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Abstract– Mining association rules in distributed databases is an interesting problem in the 
context of parallel and distributed data mining. A number of approaches have, so far, been 
proposed for distributed mining of association rules. However, most of them consider all types of 
frequent itemsets the same, even though there are different types of itemsets in distributed 
databases, e.g., derivable and non-derivable. In this study, a new application of deduction rules is 
introduced for distributed mining of association rules which exploits the derivability of itemsets to 
reduce communication overhead and to enhance response time. A new algorithm is proposed 
which mines derivable and non-derivable frequent itemsets in a distributed database. Since the 
collection of derivable and non-derivable frequent itemsets form all frequent itemsets, our 
algorithm mines all frequent itemsets rather than a subset of them. In the algorithm, there is no 
need to scan local databases and exchange messages in order to obtain support counts of derivable 
frequent itemsets, since each site can produce them autonomously. Experimental evaluations on 
horizontally partitioned real-life datasets show that such exploitation drastically reduces 
communication and also improves response time.  Therefore the new algorithm is useful when 
communication bandwidth is the main bottleneck.          

 
Keywords– Distributed data mining, Association rules mining, Non-derivable frequent itemsets, distributed 
deduction rules  
 

1. INTRODUCTION 
 

Association rule mining (ARM) in large transactional databases is a central problem in the field of 
knowledge discovery and data mining, and has a wide application area such as market basket analysis, 
document clustering, web management, and profiling high frequency accident locations. The input of 
ARM is a database in which objects are grouped together in each transaction.  ARM then requires us to 
find sets of objects which tend to associate with one another. Given two distinct sets of objects, X and Y , 
we say Y is associated with X if the appearance of X usually implies Y , we then say that rule YX ⇒   is 
confident in the database. X and Y are also called itemsets (set of items) or patterns. We would not usually 
be interested in an association rule unless it appears in more than a certain fraction of the context; if it 
does, we say that the rule is frequent. The thresholds of frequency (minimum support) and confidence 
(minimum confidence) are parameters of the problem and are usually determined by the user according to 
his or her needs.  

The problem of mining association rules consists of two major steps, finding frequent itemsets from a 
database and generating rules based on found frequent itemsets. The first stage of this mining task is the 
most time consuming.  This is because generating association rules based on the found frequent pattern is 
straightforward. Therefore, the problem of mining association rules is reduced to finding frequent 
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itemsets. The problem of mining association rules in large databases is well studied and numerous 
algorithms have been proposed [1, 24, 17, 3, 9, 20, 5, 7, 6]. When data is saved in a distributed database, a 
distributed data mining algorithm is needed to mine association rules. In distributed data mining it is 
impossible to move raw data to a central site and then use a centralized data mining algorithm. This is due 
to the security of the data, the privacy of each site and high communication costs. Therefore, mining 
association rules in this environment is a distributed problem and must be performed using a distributed 
algorithm that doesn’t need raw data exchange between participating sites. Distributed Association Rules 
Mining, also called DARM, has been addressed by some researchers and a number of distributed 
algorithms have been proposed [2, 15, 22, 23, 4]. Run time and communication are two main factors that 
are considered in DARM. Performance of a DARM method as a distributed system can be evaluated using 
models presented in [19]. 

While all of the proposed DARM algorithms treat all types of itemsets the same, there are different 
types of itemsets. As mentioned in [12], in each dataset, itemsets are divided into two major groups, 
derivable and non-derivable. In a centralized database we can deduce support of derivable itemsets 
without a database scan. In this study, the idea of derivable and non-derivable frequent itemsets is 
extended in a distributed case where all frequent itemsets are found efficiently by the direct mining of non-
derivable frequent itemsets, and indirect mining of derivable itemsets. A distributed algorithm called 
DDN, which uses such a strategy to mine all frequent itemsets is proposed here.  Experimental evaluations 
of DDN on horizontally partitioned real-life datasets show the superiority of our approach in comparison 
with the previously proposed DARM algorithm.   

The remainder of the paper is as follows. In the following section some related works are reviewed. In 
Section 3, concept of non-derivable and derivable itemsets is reviewed and the problem of mining all non-
derivable frequent itemsets is extended to the distributed setting. Section 4 exploits derivability to mine all 
frequent itemsets and proposes the DDN algorithm. Some experimental evaluations showing the 
superiority of our approach are presented in Section 5. Finally, Section 6 concludes the paper and Section 
7 mentions some future works. 
 

