MA], [KA], [CA] and [GA] are mass, stiffness, damping and gyroscopic matrices respectively. 
[ZA] is called the analytical impedance matrix and is a function of updating parameters {p} and frequency 

)(ω . In Eq. (1) Ω  is the speed of rotation and {HX} is a vector of measured FRFs. One can use any 
condensation technique for the impedance matrix [ZA]. Many such techniques have been developed and 
used for different purposes [14-15]. The reason for such condensation is to reduce the order of matrix [ZA] 
to the order of measured FRFs. An exact dynamic condensation was considered here as [13] 
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The proposed algorithm is effective and easy to implement. Here n and s are referred to measured and 
unmeasured DOFs respectively. By expanding [ ] d

AZ Re in Eq. (1) via a Taylor series, and setting the 
residual vector to the null vector, after some mathematical manipulation one can obtain 
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Where J is the number of load cases, while [ ]0

AZ  is the impedance matrix calculated at initial {p} values. 
This set of equations can be written for different FRFs measured at different frequency points to obtain an 
overdetermined set of equations for unknown updating paramerters ( ip∆ ). Although many frequency 
points are available, it does not mean that it is possible to write down as many independent equations as 
frequency points. It seems that the updating frequencies that produce independent equations and their 
actual position are case dependent, the number of measured modes in the frequency range being the most 
important factor. 
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b) Error modelling 
 

In the case of co-ordinate incompleteness, the solution of the updating equations is non-unique. 
Additional constraints, taking into account physical connectivities, can be introduced. In order to reduce 
the number of unknowns, one possible solution is to force the zero elements of the matrices to remain zero 
after updating. Further constraints can be introduced by considering the mass, stiffness and damping 
matrices of individual finite elements. Let us assume that modelling errors can be expressed as a linear 
combination of the individual element mass, stiffness, damping and gyroscopic matrices. In this way, the 
derivatives of matrices are constant and the maximum number of unknowns per element is reduced to four 
(See Eq. (1)). After some rearrangment, Eq. (3) can be written in final form as [13] 
 

[ ]{ } { }bpA =)(ω                                                                   (4) 
 

The overdetermined set of linear equations can be solved by the linear-least-square (LLS) technique 
to calculate the unknown vector {p}. The calculated parameters were then used to find an updated 
estimate for the stiffness, mass, damping and gyroscopic matrices. To obtain more accurate results, the 
whole process continues until the difference between two consecutive values of vector {p} is less than a 
prescribed threshold [3, 13]. 
 
c) Noise sensitivity reduction 
 

The minimisation of the force-balance residue is prone to numerical problems since Eq. (1) is 
inherently ill-conditioned., i.e. )}},({{ ωε p  is a vector with some small elements. As a consequence, the 
cost function is very sensitive to measurement errors in { } jXH  and leads to biased parameters. Therefore, it 
is recommended to weight )}},({{ ωε p  by pre-multiplying it by the dynamic flexibility matrix of the 
analytical model calculated at initial {p} values, i.e. [ ] dRe0

AH  
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Applying the same procedure explained in Section 2.a, one can arrive at 
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Equation (6) is better conditioned than Eq. (3). Following the procedure in Section 2.2, an overdetermined 
set of equations will be obtained which can be solved using LLS. It can be seen from Eq. (6) that if one 
puts [ ] [ ]AA HH =0 , the new force residue will be the same as the receptance residue in [3]. Therefore, in this 
final form, the minimisation of the new receptance residue leads to the minimisation of the receptance 
residue. However, for greater selection of updating parameters, this minimisation is more stable [13].  

Standard model updating can be regarded as a gradient-based optimization technique. In these 

methods, one needs to calculate the derivatives of objective function at every iteration, i.e. [ ]
i

d
A

p
Z
∂

∂ Re . The 

stochastic optimization techniques, on the other hand, do not need the calculation of derivatives. Two such 

techniques will be explained in the following sections. 
 

3. FRF BASED MODEL UPDATING OF ROTATING STRUCTURE 
 USING GENETIC ALGORITHM 

 
Optimisation problems with non-smooth, non-differentiable, highly non-linear and many local minima 
cost functions are commonly encountered in many model updating applications. Conventional gradient-
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based algorithms are ineffective in these applications due to the problem of local minima or the difficulty 
in calculating gradients. 

Optimisation methods that require no gradient and can achieve a global optimal solution offer 
considerable advantages in solving these difficult optimisation problems. The two best-known classes of 
such global optimisation methods are the genetic algorithm (GA) [16-18] and the simulated annealing 
(SA) [19-21].   

