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Abstract— Unsteady incompressible unidirectional third-grade fluid past an infinite porous wall is
considered in the presence of Hall current. The plate at the lower boundary y=0 is executing
sinusoidal oscillations in its own plane with superimposed blowing or suction. The governing
equation (representing the velocity field) is modeled and described by a third order non-linear
partial differential equation.
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1. INTRODUCTION

In an ionized gas where the density is low and/or the magnetic field is very strong, the conductivity
normal to the free spiraling of electrons and ions around the magnetic lines of force before suffering
collisions induces a current in a direction normal to both the electric and magnetic fields. This
phenomenon is called the Hall effect [1-5]. The study of magnetohydrodynamic flows with Hall currents
has important engineering and industrial applications in problems of magnetohydrodynamics generators
and of Hall accelerators, aswell as inflight magnetohydrodynamics.

In the few past decades there has been significant work on flows of non-Newtonian fluids, not only
because of their non-linearity which occur in the inertial part, but also in the surface forces of the
governing equations [6-10]. On the other hand, it is well known that the rheological properties of many
fluids are not well modeled by Navier-Stokes equations.

The shear thinning and thickening phenomena is a comprehensive description of the properties of
viscoelastic fluids. Although the second-grade fluid model is able to predict the normal stress differences
which are characteristic of non-Newtonian fluids, it does not take the shear thinning and thickening
phenomenathat third-grade fluids describe. Keeping these analyses in mind, the model in the present work
is a third-grade fluid and the flow is bounded by the lower plate which is oscillating sinusoidaly in time,
whereas the fluid isinfinite in the other direction.

In this paper, we discuss the effects of Hall currents on the unsteady flow of an electrically
conducting non-Newtonian (third-grade) fluid. The fluid considered is of third-grade, which makes the
governing equation a non-linear third-order partial differential equation. For such a fluid, equations are
modeled and solved by the method used in [6-8].

2. FORMULATION OF THE PROBLEM

The basic equations governing the motion of a homogeneous incompressible third-grade fluid are
V-V =0, )
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pdd—\tlzpb+.]xB+diVT, 2
V-B=0, VxB=y J, VxE=0 3

and the Cauchy stressT for an incompressible third-grade fluid is given by [11]

T=—pl+uA +a A, + A2+ BA,+ B, (AA, +AA) + B (IrAD)A,, 4
where V is the velocity vector, d/dtsignifies mobile operator, —pl the spherical stress due to the
constraint of incompressibility (V-V =0), u the coefficient of viscosity, b the body force per unit mass,

a,, a,, P, B, and [, arematerial constants, p isthedensity, J isthe current density, B isthe total

magnetic field, g, the magnetic permeability and E the total electric field current. Making reference to

Cowling [11], when the strength of the magnetic field is high, the generalized Ohm’s law is modified to
include the Hall current so that

1
\Y
adl (5)

J+%(Jx5):o{E+vXB+
0

inwhich @, isthe cyclotron frequency, 7, isthe electron collisiontime, o isthe electrical conductivity,
e isthe electron charge and p, is the electron pressure. The ion-slip and thermoelectric effects are not
included in (5). Further, it is assumed that w,7, ~O(1) and w.7; <<1, where @, and 7; arethe cyclotron
frequency and collision time for ions respectively.

The kinematics tensors A, A, and A;, defined in (4), are the first three Rivlin-Ericksen tensors
defined through [12]

A = d'z;“l +A, (gradV) + (gradV)T A ,,n>1 (6)

A, = (gradV)+(gradV)’, )

where grad denotes the gradient operator and T the transpose. It is proved by Fosdick and Ragjagopal [13]
that if third grade fluid is to satisfy equations of motion which are compatible with Clausius-Duhem
inequality and the assumption that the fluid be locally at rest, then the material constants in (4) must
follow the following conditions

120, 0,20, B,=f,=0, 20, |o+a,|<\24up,. (8)

In the present analysis we are concerned with the fluid which obeys the restrictions given in (8). When (4),
satisfying (8), is substituted in (2) and making use of (1) we obtain

pz_\t/z_grader/NZV"’(“ﬁaz)diVAf+a1[V2Vt LV (VX V)XV

+grad(V - V3V) +%trAf] + BAgrad(trA?) + S, (trA?) V2V 9

2
oBg

1-im

V + pb,
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where subscript t denotes the partial derivative with respect to time t, m = @,7, is the Hall parameter and
V? isthe Laplacian operator.