2. RELATED WORKS 
 
To mine all association rules in distributed databases, a number of algorithms have been proposed in the 
literature. The first algorithm for the DARM problem is the Count Distribution (CD) algorithm, first 
proposed for parallel mining of association rules in the share nothing parallel systems [2]. It is a parallel 
version of the Apriori algorithm and assumes that data sets are horizontally partitioned among different 
sites. In each iteration of the CD, each site has an identical set of candidates. After counting their local 
support against the local database, the algorithm obtains a global count by exchanging local counts among 
participating sites. Cheung et al. proposed the Fast Distributed algorithm (FDM) to mine rules from 
distributed data sets partitioned among different sites [15]. In each site, FDM finds the local support 
counts and prunes all infrequent local candidate sets. After completing local pruning, each site broadcasts 
messages containing all the remaining candidate sets to all other sites to request their support counts. It 
then decides whether large itemsets are globally frequent and generates the candidate itemsets from the 
globally frequent itemsets. This process continues until no globally frequent itemset is generated or no 
candidate set is produced. FDM’s main advantage over CD is its reduction of communication overhead. In 
order to compare our algorithms, we have implemented the FDM algorithm as one which mines all 
frequent itemsets in a distributed setting directly. The FDM algorithm is also a base algorithm for the 
recently proposed ODAM algorithm [4]. ODAM has added greater message optimization and performance 
enhancement to the FDM. Assaf Schuster and his colleagues proposed the Distributed Decision Miner 
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(DDM) [22]. It generates only those rules that have confidence above the threshold level without 
generating a rule’s exact confidence, therefore considering all rules above the confidence threshold as 
being the same. Another algorithm proposed by Assaf et al. is Distributed Sampling [23] (D-Sampling), an 
extension of the sequential sampling algorithm [24] in distributed databases. 

In transactional databases there are different kinds of itemsets.  A number of researches have been 
proposed which classify itemsets in two groups from different points of view. The most popular of these 
are Closed itemsets [21], Free sets [8] or Generators [18], Disjunction-free sets [10] or Disjunction-free 
generators [18], which are extensions of free sets, Non-Derivable Itemsets [12] and the unified framework 
presented in [13].  Calders et al. have surveyed the core concepts used in the recent works on concise 
representation for frequent sets [14]. All the above categorization of itemsets are aimed at dividing the 
frequent itemsets into two groups, thus providing a concise representation.  This concise representation is 
a compact form of all the frequent itemsets. For example in [12], itemsets are classified to derivable and 
non-derivable. Experimental evaluations show that non-derivable frequent itemsets are one of the most 
successful classifications of frequent itemsets since a large number of frequent itemsets could be deduced 
without database scans [11]. If support of an itemset can be obtained without a database scan by using 
deduction rules, the itemset is derivable, if not it is non-derivable. In this study the derivability concept is 
referred to as the classification of an itemset in two groups, i.e., non-derivable and derivable. A new 
DARM algorithm is proposed here which benefits from the derivability of an itemset in a distributed 
environment. The following section reviews the problem of mining non-derivable frequent itemsets and 
extends the concept of derivability in distributed setting.  

 
3. MINING ALL NON-DERIVABLE FREQUENT ITEMSETS IN DISTRIBUTED DATABASES 

 
In this section, derivable and non-derivable itemsets are briefly reviewed. After that, we propose the 
concept of non-derivable frequent pattern mining in distributed environments and consequently derive 
distributed deduction rules.  In [12], rules were given to derive bounds on the support of an itemset I if the 
supports of all strict subsets of I are known. For any subset J ⊆ I, we obtain lower and upper bounds on 
the support of I using the following formulas, respectively [11]. 
 

If |I \ J| is odd, then                                                                                                           (1)   
 
 

If |I \ J| is even, then                                                                                                          (2)   
    

 
where ⊥.supp  is support of the itemset I. The rule involving I and X is referred by RX(I).  It was shown 
that the above rules deduce tight bounds on the support of a given itemset in the database D. If the lower 
bound of the itemset is equal to its upper bound, then the itemset is derivable.  

When for an itemset I the smallest upper bound (uI) equals the highest lower bound (lI), then we have 
actually obtained the exact support of the set based solely on the support of its subsets. Such a set I will be 
called Derivable Itemsets (DI), all other itemsets are called Non-Derivable Itemsets (NDIs).  Generating 
all frequent itemsets using non-derivable frequent itemsets is more efficient than mining all frequent 
itemsets at once. This is due to the fact that the derivable frequent itemsets do not need a database scan. A 
level-wise Apriori-like algorithm called NDI was given in [12] to compute non-derivable frequent 
itemsets. In the NDI algorithm, in addition to the monotonicity check of Apriori candidate generation, the 
lower and upper bounds on the candidate itemsets are computed. Such a check is possible since, in Apriori 
a set I can only be a candidate after all its strict subsets have been computed. The candidate itemsets that 
have an upper bound below the minimal support threshold are pruned, because they cannot be frequent. 
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The actual support count is specified for an itemset that has a lower bound equal to its upper bound. 
Therefore, for such itemsets, a support value is determined with no database scan. It was shown 
experimentally that mining all frequent itemsets using non-derivable frequent itemset mining is more 
efficient than the direct extraction of frequent itemsets if rules up to a suitable depth are used [12]. If we 
use only rules RX(I) for |I-X| ≤ k , we say that we use rules up to depth k. In practice most pruning is done 
by the rules of limited depth.  