Many model updating applications pose the following general optimisation problem: 
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Where T

Npppp }, , ,  {}{ 21 K=  is the N-dimensional parameter vector to be optimised, fN is the 
number of selected frequency in the frequency range of interest, and jL and jU  are the lower and upper 
bounds of jp  , respectively.  The cost function )}},({{ ωε p  can be multidimensional and non-smooth and 
will be used for fitness calculation in both GA and ASA. 

The GA may be thought of as an evolutionary process, where a population of solutions evolves over a 
sequence of generations. During each generation, the fitness (goodness) of each solution is calculated, and 
solutions are selected for reproduction on the basis of their fitness. The probability of survival of a 
solution is proportional to its fitness value. The reproduced solutions then undergo recombination, which 
consists of crossover and mutation.  

A simple GA is really easy to use. It uses three basic generic operators: reproduction, crossover and 
mutation. Reproduction is a process in which individual solutions are copied according to their fitness 
value (objective function values). Crossover requires a mating of two randomly selected strings of 
solution. The information on the strings is partly interchanged according to a randomly chosen crossover 
site. Crossover is applied to take valuable information from the parents, and applied with a certain 
probability. Mutation is the occasional random alteration of the value of a string position. Mutation insures 
against bit loss, and can be a source of new bits. 

The genetic algorithm used here requires determination of six fundamental issues: chromosome 
representation, selection function, the genetic operators making up the reproduction function, the creation 
of the initial population, termination criteria and the evolution function. Each of these issues will be 
described very briefly. 

For any GA, a chromosome representation is needed to describe each individual in the population of 
interest. Each chromosome is made up of a sequence of genes in the form of binary digits (0 and 1), 
floating point number, integers, symbols (i.e. A, B, C, D), matrices and etc.  In Holland’s original paper 
[18], chromosomes are represented in binary digits. However, it was shown that natural representation is 
more efficient in terms of CPU times and offers more precision with more consistent results across 
replication [22]. This natural representation was used for the model updating example in this paper. 

There are several schemes for the selection process. In this study, Roulette Wheel, which is the 
traditional selection function with the probability of surviving equal to the fitness of individual i divided 
by the sum of the fitness of all individuals was used. 

Crossover takes two individuals and produces two new individuals, while mutation alters one 
individual to produce a single new solution. The application of these two basic types of operators and their 
derivatives depends on the chromosome representation used. The most important ones that can be used in 
the developed program are: 1- Arithmetic crossover, 2- Heuristic crossover, 3- Simple crossover. 

Mutation is the occasional random alteration of the value of a string position. The applied mutation 
methods in the program are: 1-Boundary mutation, 2-Multi-non-uniform mutation, 3-Non-uniform 
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mutation, 4-Uniform mutation. More information on these and other related subjects can be found in 
Reference 16.  
 

4. FINITE ELEMENT MODEL UPDATING OF ROTATING STRUCTURES  
USING ADAPTIVE SIMULATED ANNEALING 

 
As mentioned in Section 3, the GA and SA belong to a class of so-called guided random search methods. 
The underlying mechanisms for guiding optimisation search process are, however, very different for the 
two methods. The GA is population-based, and evolves a population-based solution according to the 
principles of the evolution of species in nature. The SA, on the other hand, evolves a single solution in the 
parameter space with certain guiding principles that imitate the random behaviour of molecules during the 
annealing process. 

Simulated annealing (SA) is an optimisation method initially developed for problems involving 
discrete variables. The ideas that form the basis of SA were first published by Metropolis et al. [23] in the 
early 1950s, while developing an algorithm to simulate the metallurgical annealing process. If a metal 
block is heated to a temperature below its melting point and then cooled back to the solid state, the 
structural properties of the cooled solid are a function of the rate of cooling. For example, if the cooling is 
very fast (quenching), then the metal develops several imperfections or faults, since the system converges 
to a higher energy state. On the other hand, if a sufficiently slow cooling schedule is employed, then the 
crystalline state is reached, since the system converges to a state of minimum energy. SA simulates the 
process of slow cooling of metals to achieve the minimum function value in a minimisation problem. The 
cooling phenomenon is modelled by controlling a temperature-like parameter introduced with the concept 
of Boltzmann probability distribution. By a controlled reduction in this temperature as the algorithm 
proceeds, the convergence of the algorithm can be controlled. Kirkpatrick et al. [20] suggested the use of 
SA as a technique for discrete optimisation in the early 1980s, and several researchers have successfully 
extended this method to problems involving continuous variables. SA has been mathematically proven to 
converge to the global optimum independent of starting values, given enough time to converge by using 
an appropriate ‘temperature’ reduction schedule [21]. 