We consider the unsteady flow generated in a semi-infinite expanse of athird grade fluid bounded by
an infinite porous plate. Thefluidisat rest for t<0 andfor t > 0 ; the plate is oscillating sinusoidally
a y=0. For the problem under consideration we write the velocity and the boundary conditions as
follows:

V =[u(y,1),-V,,0], (10)

u(0,t) =U (t),

(11)
u(y,t) >0asy — .

with simultaneous suction or blowing: v, >0 corresponds to the case of suction and v, <0 indicates
blowing.

Substituting (11) into the balance of linear momentum (9) and using the fact that the fluid is
incompressible and there are no body forces, we obtain

ou . eu) op o ou . A
pl—Voo =, TH St —2—V0—3
ot %oy ox oy oyt oy
(12)
2 2 2
vop, () Tu_oBs,
oy ) oy® 1-im
0=_9P__0P (13)
oy 0z
where
2
A ou
p= p—(2a1+az)(5j : (14)

isthe modified pressure. In the case when there is no pressure imposed we get

2 3 3 2 2 2
R I (Y . R
oo "oy oy ployot "oy ) p\oy) oy p(-im)
where v = u/ p isthe kinematic coeffecient of viscosity.
Defining the dimensionless parameters
2
al=V_°2a1,y=VLy,t=L2t,u=vou,
1% o V, (16)
2
o= %layi U (t)=V,0(), g=—T Y
PV pA—=im) Vg
the boundary value problem becomes
2
ou ou o°u -| d*u J%u ou| o’u -
— st |t — | — (17)
ot dy oy oy at ay oy) oy
U=U@ ay =0 U085y (18)
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3. SOLUTION OF THE PROBLEM

Since in the case of non-Newtonian fluid the order of equations of motion is higher than the Navier-Stokes
equations, the adherence boundary condition is insufficient to determine the solution completely [14, 15].
In order to overcome this difficulty Beard and Walters [16], in their study of incompressible fluid of
second order, proposed a method. They suggested a perturbation approach in which the velocity and the
pressure field were expanded in terms of a small parameter. Though this approximation reduces the order
of the equation, it treats the singular perturbation problem as aregular perturbation problem. Therefore, u

can be expanded in powers of ¢ asfollows:

u(y,t;e) = uo(y,t)+eui(y,t)+&’ua(y,t)+---. (19)

Substituting (19) into (17) and the boundary conditions (18), and then equating equal powers of ¢ ,
we obtain the following systems:

Zeroth order system
ou, ou, 0%, _[o%, o%my|
00— 00 -0\, (20)
a Ny oy oyot oy
Uo=U(t) a y=0, Uo—>0as y— . (21)
First order system
— — 2— 3 3 — \2 A2—
e T e (i (a] o -
oy oy oay“ot oy o) oy
u=0aty =0, u >0asy—w. (23)

These systems are solved by employing the method used by Rajagopal [8] and Hinch [17]. Now
introducing the similarity transformation

3}/E

7=y, Uo = fo(ne”, u = f,(7)e¥", (24)

thus we can write Egs. (20) and (21) in the following manner:
afy —(@+yan)fy — Ty +(y+¢)f, =0, (25)

fom)=1 a n=0, f,(7y) >0 as n—> o, (26)
where ]
u(t) =e’.

Similarly, the Egs. (22) and (23) can be written as
orf, —(@+3aap)f, — f, +@r+ )t = (f5)2 1, , 27)
f(7)=0 a n=0, f,(7) >0 as 5 — . (28)
For the solution of (25), the complimentary function must satisfy
aim® — (L+ ay)m® —m+ (7 +¢) =0, (29)
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For small value of «; , theroots of Eq. (29) can be obtained by perturbation expansion method. For

that m can be expressed as

C, - =2
M=—7+Cy+Ca1+Cra1 +---.
a1

Now using Eq. (30) in (29) and comparing the like powers of &; we get
—2

a1 1 cy—-c5=0

—
air . 2c,c2-c,ci—-c4y—2c,c,—C, =0,

—0
ar @ 3cic,+3c%c,—2c,c,—CZ—C,+y+p—2C,C, =0,

a1 : 32C, +6C,C,C, —2C,C, — 20,C, +¢C —¢, —y(c2 +2¢,¢,) =0,

—2
a1 @ 3cic, +6c.,C,C, +3C,¢0 —2C,C, —C7 —C, — y(2¢,C, +2¢ ,C,) = 0.