Based on Non-derivable frequent itemsets, it is possible to generate not only all frequent itemsets, but 
also their support values. The following two corollaries from [12] allow us to generate derivable frequent 
itemsets. It is noted that Corollaries 1 and 2 are Corollaries 2 and 3 in [15]. 

 
Corollary 1. If I is an NDI, but it turns out that RX(I) equals the support of I, then all supersets I∪ {i} of I 
will be DI, with rules RX∪ {i}(I) and RX∪ {i}(I∪ {i}). 
 

In other words, if a non-derivable itemset I has support equal to the lower or upper bounds, then all its 
supersets are derivable as well and their support is calculated by extending whichever deduction rule that 
produces the exact support of I. 

 
Corollary 2. If we know that I is DI, and that rule RX(I) gives the exact support of I, then RX∪ {i}(I∪ {i}) 
gives the exact support for I∪ {i}. 
 

The above two corollaries help us to produce all frequent itemsets because by using them, it is not 
necessary to try all possible deduction rules for the above mentioned situations. In this study, non-
derivable frequent itemset mining and the above two corollaries are utilized to mine all frequent itemsets 
in distributed databases where the new algorithm DDN is proposed. 

Mining all frequent itemsets in distributed databases has some challenges. First, each site has to scan 
its local database for all candidates. Second, generating all frequent itemsets imposes excessive 
communication overhead on the network. These are due to the fact that there is a large amount of 
fragmented data distributed in participating sites, and especially when the low minimum support threshold 
is used and/or correlated data are spread in various sites. The aim is to reduce the I/O process and improve 
communication on the network. In fact, the distributed algorithm needs to scan local databases and to 
exchange messages not only for NDIs, but also for DIs. So far the proposed DARM algorithms consider 
the two types of itemsets the same and do not distinguish between them. By considering and utilizing this 
difference in distributed settings, the performance of the DARM algorithm is enhanced. In our new 
distributed algorithm, derivable frequent itemsets as a subset of all frequent itemsets, are generated in each 
site without any local database scan or message transmission. Based on exploiting the derivability concept, 
in this study a new approach named DDN is proposed to mine all frequent itemsets in horizontally 
fragmented data sets. In DDN, derivable frequent itemsets are indirectly generated in each site based on 
non-derivable frequent itemsets. It is shown here that such indirect extraction of frequent itemsets in 
distributed databases outperforms the direct mining of frequent itemsets. In DDN, the derivability concept 
is utilized within the FDM algorithm to achieve better performance. The choice of FDM derived from the 
fact that, in practice, it remains one of the most general algorithms for which other DARM algorithms 
such as ODAM are based. It is also used in the literature as a benchmark to compare the new DARM 
algorithm. Indeed, the derivability concept can be exploited in any DARM algorithm.   

As noted above in the new DARM algorithm, non-derivable frequent itemsets are mined in a 
distributed manner while derivable frequent itemsets are mined autonomously by each site. Here, it is 
shown how non-derivable frequent itemsets in a distributed database are extracted. Consequently, we 
investigate the application of deduction rules in a distributed environment to mine all frequent itemsets 
and introduce the concept of distributed deduction rules which are the extensions of ordinary deduction 
rules.  
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Let DB be a distributed database with D transactions. Suppose that there are n sites nSSS ,...,, 21  in a 
distributed database system where },...,,{ 21 nDBDBDB  are local databases respectively. We are going to 
mine non-derivable frequent itemsets in the distributed database. Assume that it is possible to move the 
data of every site into a centralized database system. If we do so, mining all non-derivable frequent 
itemsets using the NDI algorithm is a straightforward process.  However, moving data is costly and in 
some cases impossible due to the security of the data and the privacy of each site. As a result, a distributed 
algorithm which performs the mining task without any raw data exchange is proposed. First, deduction 
rules in the distributed setting are introduced. 

 
Distributed Deduction rules: Two formulas, 1 and 2 are extended here for the distributed case as 
follows: suppose that for an itemset I,  isupp.I  be the support of I on site iS . We obtain the following set 
of inequalities to derive tight bounds on the support of an itemset I in distributed database D. 