An attractive feature of SA is that it is very easy to program and the algorithm typically has few 
parameters that require tuning. Furthermore, its statistical guarantee of convergence should make SA very 
appealing. However, a serious drawback of SA is that it is often very slow. In many diverse applications, a 
standard SA algorithm often requires many more cost-function evaluations to converge, compared with a 
carefully designed and tuned GA. However, an improved version of SA, referred to as the ASA (Adaptive 
simulated annealing), is very efficient in this sense [24-27]. The implemented ASA algorithm for model 
updating of rotating structures is briefly described here. More information regarding these matters can be 
found elsewhere [26, 28-29]. 
 
a) Adaptive simulated annealing objective function 
 

The ASA evolves a single point p in the parameter or state space P. The seemingly random search is 
guided by certain underlying probability distributions. The objective function for this case is the same as 
Eq. (7). In general, the ASA algorithm can be described by three important functions. These functions are 
explained very briefly here. 
 
b) Generating probability density function 
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The above equation determines how a new state new
ip  is created, and from what neighbourhood and 

probability distributions it is generated, given the current state old
ip . The generating temperatures geniT ,  

describe the widths or scales of the generating distribution along each dimension ip  of the state space. 
Often a cost function has different sensitivities along different dimensions of the state space. Ideally, the 
generating distribution used to search a steeper and more sensitive dimension should have a narrower 
width than that of the distribution used in searching a dimension less sensitive to change. The ASA adopts 
a so-called reannealing scheme to periodically re-scale geniT , , so that they optimally adapt to the current 
status of the cost function. This is an important mechanism which not only speeds up the search process, 
but also makes the optimisation process robust to different problems. 
 
c) Acceptance function 
 

( )( )     )()()(exp1
1)),  ( ), ((

aaccept
old
i

new
i

accept
new
i

old
iaccept kTpp

Tpph
εε

εε
−+

=                          (9) 

 
This gives the probability of new

ip being accepted. The acceptance temperature determines the 
frequency of accepting new states of poorer quality. Probability of acceptance is very high at very high 
temperature acceptT , and it becomes smaller as acceptT  is reduced. At every acceptance temperature, there is 
a finite probability of accepting the new state. This occasionally produces an uphill move, enables the 
algorithm to escape from local minima, and allows a more effective search of the state space to find a 
global minimum. The ASA also periodically adapts acceptT  to best suit the status of the cost function. This 
helps to improve convergence speed and robustness. 
 
d) Reduce temperatures or annealing schedule 
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where ak and ik  are some annealing time indexes. The reduction of temperatures should be gradual 
enough to ensure that the algorithm finds a global minimum. This mechanism is based on the observations 
of the physical annealing process. When the metal is cooled from a high temperature, if the cooling is 
sufficiently slow, the atoms line themselves up and form a crystal, which is the state of minimum energy 
in the system. The slow convergence of many SA algorithms is rooted in this slow annealing process. The 
ASA, however, can employ a very fast annealing schedule, as it has self-adaptation ability to re-scale 
temperatures. 
 
e) ASA algorithm implementation 
 

Although there are many possible realisations of the ASA, an implementation of this algorithm is 
used in the study detailed here. How the ASA realises the above three functions will also become clear 
during the following description. 
(i) In the initialisation, an initial Pp∈  is randomly generated, the initial temperature of the acceptance 
probability function, )(0acceptT , is set to )( pε , and the initial temperatures of the parameter generating 
probability functions, niT geni ≤≤10),   (, , are set to 1.0. A user-defined annealing control parameter c is 
given, and the annealing times, ik and ak  is all set to 0. 
(ii) The algorithm generates a new point in the parameter space with 
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i

new
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Where iγ   is calculated from Eq. (8) as 
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where iu  is a uniformly distributed random variable in interval [0,1]. Notice that if a generated newp is not 
in P, it is simply discarded and a new point is tried again until Pp new ∈ . The value of the cost function 