From Eg. (31) we get
c,=001

The corresponding roots for the three valuesof € ; aregiven by

— —2
m, = C, +Ca1+C,a1,

~— - =2

m, = Co +Cia1 +C21,
—1 ~ o~ =~ —2
M, = a1 +Co+Cia1+C2a,

. __(1+‘/1—4(7/+¢)j . Gy —Coy . _ 304C, — 20,Cy —Cf
(VI [ R -

2 2,41 7 2c, +1

- (1-174G )| - G -Coy -  3CoCi—26eCiy—Ci
Co=—| —————>|, a=——"—, C2= -
2 2C0+1 2Co +1

~ ~ ~ ~2 ~ ~ ~ ~ =2 ~3 ~ ~
Co=1+y, Ct=Co—2C0 —y(1—2C0)— ¢, C2=C1+y(2C1—Co)—Co—4CoCi.

The solution of the differential equation in system (29) is given by

fo(n) = Ae™ + Ae™ + Ae™.

(30)

(31)
(32)
(33)

(34)

(35

(36)

(37)

(38)

Now using (i) the physical condition that the velocity reduces to the Newtonian case when ¢, — 0 and (ii)
the boundary condition in (29) as , — 0, the solutions corresponding to the roots m, and m; are neglected.

Thus from Eq. (38) we have
fo(m) = Ae™.

Now using the boundary conditionat » =0 from (26) into Eq. (39) we obtain
fo (77) — e—(cowﬁﬁcz;lz)r].

Similarly, the solutions of systems (27) to (28) are respectively given by using

(39)
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f0 ()=~ le—mw,

fo (7) =me™,
then (27) takes the form

arf, —@+3ya)f, — f, +3(y +4)f, = miem, (40)

For the complimentary solution ¢_¢;), we have

aim® = (L+3ya1)m? —m+3(y + ¢) = 0. (41)
Now
—~ d, — —2
m=—+d,+d, a1 +d,a1,
a1
thenin (41) we get

m P - -1-1+4
mlzdo+d10!1+d2af,where, d, = +2(7+¢),
o o~ de s izt don ~ 1+ 1+ 4
mzzdo+d1a1+dzaf,where,doz + +2(7+¢)’

ms ~ a1 +do+dias+daar, where, do =1+ 3y.

Therefore, we have i )
flc (n) = AAeimw + Asemzn- (42)

For particular solution  f, (77), we have

m,e "
flp (77) = — 3 - 2 . (43)
—27a1m; —9(1+3ya1)m; +3m, + 3y + ¢
From (42) and (43) we can write
_ _ 4 ,-3mp
f,(17) = 'A‘zte_mﬂ7 + Asemm + ~ 3 mle_ 2 . (44)
—27cam; —9(1+ 3ya)m; +3m, +3y + ¢
Using (27) and (28) we have
m4 e—3mlr] _e—rﬁm
)= ———ule e . (45)
—27cam; =91+ 3yoa)m; +3m, + 3y + ¢
Thus, we have
Uo =™t (46)
m4 ef3mlr] . e—rﬁm esﬂ
U = il ] (47)

27, m? — 91+ 3aay]m? +3m, + 3y + ¢
Since ¥ may be both real and imaginary, we discuss both cases.
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Case 1.
When y isreal, the velocity and skin friction Tq, o€ respectively given by

Uy, t;e) = e’ f,(i7)+ ¥ f,()+ ..., (48)
z, =pU g[e@"*”t f, (0)+ &%) £, (0)+ } (49)
where
fO (77) — e_mlﬂ ,

4 -3myn —r}\r;
m, [e Mg 1}

~27am} — 9| 1+ 3asy |mf +3m, + 3y + ¢

m; (—3m1 + rﬁl)

~27am} —9[ 1+ 3asy |mf +3m, +3y + ¢
and prime ( ) denotes the differentiation with respect to the variable 7 .

Case 2.

When y isimaginary (7 =iw), then we have
u(y,t; &) = (for coswt- f,, sinwt) + &( f,, cos3wt— f, in3wt) +---, (50)

f = pU? (for(0)coswt- f,, (0)sinwt) | (51)

+&(f 5 (0)cos3mt- f, (0)sin3wt) +---
where

fo(7) = for () +ifo (), f.(17) = fi () +if, (),

for (17) = " cosa,n, Ty (17)=—€ " sina,n,

fir (77) =A [e’?’al" cos3a,n —e " cosaén

—A [e’al” sina,n —e > sin3a,n

fu (7)=A [9’3?11'7 cos3a,n — e cosa,n

+A, [e’al” sina,n-e*sin 3a277} ,

for (0) = -2y, fo (0)=-2,,
i (0) = A (2, -3,) - A (2, - 30,
fu (0)= A (2, —38,)- A, (2,-3a,),
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—27a,(3; -3a,87) - Y& —a;
—6a,a, &1 w}+3a +¢
—27a:1(3a7a, —a3) - (a7 - a))