 
 If |I \ J| is odd, then  
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Similarly to the above, if |I \ J| is even, then 
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Consequently, the deduction rules in the distributed database can be summarized as follows: 

 
If |I \ J| is odd, then                      ∑ ∑
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The above two formulas show that, instead of moving the distributed data to a central site in order to 

determine the derivability of an itemset I, we can compute the deduction rules distributively. The new 
DARM algorithm uses the above deduction rules to decide whether an itemset I is derivable or non-
derivable in the distributed setting.  

As the above two formulas show, each site evaluates deduction rules for an itemset using information 
that is gathered from all sites about the subsets of that itemset. Since in a DARM algorithm each site has 
complete information about the global support of strict subsets of I, there is no need to actually compute 
the internal sigma, and in fact, they are actually computed before. The method used to generate all 
frequent itemsets using all non-derivable frequent itemsets is described in [12]. A similar procedure can be 
considered in a distributed setting using the distributed deduction rules. The Corollary 1 and 2 are used to 
efficiently generate all frequent itemsets.  

In the following section a new efficient method is proposed to mine all frequent itemsets in a 
distributed environment utilizing the derivability of the itemsets.  Experimental evaluations presented in 
Section 5 show that this approach considerably reduces communication and improves efficiency.  

 
4. EXPLOITING DERIVABILITY TO MINE ALL FREQUENT ITEMSETS 

 IN DISTRIBUTED DATABASES 
 

In every algorithm used to mine all frequent itemsets in a distributed database, e.g. CD and FDM, at each 
iteration there is a number of candidate itemsets for which the distributed algorithm has to scan the local 
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datasets and exchange the local support counts to determine globally frequent itemsets. At each iteration, a 
potential number of candidate itemsets are derivable. For such candidates there is no need to scan local 
databases and exchange support counts as each site can determine whether a derivable candidate is 
frequent or not, using previous information that the site has. In other words, in each iteration we have two 
types of candidates, non-derivable and derivable. For the former, local databases have to be scanned and 
the support counts have to be exchanged among sites, but for the latter there is no need for local database 
scans and support count exchanges. However, after a specified iteration it is probable that there is no non-
derivable candidate itemset, and thus each site can continue its operation autonomously without any local 
database scan, communication and synchronization.  

 
a) Motivating example 

 
The following example shows more clearly the effect of exploiting the derivability concept to mine all 

frequent patterns in a distributed database. 
 

Example 1: Consider a distributed database having two sites, S1 and S2, represented in Fig. 1, in which 
local transactional databases are D1 and D2, respectively. We are going to mine all frequent itemsets in the 
distributed database by using minimal support threshold 2. 

 
TID Items 

  1 
  2 

D,E 
A,B,C,F,G 

 
TID Items 

1 
2 

A,B,C,F 
D,E,H 
  

Fig. 1. A distributed database with two sites 
 

For the sake of simplicity and presentation, in this example the CD algorithm is adopted to mine 
frequent itemsets, although more efficient DARM algorithms, notably FDM and ODAM, have been 
proposed in the literature. Indeed, exploiting the derivability of itemsets for distributed pattern mining is 
independent of the algorithm. In the running example, after the local database scan of D1 and D2, and the 
exchange of the support counts of 1-itemsets between S1 and S2, the {A, B, C, D, E, F} frequent itemsets 
are found.  

All of them have support 2, and thus are frequent. Therefore the set of candidate 2 itemsets in each 
site are {AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF, EF}. Before any local database 
scan, each site checks for derivability of the candidate itemsets by deduction rules evaluation. The 
evaluation is performed based on global information about the previous iteration that is available at each 
site. In the running example tight bounds are computed for each candidate itemset, and deduction rule 
evaluation for candidate itemset AB is as follows:  

 
supp(AB)  ≥  supp(A) + supp(B) – supp({}) = 2 + 2 – 4  = 0         R {} 
supp(AB) ≤  supp(A) = 2                                                             R{A} 
supp(AB) ≤ supp(B)  = 2                                                            R {B} 
supp(AB) ≥ 0 

 
As a result, interval [0, 2] is tight bound for AB, therefore AB is non-derivable. The similar deduction 

rules evaluation is applied to all other candidates. The remaining process consisting of local database 
scans and support exchange between S1 and S2 is continued according to the CD algorithm, hence global 
large 2- itemsets are found at each site after iteration 2. This process results in the following set of 

D1= 

D2= 
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frequent itemsets with 2 as the support value. 
 