)( newpε is evaluated and the acceptance probability function of newp is then calculated using Eq. (9). A 
uniform random variable unifh  is generated in [0, 1]. If acceptunif hh ≤ , newp is accepted, otherwise it is 
rejected. 
(iii) After every acceptN  acceptance points, reannealing takes place by first calculating the sensitivities 
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Where bestp is the best point found so far, δ  is a small step size, the n-dimensional vector ie has unit i-th 
element and the rest of the elements of ie are all zeros. Let { }nisMaxs i ≤≤= 1,   max . Each parameter 
generating temperature geniT , is scaled by a factor iss /max , and the annealing time ik  is reset 
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Similarly, )(0acceptT is reset to the value of the last accepted cost function, )( aaccept kT is reset to )( bnestpε , 
and the annealing time ak  is rescaled accordingly 
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(iv) After every genN  generated points, annealing takes place with 
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Otherwise, go to step (ii). 
(v) The algorithm is terminated if the parameters have remained unchanged for a few successive 
reannealings or a pre-set maximum number of cost function evaluations have been reached; otherwise, go 
to step (ii). 

The optimal values of  acceptN  are problem dependent, but experience suggests that an adequate 
choice for acceptN   is in the range of tens to hundreds, and an appropriate value for genN   is in the range of 
hundreds to thousands. The annealing rate control parameter can be determined from the chosen initial 
temperature, final temperature and predetermined number of annealing steps. We have found out that a 
choice of c in the 0.01 to 0.1 range is often adequate. 

A necessary and sufficient condition for the convergence of different SA algorithms can been found 
in [26, 28-29]. Table 1 compares the convergence of different SA algorithms, i.e. standard SA, fast SA 
and ASA. In this table, the relations ik is an annealing time index and n is the dimension of unknown 
parameters.  
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Table 1. Convergence rate of different SA algorithms 
 

Simulation method Standard SA Fast SA ASA 
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The convergence rate of an SA algorithm is determined primarily by its annealing schedule. The slow 

convergence of the standard SA is inherent from the annealing schedule (see Table 1). The ASA, 
therefore, has the fastest convergence rate among the three algorithms tabulated here.  
 

5. NUMERICAL EXAMPLES 
 
Figure 1 shows the overall flowchart of the developed program. The details of GA and ASA are not shown 
for brevity. The system shown in Fig. 2 represents the data from a real rotor with bearing, discs, added 
mass and etc (part of an active magnetic bearing system). It consists of 36 nodes and 59 elements. Eight 
sensors are located in x and y direction at different positions of the shaft (Fig. 3).    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Fig. 1. Overall flowchart for model updating of rotating structures using LLS, GA and ASA 
 

The dash lines in Fig. 2 are additional distributed masses which are modelled in IUT_Rotating FE (A 
finite element code developed by the author for rotating structures) by use of very low stiff elements. 
Table 2 tabulated some geometrical properties of the model.  

 
Table 2. Some geometrical properties of the rotor 

 
Variable RotFE 

Total mass                                      3.41 
Centre of mass 0.24 
Radial moment of inertia 0.054 
Polar moment of inertia 4.31e-004  

Next, the natural frequencies of the rotor at zero speed were calculated by IUT_Rotating FE. The 
results are presented in Table 3 and show a good agreement with the results from other commercial 
packages (Here MECOS - A commercial European rotating structure code). 

Yes 

Initial Model Measured FRFs

Calculate Global M, K, G, C 
Using IUT_RotatingFE code 

Calculate Analytical HA(p) 

Calculate new parameters, pnew by 
minimizing above eq. using GA or ASA 

Select Elements with 
Errors, Updating 
parameters, Frequencies 

 toldnew pp ε<−Final FE Model New FE Model

Reduce )(pHA
 to the Size of xH  Using Exact Reduction Technique 

∑
=

−=
fN

i
iAx pHHp

1
2

),  (log)( ωε  Calculate new  parameters, pnew 
using LLS from eqs. 11, 13 
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Fig. 2. Test rotor system 

Sensor Locations Sensor Locations 

Bearings 

 
 Fig. 3. FE model of the test rotor system 

 
 

Table 3. Natural frequencies comparison of rotor model 
by IUT_Rotating FE and MECOS 

 
Natural Frequencies 

(Hz) 
RotFE MECOS Difference 

(%) 
1 0 0 0 
2 0 2.13e-3 0 
3 211.4 210.5 0.43 
4 591.19 586.9 0.73 
5 1261.29 1246 1.2 
6 2165.31 2115 2.3 
7 3039.29 2970 2.3 

 



S. Ziaei-Rad 
 

Iranian Journal of Science & Technology, Volume 29, Number B6                                                                         December 2005 