+(487a, —42,8])
3o, w+2a3,} +3a, +w
A = 2 :

~27ay (3] - 3a,3;) —Ha; - a;
—6a,a, o, w} +3a, + ¢

2
| 27 (3808, —a3) -9 (8] - 83)3
+2a,a, + 3a, + 3w

() +a; —6a/a;)

~27ay(a} —3a,a7) - 93] —a;
—6a,a, o, @} +3a, + ¢
—27a, (387, —a3) - (a7 - a§>]

(@ +a; —6aja])|
A 3o, w+23,a,} +3a, +®
= 2 y

270y (a) - 33,3;) - Aa - a]

(4313 a, - 43133 )

—6a,a, a, @} +3a, + ¢

2
+ ~270,(38fa, —8;) -9 (8 - a})3¢, @
+2a,a, +3a, + 3w

2 2
& =Cpr +Cry+Cpp a1, a, =C, +C, ,+C,, a1,
~ 2 ~ 2
a, =0, +dp+d,p01, 8, =d, +d, o, +d,, a1,
Copp = 1 1e C, = 1e
R 5> o fo 552
[ 3 2 2 2 4 2
Cor — 3CorCo — 6CorCo — 6@CHRCy, + 2C, + BT Cy,
L +65rCo1 — 2C5 — 6y,
Cr = 2 2 !
(1+2c,5 )" +4cq,
0 3 3 2 2 .3 3 2
2Cy,Cor —8CorCo + 6@CosCh + 3orCo — Co _BCOCOR:|
2 3.3 3
¢, =t —3wC;, + 6C5, Cor — 6aCye
| ’

(1+ 2cy, )2 +4c,

2 2

{3COR01R =301 C1r — BCoRCOI C1y + B&CRCy }(202 . +1)

orR — <Co

2 2
+ 6aCq  Cig —CiR +Ci

2 2
|:COR01I —Cg1C1 — 2CoRrCo) C1r — B@CRCIR :|4C0RCOI
+6axq €y — 2C15Cy

Cor = >
(ZCSR - 2c3, +1) +16¢5, ¢4,
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2 2
3CorC1r — 301 C1r — BCoRC) C1y + BACHRCy ( 4 )
2 2 —4CorCo)

2 2
l:CORClI —Cg) Cyy + 2CorCoi C1r — BCoRC1R }(ZCgR ~2c}, +1)
+6aC0 Cy) — 2C1pCy

Co =
(chR — 25 + 1)2 +16¢3, ¢,
1 1 1
dog = —=+=e,, dy =—e
R =558 o =582

ng —3d0Rdg| —6ngdg| —6ad grdy +2ng +6a’ngd0| (202 202 +1)
orR — £Cqj
+6d5,d3 —2dg —6adg,
(1+2dgg )? +4d2,

le =

2d0|ng _8dORng Jr6COdORdEle +3ngdg| _dgl —360ng
~3wdZ +6d3,d3; —60d 3,

d., =
! (1+ 2dor )2 + 4d§I

3ngle —3C§| Cig —6dordg dy; + 6@doRCy
+6adg dig —dx +dA

|:ng(11| —d§| dy +2dprdg dig — 6dordg
+6ad g dyy —2dirdy,

(202, - 202 +1f +16d2d2

}(2ng ~ 263 +1)

i|4d0RdOI

dZR =

3ngle _3dglle _6dORd0Id1I +6a)dOFédll
+6adg dig —dZ +dff

|:ng(11| _dgldll +2dprdg dig —6dordig
+6ad dy —2d1rdy

(202, - 202 +1f +16d2d2

}(— Hdondly)

}(m o — 203 + 1)

dZR =

. (1+49)+/(1+ 4p) +1607 | . 20
' 2 e |:(1+4¢)+ (1+44)° +160° :|i

2

4. CONCLUDING REMARKS

The third order non-linear partial differential equation is solved by the perturbation technique. The
solutions are given up to the sguare of the perturbation parameter. Both cases are discussed (i) when the
plate at y=0 is oscillating exponentially in time and (ii) when the the plate at the same location is
oscillating sinusoidally in time with frequency . The results of second-grade fluid are recovered by
taking the third-grade parameter £=0. When o;=/£5=0, we obtain the Newtonian fluid with Hall effects.
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Also when a;=£=m=0, we readily obtain the viscous fluid with Stokes | and |1 problems [18], depending
on whether the boundary at y=0 is of an impulsive nature or oscillating in time.
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