{AB, AC, AF, BC, BF, CF, DE} 
 

In the third iteration, the set of candidate 3 itemsets based on Apriori’s candidate generation approach 
are {ABC, ACF, ABF, BCF}.  Since both sites have complete information of iteration 1 and 2, each of 
them computes deduction rules independently. For example deduction rule evaluation for candidate 
itemset ABC is presented here: 

 
supp(ABC) ≤  supp(AB) +  supp(AC)  + supp(BC) – supp(A) –supp(B) –  supp(C) + supp({})  
=2+2+2- 2-2-2+4 = 4        R{} 
supp(ABC) ≥ supp(AB) + supp(AC) – supp(A) = 2+ 2-2 = 2         R{A} 
supp(ABC) ≥ supp(AB) + supp(BC) – supp(B) = 2+2-2 =  2         R{B} 
supp(ABC) ≥ supp(AC) + supp(BC) – supp(C) = 2+2-2 = 2          R{C} 
supp(ABC) ≤ supp(AB) = 2                                                              R{AB} 
supp(ABC) ≤ supp(AC) =2                                                               R{AC} 
supp(ABC) ≤ supp(BC) =2                                                               R{BC} 
supp(ABC) ≥ 0                                                                           

 
These sets of inequalities give us equality between the least upper bound and the greatest lower 

bound. Therefore, each site independently finds that the support value of ABC is 2, which satisfies the 
minimal support threshold. Consequently, there is no need to scan local databases and exchange support 
values across the network in order to compute the support of ABC. Other candidate 3–itemsets of the 
above distributed database are also derivable and frequent. Now, we come up with iteration 4, where the 
set of candidate 4-itemsets contains only ABCF. Since this set is an extension of derivable frequent 
itemset ABC as mentioned in [12], it is possible to compute the support of such itemset by using one of 
the deduction rules that gave the exact support of ABC. For example, we use the above RA rule and extend 
it by F as follows: 

 
supp(ABCF) = supp(ABF) + supp(ACF) – supp(AF) = 2+ 2-2 = 2                   RAF 

 
Therefore, it is also a frequent itemset.  To summarize, the set of frequent itemsets which are found 

directly are  
{A, B, C, D, E, F, AB, AC, AF, BC, BF, CF, DE}, and other frequent itemsets {ABC, ACF, ABF, BCF, 

ABCF} are found indirectly by utilizing the derivability concept. If the above example was solved by CD 
without using the derivability concept, we would have additional communication and I/O costs in iteration 
3 and 4, where the candidate sets contain derivable itemsets.    

Consequently, in a partitioned database there is no need to scan local databases and exchange support 
counts across the network in order to find global support counts of derivable itemsets. Since in distributed 
databases there are usually many derivable itemsets (quantity of such a derivable depends on the nature of 
data), we can save communication bandwidth and also achieve less response time by utilizing the 
derivability of itemsets. However, if we are going to find all frequent itemsets based on the non-derivable 
frequent itemsets, the amount of performance that is achieved depends on the nature of the distributed 
data. The distributed data mining algorithm can achieve better performance when there are more derivable 
frequent itemsets in the data set. 
 
b)  The DDN algorithm 

 
In this section a distributed algorithm called DDN is proposed for efficient mining of all frequent 

itemsets. The DDN is an acronym for distributed mining of Derivable and Non-derivable frequent itemset 
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mining. Since the collection of derivable and non-derivable frequent itemsets form all frequent itemsets, 
the DDN mines all frequent itemsets and not a subset of them. At each iteration of the distributed DDN, 
there is a large number of candidate itemsets for which each site deduces their support and identifies 
whether they are frequent or infrequent.  After some iteration, all candidates are potentially derivable, and 
each site continues to independently compute support of the candidates. This trend continues until there is 
no candidate itemset to generate and evaluate.  

In Example 2, from iteration 3 to the end all candidate itemsets are derivable. Although in the above 
example all deduction rules are evaluated, in practice, for most of the itemsets, it is enough to use only 
rules up to a limited depth, e.g., 3 or 4 [12]. Experimental evaluation in [12] shows that generating all 
frequent itemsets based on non-derivable are worthwhile in terms of run time when rules up to a specified 
depth are used. The reason for this is that the evaluation of all deduction rules for long pattern takes 
considerable time. The problem of determining the depth depends on the size of the database.  For larger 
databases it is better to use a smaller depth. In the implementation of DDN, rules up to depth 3 are 
evaluated because the datasets which are used in our experiments are large enough to use this depth. In 
fact, depth of rules is a simple parameter of the program and can be set to a suitable number.  

DDN utilizes the message optimization that was proposed in the FDM algorithm. The FDM's message 
optimization is based on the following important relationship between large itemsets and the sites in a 
distributed database:  Every globally large itemset must be locally large at some site(s). 