578

a) FE model updating of the test rotor system using simulated data without noise 
 

First, it was decided to simulate an experimental data set by a numerical model without noise. 
Therefore, two models were built. The first model, ‘experimental model’, was used to simulate the 
experimental data, while some parameters were changed in the second model, hereafter called the 
analytical model. The stiffness of all bearing in both x and y directions for the updating study were 
assumed to be 250KN. The aim is to use the developed updating procedure to find out the exact values of 
the parameters in error (the real values of all parameters are 1.0). The amount of errors introduced in some 
elements of the analytical models for each case are given in Table 4. In this Table, M7, K50 and G23 are 
the mass, stiffness and gyroscopic terms of elements 7, 50 and 23 respectively, while Kxx and Kyy are the 
stiffness of bearing in x and y direction. 
 

Table 4. Error introduced for model updating 
 

Error (%) M7 K50 G23 Kxx1 Kyy1 Kxx2 Kyy2 
Case 1  0% 0% 0% 8% -10% 12% -15% 
Case 2 10% 20% 12% 8% -10% 15% -15% 

 
For case 1, we assume that the errors is only at the stiffness of the bearings, i.e. 1xxK , 1yyK , 2xxK  and 

2yyK . The introduced error were 8, -10, 12 and -15 percent for 1xxK , 1yyK , 2xxK  and 2yyK , respectively. 
For case 2, in addition to the previous errors, errors were introduced in the mass of element 7 (10%), 
stiffness of element 50 (20%) and the gyroscopic term in element 23 (12%).  

Eleven frequency points are selected in the 0-120 Hz frequency range. They are namely; 20, 25, 30, 
35, 45, 55, 63, 90, 100, 110 and 120 Hz. The excitation force assumed to be in x direction at sensor 
location 1 (see Fig. 3), and their responses are measured at x and y directions in all 4 sensor locations. For 
both cases, the ‘measurements’ were carried out at two different rotor speeds, namely 5000 and 10000 
RPM. Therefore, a total of 16 FRFs were measured at each frequency point.   

Figures 4 and 5 show convergence towards the final solution for cases 1 and 2 of the test rig using the 
linear-least squares (LLS) method.  In both cases, the frequency response functions were updated correctly 
in the sense that the p-values matched those of the experimental model. It is worth mentioning that the 
total size of the receptance matrix is 144. This means that 8 out of 144 (5.6%) possible measured FRFs are 
enough for the problem to converge to its correct solution.  

Fig. 4. Convergence of parameters for the test rig using 
LLS -Case 1 ( 1kxxp : correction factor for 
stiffness in x direction at bearing 1, ….) 

Fig. 5. Convergence of parameters for the test rig using  
.....LLS -Case 2 ( 7Mp : correction factor for the 

.....mass matrix of element number 7, ….) 
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It can be concluded that the procedure for LLS is working satisfactorily for simulated data and in 
absence of any noise. As the main idea for model updating of the test rig was to adjust the stiffness of the 
bearings, only case 1 will be used for further investigation.  

Next, the genetic algorithm is used to capture the error location and magnitude using the same data as 
used for case 1. The optimisation problem is similar to the one defined in Eq. (7), i.e. 

 

Nj1      UpL ,       )},  p(H{}H{log)}},p({   {Min jjj

N

1i
2iAx

f

≤≤≤≤−−= ∑
=

ωωε           (18) 

 
The negative sign in Eq. (18) is due to the fact that genetic algorithm always search for the maximum 

(here we assume that the value of ε  is less than unity). Norm geometry selection was used as selection 
function, while heuristic crossover and uniform mutation options were used as genetic operators. An initial 
population of 10 was created for this case, and after some tuning the algorithm was run and the results are 
tabulated in Table 5 and Fig. 6. 
 

Table 5. The p-values obtained for the test rotor – Case 1 (no noise) 
 

P-values Kxx1 Kyy1 Kxx2 Kyy2 
Initial  1.0800 0.9000 1.1500 0.8500 
Target 1.0 1.0 1.0 1.0 
LLS (% Error) 1.0 (0.0 %) 0.9999 (-0.01%) 1.0001 (0.01%) 1.0 (0.0%) 
GA (% Error) 1.0000 (0.0%) 0.9993 (-0.07%) 1.0000 (0.0%) 0.9965 (-0.35%) 
ASA (% Error) 1.0000 (0.0%) 0.9926 (-0.74%) 0.9998 (-0.02%) 0.9972 (-0.28%) 

 
The same problem was then solved using adaptive simulated annealing. The lower and upper bonds of 

the parameters in Eq. (7) were set to be -0.9 and 2, respectively. Note that the exact value for all 
parameters is one. After tuning the initial parameters of the algorithm, the program runs. Figure 7 shows 
the results for the test rig using simulated data and no noise. In this figure, the objective function is 
depicted against the number of iterations. The final p values for this case are tabulated in Table 5. 
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Fig. 6. The track of the best solution and the average of    
.         the population for the test rig using GA-Case 1 

Fig. 7. Convergence for model updating of the test Rig 
using ASA algorithm-Case 1 

 
b) FE model updating of the test rig using simulated data with noise 
 

The test rotor was then studied for updating with noisy data. The stiffness of the bearings, i.e. Kxx1, 
Kyy1, Kxx2, Kyy2 were considered as parameters in error. Random noise with zero mean value and variance 
one was created and added to the simulated FRFs. Two different cases with different noise levels were 
investigated. Table 6 shows each case study in more detail. 
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Table 6. Case studies for the test rotor 
 

Case % of noise in FRF Elements in error Optimisation method 
3 1 Kxx1, Kyy1, Kxx2, Kyy2 LLS, GA,  ASA 
4 10 Kxx1, Kyy1, Kxx2, Kyy2 LLS, GA, ASA 

 
Case 3: The parameters in error are the same as case 1. Figure 8 plots the convergence of the parameters 
for case 3, i.e. FRFs polluted with 1 percent of noise and LLS technique. 

For GA, the initial population was set to 100 for the current cases. This increased the CPU time 
required for a converged solution. The heuristic crossover and non-uniform mutation were selected as GA 
operators for cases 3 and 4. The results after 100 generations for this are reported in Table 7. Figure 9 
shows the trace of convergence for this case. 
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Fig. 8. The convergence of parameters in error for 
 case 3 using LLS (1% noise) 

 

Fig. 9. The track of the best solution and the average of 
the population for the test rotor with  

1% noise (case 3) using GA 
 

Table 7. The p-values obtained for the test rotor – 1% noise 
 

P-values Kxx1 Kyy1 Kxx2 Kyy2 
Initial  1.0800 0.9000 1.1500 0.8500 
Target 1.0 1.0 1.0 1.0 
LLS (% Error) 1.0008 (0.08%) 0.9992 (-0.08%) 0.9998 (-0.02%) 0.9978 (-0.22%) 
GA (% Error) 1.0013 (0.13%) 1.0093 (0.93%) 0.9999 (-0.01%) 1.0091 (0.91%) 
ASA (% Error) 1.0007 (0.07%) 1.0003 (0.03%) 1.0000 (0.0%) 1.0015 (0.15%) 

 
Figure 10 depicts the objective against the number of iterations for case 3 using ASA. Table 7 

summarises the  final p values for this case using different optimisation techniques. It can be concluded 
that for this case, all three methods can correctly capture the errors in the model. 
 
Case 4: Figure 11 shows a plot of parameters for case 4 when the FRFs are polluted by 10% random noise 
using the LLS technique. Although the convergence to an acceptable level of the parameters in error was 
achieved, the parameters did not converge to the exact solution. The offset is mainly due to the presence of 
noise and is increased by increasing the noise level. By increasing the noise level even more, the solution 
diverges. This clearly shows the reduction in the sensitivity of the method to the level of the noise as 
described in Section 2.5. The standard method (FRF without noise sensitivity reduction) cannot tolerate 
10% of noise and diverges. 

Next, the GA algorithm was employed while the initial population was set to 100. Again, the results 
after 100 generations were shown in Fig. 12 and the value of the parameters are presented in Table 8. It 
can be seen from the figure that the final value of the objective function for this case is less than the 
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previous two cases, i.e. 134.84, 156.96, 202.45 for 0, 1 and 10 percent noise respectively. This is mainly 
due to the presence of noise in the FRFs which makes the convergence slow.  
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Fig. 10. Convergence for model updating of the test rotor   
.        with 1% noise (case 3) using ASA algorithm 

Fig. 11. The convergence of parameters in error  
               for case 4 using LLS (10% noise)  

The ASA algorithm was then employed. The performance of the ASA with GA and LLS are 
compared in Table 8. Again, the number of iterations required to obtain a converged solution increased as 
the noise level was increased (Fig. 13). Morever, an offset similar to LLS can be observed from both the 
GA and ASA results. 
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Fig. 12. The track of the best solution and the average of 
the population for the test rotor with  