This relationship can significantly enhance communication among sites. Each site is responsible for 
gathering local support counts of candidates that are locally large at that site. Since a candidate itemset can 
be locally large at more than one site, to avoid doing the same work in two or more sites, for each 
candidate a special type of polling site is determined based on a hash function on the candidate. Since this 
hash function is identical in all sites, the unique polling site is determined by all sites on which the 
candidate is found locally frequent. Each polling site is responsible for collecting support counts of a 
specified set of candidates which are locally large at one or more site(s). The DDN benefits both from 
NDI [12] and FDM [15]. The DDN algorithm is depicted in Figure 2. For the ease of presentation the level 
of abstraction is heighten by using multiple procedures. For the completeness of the explanation, the entire 
algorithm including message optimization of FDM is illustrated. For complete information about the FDM 
algorithm interested readers are referred to [15].  

In each iteration k > 1, non-derivable candidate itemsets (CG(k)) are determined by the candidateGen 
procedure which receives globally large non-derivable frequent itemsets of a previous iteration (NDGi(k-1)) 
as input. In addition to generating non-derivable candidate itemsets, candidateGen computes derivable 
large itemsets of the iteration (DL(k)). In each iteration, computation of derivable frequent itemsets do not 
need a database scan or message exchange. These itemsets are the same in every site. The 
derivableFrequents function computes the remainder of the derivable frequent itemsets which resulted 
from derivable and non-derivable frequent itemsets of a previous iteration. This procedure inserts its result 
to DL(k).  

In Step 7, the local support of candidate itemsets are determined. If there are candidate non-derivable 
frequent itemsets, then message exchange between sites based on the FDM message optimization is 
started. The get_localFrequents function computes locally large frequent non-derivable itemsets, and then 
the polling site of each local large candidate is determined by determine_pollingSites. In Step 11 
candidates are sent to a corresponding polling site.  

In Step 12 through 14 each site receives its assigned non-derivable locally large candidate itemsets 
and stores all of them in the LPi(k) variable. If an itemset is already inserted in the variable, then just the 
support value is updated in insertorUpdate function. After that, in Step 15 the polling requests of 
candidates are sent. Polling requests are sent only for those itemsets for which the site does not have their 
support value.  
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In Step 16 each site sends a reply back to the polling requests of the other sites by using information 
stored in Ti(k).  Having received polling responses and updated corresponding information in the LPi(k) 
variable, at Step 18 each site determines global non-derivable frequent itemsets of its assigned candidates. 
In Steps 19 and 20 each site broadcasts its gained global non-derivable frequent itemsets to the others and 
receives theirs as well.  

In Step 21 every site has all global non-derivable k-itemsets. Finally, all large k-itemsets are 
computed by the union of derivable and non-derivable large itemsets of the iteration in Step 22 and are 
returned in Step 23. At iteration 1 of the DDN, i.e., k=1, only the frequency of singletons are determined, 
and since all of them are non-derivable candidates, Steps 3 through 7 are bypassed. 
 

Input: DBi(i=1,…,n): the database partition at each site Si. 
Output: The set of all globally large itemsets L. 
Method: Iteratively execute the following program fragment (for the k-th iteration) distributively at each site Si. 

The algorithm terminates when ∅=)(kL . 
(1)  if  k = 1 then 
(2)  Ti(1) = get_local_count(Di,0,1)  
(3)  else{ 
(4)  candidateGen(NDGi(k-1) , CG(k)  ,DL(k)) 
(5)  if  ∅≠− )1(kDL  then  
(6)  derivableFrequents(DL(k -1) , NDL(k-1)  , DL(k)  ) 
(7)  Ti(k) = get_local_count(Di,CG(k) ,i)} 
(8)  if CG(k)..size >0  then{ 
(9)   LLi(k) = get_localFrequents(Di,CG(k) ,i)  
(10)  LLi,j(k) = determine_pollingSites(LLi(k))  
(11)   for j=1 to n  send LLi,j(k) to site Sj 
(12)   for j=1 to n { 
(13)   recive LLj,i(k) 
(14)   insertorUpdate(LLj,i(k) , LPi(k) )} 
(15)   send_pollingRequets(LPi(k))  
(16)   reply_polling_Requests(Ti(k)) 
(17)   res = recive_pollingResponsesAndUpdate(LPi(k))  
(18)  Gi(k)= get_globalndFrequents(res) 
(19)  broadcast Gi(k); 

(20)  receive Gj(k)  from all other sites Sj ,(j )i≠       
(21)  NDL(k) =U

n

i kiG
1 )(=

, (i = 1,…,  n) } 

(22)  L(k) = )()( kk DLNDL ∪ . 
(23)  return L(k)  

Fig. 2. The DDN algorithm 
 

As shown in Fig. 2, DDN consists of many subprograms. Two important subprograms are 
candidateGen and derivableFrequents. These subprograms are shown in Figs. 3 and 4, respectively. The 
former generates non-derivable candidates and frequent derivable itemsets, while the latter produces the 
remaining derivable frequent itemsets.  The derivable frequent itemsets generated by the candidateGen are 
those that are identified by computing deduction rules up to depth 3, but the derivable frequent itemsets 
produced by the derivableFrequents are those that are computed using corollary 1 and 2.    