10% noise (case 4) using GA 

Fig. 13. Convergence for model updating of the test rotor  
with 10% noise (case 4) using  

ASA algorithm 
 

Table 8. The p-values obtained for the test rotor  – 10% noise 
 

P-values Kxx1 Kyy1 Kxx2 Kyy2 
Initial  1.0800 0.9000 1.1500 0.8500 
Target 1.0 1.0 1.0 1.0 
LLS (% Error) 1.0078 (0.78%) 0.9932 (-0.68%) 0.9983 (-0.17%) 0.9793 (2.07%) 
GA (% Error) 1.0181 (1.81%)     1.0093 (0.93%) 0.9949 (-0.51%) 1.0091 (0.91%) 
ASA (% Error) 1.0068 (0.68%) 0.9916 (0.84%) 1.0008 (0.08%) 1.0175 (1.75%) 

 
Regarding performance comparison, the LLS method is faster than both GA and ASA algorithms. 

However, in many of the cases it diverged. The GA and ASA have slower convergence rates, but can 
provide some improved results with respect to the initial guess. The GA is likely to be trapped in a local 
minimum if the size of the initial population is not large enough. On the other hand, the performance of 
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the ASA is based on the annealing rate. A large annealing rate makes the convergence faster. However, it 
may not give enough time to the liquid to reach to the minimum state energy, i.e. it becomes trapped in a 
local minimum. On the other hand, a small annealing ratio needs greater iteration and will increase the 
CPU time substantially. 
 
c) Convergence and CPU time study of LLS, GA and ASA algorithms  

Equations (3) and (6) are mainly based on expansion by the Taylor series and are somehow the 
linearization of the main residue problems, i.e Eqs. (1) and (5). The model updating problems are 
generally a function of updating parameters {p} and frequencyω , i.e. 
 

{ } { } [ ] { } jX
dRe

Aj H)},p({ZI)}, p({ ωωε −=                                          (19) 
 
Note that the elements of the dynamic stiffness matrix [Z] (not [ ] dReZ ) are smooth functions of 
frequency and the vector of updating variables, i.e. {p}. As long as the changes in these parameters remain 
physically acceptable, the elements will keep their smooth behaviour. However such smoothness does not 
exist for the reduced dynamic stiffness matrix [ ] dReZ . 

Figures 14 and 15 show the variation of element xxZ 6,6   and d
xxZ Re

6,6 as a function of frequency at a 
constant {p} for our test rotor structure. Actually, the singularities in the reduced dynamic stiffness matrix 
results from incomplete measurements. It can be seen that d

xxZ Re
6,6  is a highly nonlinear function, and 

therefore the linearization of Eq. (5) cannot be justified at all frequencies. In general, dZ Re  is a very 
complicated function of updating variables and frequency. This is the main reason that all the FRF-based 
algorithms do not work properly in practice and the reported results are mostly case dependent. The 
situation becomes more complicated when random noises due to experiments were added to the analytical 
data or when the data comes directly from the measurements. Therefore, we have to search for methods 
that directly use the main residue problem and not the linearised version of it. However, such algorithms 
are not as fast as the LLS algorithm and usually need a vast bulk of evaluation of the objective function. 

For a test rotor structure, dZ Re][  is a smooth function for frequencies up to a frequency limit, here 
180 Hz (see Fig. 14). This is why we selected eleven frequency points in the frequency range of 0-120 Hz 
for our case studies (Cases 1 to 4). If frequency points were selected beyond 180 Hz, one expects to have 
difficulties in convergence of the LLS algorithm. Another issue is noise. By increasing the noise level, the 
smoothness of dZ Re][ deteriorates at every frequency point, which may also cause instability in LLS 
numerical algorithm. 

 

  

Fig. 14 . Element Z6x,6x of test rotor structure as a   
..........function of frequency ({p}=constant) 

Fig. 15. Element d
xxz Re

6,6  of test rotor structure as a   
...........function of frequency ({p}=constant) 
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Table 9 compares the convergence of different algorithms for various selections of frequency points 
and noise level. It can be seen from the table that LLS diverges if some of the frequency points were 
selected beyond the frequency limit (180 Hz), while GA and ASA both converge to their correct values at 
all sets of frequency points (exact value is one for all parameters in error). It is worth mentioning that the 
frequency limit relates to the ratio of measured DOFs to the total DOFs in the FE model. By decreasing 
the ratio, the limit frequency decreases and so the range of validity of linearization for the LLS algorithm 
also decreases. However, this is not the case for GA and ASA as they use the main residue equation 
directly. Both GA and ASA can also tolerate a high level of noise. For very high noise levels, these two 
algorithms converge, but not to their correct values. This means that they are trapped in some local 
minima. 
 

Table 9. Convergence comparison of different algorithms for various  
selection of frequency points and noise level 

 
Frequency points (Hz) and Noise level LLS 

(Kxx1, Kyy1, 
Kxx2,Kyy2) 

GA 
(Kxx1, Kyy1, 
Kxx2,Kyy2) 

ASA 
(Kxx1, Kyy1, 
Kxx2,Kyy2) 

20, 25, 30, 35, 45, 55, 63, 90, 100, 110, 120 
(10% Noise) 

1.0078, .9932, 
.9983, .9793 

1.0181, 1.0093, 
0.9949, 1.0091 

1.0068, 0.9916,  
1.0008, 1.0175 

100, 120, 170, 220, 230, 250, 300, 330  
( 1% Noise) 

Diverged 1.0071, 1.0053, 
0.9973, 0.9986 

1.0055, 1.0043, 
0.9977, 1.0089 

100, 120, 170, 220, 230, 250, 300, 330  
(10% Noise ) 

Diverged 1.0125, 1.0156, 
0.9885, 0.9863 

1.0219, 1.0155, 
1.0179, 0.9842 

260, 290, 300,310, 330, 400,420,  440 
(1% Noise) 

Diverged 1.0132, 0.9867, 
1.0145, 0.9944 

1.0098, 1.0122, 
0.9876, 0.9983 

260, 290, 300,310, 330, 400,420, 440 
(10% Noise) 

Diverged 1.0247, 0.9865, 
1.0357, 0.9645 

1.0198, 1.0147, 
1.0289, 0.9844 

 
Table 10 tabulated the CPU time required for the LLS, GA and ASA algorithms to converge. The 

reported values are based on the calculation using a Pentium 4 (2.4 GHz). It is notable that LLS is very 
fast in comparison with GA and ASA. SA algorithms are normally slower than GA,   however, the 
automatic step selection used here causes the ASA to be faster than GA. 
 

Table 10. CPU time required for calculation of case studies 1 to 4 
 

CPU time (sec) – Pentium 4 (4.2 GHz) Case Studies 
LLS GA ASA 

Case 1: 4 parameters - 0% noise 25.3 1534.3 1254.9 
Case 2: 7 parameters – 0% noise 47.9 3768.9 2876.4 
Case 3: 4 parameters - 1% noise 44.8 2544.7 2256.8 
Case 4: 4 parameters – 10% noise 77.6 3199.7 2896.7 

 
6. CONCLUSIONS 

 
A treatment to avoid ill-conditioning in the minimisation of force balance residue was made by pre-
multiplying the residue vector by the dynamic flexibility matrix of the analytical model. It was shown that 
this could partly reduce the sensitivity of the method to measurement errors.  

It was also shown that the linearisation of the highly nonlinear and nonsmooth objective function 
which appears in most model updating problems is not always a good option and may cause instability and 
convergence towards the local minima. Gradient methods such as LLS are ineffective in such nonlinear 
and nonsmooth cost functions. Therefore, optimisation methods that require no gradient and can achieve a 
global optimal solution offer considerable advantages. Two well-known classes of such global 
optimisation methods are introduced, namely the genetic algorithm (GA) and the adaptive simulated 
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annealing (ASA), both of which were implemented in a program specifically written for the model 
updating of rotating structures. 

Some case studies were carried out for simulated data with and without noise. It was concluded that 
the generic algorithm (GA) might become trapped in local minimum if the size of the initial population is 
not large enough. However, a large initial population may need huge computational effort and is time 
consuming. 

A new simulated annealing method called "adaptive simulated annealing", which is fast and does not 
need initial tuning, was adopted and implemented in the program. It was found that this method could 
detect the locations and the magnitude of the elements in error. It was concluded that the linearisation of 
the analytical receptance matrix is faster than any other method investigated here. ASA and the fine tuned 
GA have the following two ranks respectively. However, due to inherent nonlinearity of the objective 
function, it may be prone to divergence, instability or converging to incorrect parameter values, 
particularly in the presence of high levels of experimental noise.  
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