As shown in Fig. 3, in line 1 through 7 of candidateGen the subset of NDIs of the previous iteration 
which have the support equal to the lower or upper bound are identified and are inserted in the DL(k -1)  
variable. This is due to the fact that as noted in corollary 1, supersets of such itemsets are derivable and 
must be pruned from non-derivable frequent itemsets. The derivableFrequents function uses these 
itemsets in addition to derivable frequent itemsets to produce derivable frequent itemsets.  

In line 8 and 9 candidates are provided in a similar fashion to the FDM. In line 10 through 15 bounds 
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are determined on the support of the candidates. Non-derivable frequent itemsets are inserted to the list of 
candidates, i.e., CG(k)  and derivable frequent itemsets are added to the list of frequent derivable itemsets, 
i.e, DL(k). 

In Figure 4 the procedure for generating the remainder of frequent derivable itemsets is shown. As 
mentioned above, this type of frequent itemsets are those which are generated using corollary 1 and 2. For 
the sake of simplicity in the implementation, RX∪ {i}(I∪ {i}) is used to compute the support. This is 
common in the two types of derivable frequent itemsets mentioned in corollary 1 and 2.   

 
Procedure candidateGen(NDL(k-1)  , CG(k)   ,DL(k) , DL(k -1)  )  
   (1)     for  all )1( −∈ kiNDGX    do 
   (2)     if  X.sup = X.l  then 
   (3)     X.sr =X.lr 
  (4)      prune  X  from  NDL(k-1)  and insert it into DL(k -1) ;  
  (5)     If  X.sup= X.u then     
  (6)     X.sr = X.u 
  (7)      prune  X  from  NDL(k-1) and insert it into DL(k -1) ; 
  (8)     divide NDL(k-1)  into NDGLi(k-1), (i=1,…,n);  
  (9)     preCG(k) = Un

i kiCG1 )(=  = );(1 )1(Un
i kiNDGLaprioriGen= −      

 (10)    for all Y in PreCG(k)  do 
 (11)    compute bounds [l,u] on support of Y ; 
 (12)    if   l ≠  u then 
 (13)   Y.l = l ; Y.u = u; insert Y into CG(k) ; 
 (14)    else 
 (15)    if l  ≥  minSup  insert Y into DL(k) ; Y.sr =l  // can be Y.sr = u 
           end Procedure  

Fig. 3. Sub procedure candidateGen of DDN algorithm 
 

The first step in the derivableFrequents is generating candidate derivable itemsets DC(k) . The 
aprioriGen2 joins derivable frequent itemsets of the previous iteration with each other and with remaining 
non-derivable frequent itemsets of the previous iteration. In this way all extensions of derivable frequent 
itemsets are generated. As noted in corollary 1 and 2, such extensions are appropriate, thus in the 
derivableFrequents, all extensions are first generated, then their support is computed using the rule 
number included in the candidate itemset property. The rule number is included during candidate 
generation in the aprioriGen2. At the end of the derivableFrequents, the remainder of derivable frequent 
itemsets are determined and are inserted in the list of derivable frequent itemsets (DL(k)). In DDN, frequent 
non-derivable itemsets and derivable frequent itemsets together form all of the frequent itemsets.  

 
Procedure derivableFrequents(DL(k -1) , NDL(k-1)  , DL(k)     )  
   DC(k) = aprioriGen2(DL(k -1) , NDL(k-1) ) 
   for all Y in DC(k) do 
  compute support  s  of Y; 
  if  s  ≥  minSup then 
  insert Y into DL(k) 
  end Procedure  

Fig. 4. Sub procedure derivable frequents of DDN algorithm 
 

It is important to mention that in each iteration of the DDN algorithm, the DL(k) list is identical in each 
site. That is, deduced frequent derivable itemsets in all sites are the same.  In the beginning iterations of 
DDN, there are few derivable frequent itemsets, but as the algorithm continues to the latter iteration, the 
number of derivable frequent itemsets is increased. This trend continues until there is no non-derivable 
frequent itemsets. As the number of derivable frequent itemsets increases, the derivability concept delivers 
greater efficiency to the distributed algorithm. However, the number and length of derivable frequent 
itemsets are the property of the distributed database.      
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5. EXPERIMENTAL EVALUATIONS 
 
We have implemented all programs in C++ using Visual C++ 6 compiler. The implementations have been 
tested on a workstation for which Windows XP is running on every node. This workstation consists of 
eight 1.2GHz Pentium IV PCs with 256 MB of main memory, interconnected via a 10M/100M hub. 
Parallel message passing software MPICH 2 is used here. To empirically evaluate the proposed DDN 
algorithm rather than the FDM, several tests are performed on the datasets summarized in the following 
table. These real life datasets have different properties that help us to evaluate our new DARM algorithm 
in different situations. Our aim is to compare the DDN and the FDM in terms of communication and 
computation.  Communication and computation are measured with various numbers of nodes and various 
minimum support values. In every experiment the original dataset is horizontally divided into a number of 
fragments, each of which resides on a node.  

 
Table 1. Datasets characteristics  

Dataset Number of 
transactions 

Number of 
items 

Average 
transaction size 

Accident 340 184 572 45 
Pumsb 490 46 2 112 74 

Connect-4 67 557 130 43 
 

We conduct a set of experiments to show the efficiency of DDN when rules up to depth 3 are used. 
The following figures show the performance comparison between the DDN and the FDM. The DDN 
first finds all non-derivable frequent itemsets by using rules up to depth 3 and then mines remaining 
frequent sets by using them. Using rules up to limited depth 3 makes the approach more efficient, since 
computing all deduction rules takes more time than evaluating the rules up to only depth 3.  In the DDN 
approach each site finds non-derivable frequent itemsets by negotiation with other sites, while finding 
the other frequent itemsets (i.e., derivable frequent itemsets) independently. Figures 5 and 6 show the 
run time and message size of the two algorithms, FDM and DDN, on different data sets with respect to 
the number of sites when minimum support is fixed. 

Both FDM and DDN produce all frequent itemsets. As shown in Figure 5, DDN takes less time 
than FDM. This difference is due to the fact that the FDM is a direct approach that needs 
communication and synchronization with other sites to produce all frequent itemsets, while the DDN 
approach is an indirect approach that needs communication and synchronization only for non-derivable 
frequent itemsets that are produced by rules up to depth 3. 

Since the number of this type of non-derivable frequent itemsets can be quite small in dense 
datasets rather than all frequent itemsets, a large number of frequent itemsets (i.e., remaining frequent 
itemsets that are derivable) are generated without local database scan, thus as shown in Figure 5, DDN 
is more efficient than FDM. 

Figure 5 also shows that these results are true about the accident, the Pumsb and the connect-4 
datasets which have different characteristics. Minimal support is set to 0.7, 0.5 and 0.8 for accident, 
pumsb and connect-4 respectively. The figure clearly shows that the performance gap between the two 
approaches is tangible. This experiment shows that performance achievement using the DDN approach 
rather than the direct approach of FDM is different in various datasets. 

The total size of the message transmitted among participating sites using the two algorithms is also 
measured experimentally. Here, message size is measured based on the number of communication units 
which are exchanged among sites.  
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Fig. 5. Run Time comparison of  DDN and the FDM  algorithms for different number of sites 
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Fig. 6. Message size comparison of DDN and the FDM algorithms for different number of sites 
 

Figure 6 shows the amount of communication that is transmitted among sites with respect to the 
number of sites about different datasets. As can be seen in this figure, total message size transmitted by 
DDN is significantly less than the FDM algorithm. Since DDN independently obtains the support of 
derivable frequent itemsets, it does not need to exchange support counts for this type of itemset. This is the 
reason for the superiority of DDN rather than FDM in terms of communication amount. Figure 6 similarly 
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shows that the above result is true for accident, pumsb and connect-4 datasets. The figure obviously shows 
a considerable communication gap between DDN and FDM. In addition, to have better performance on 
datasets we also need less communication in the DDN.  

Figures 5 and 6 also show that the performance achievement of DDN in terms of message size is 
more than the performance achievement of the algorithm in terms of run time. This is because of the 
computation overhead of evaluating deduction rules. Although the DDN algorithm does not need a 
distributed database scan for derivable itemsets, the algorithm needs to evaluate deduction rules up to 
depth 3 instead. This evaluation imposes considerable computation to the DDN algorithm. In 
contradiction, DDN expends no extra communication to obtain derivable frequent itemsets. In fact, when 
in a distributed system the main cost is computation or a network bandwidth limitation, the DDN 
algorithm is more suitable.   
 

6. CONCLUSION   
 
In this study an efficient approach called DDN to mine all frequent itemsets in the distributed environment 
is proposed. The DDN exploits the derivability of itemsets for efficient mining of all frequent itemsets in 
distributed databases. In the DDN, derivability of itemsets is utilized within the well-known FDM 
algorithm. In fact, other DARM algorithms can benefit from the derivability of itemsets in order to 
achieve better response time and less communication.  

In the DDN, non-derivable frequent itemsets are mined in a distributed fashion and derivable frequent 
itemsets are mined locally and independently at every site. Therefore, in the DDN communication and I/O 
the cost of the distributed data mining is reduced significantly. Experimental evaluation on different 
horizontally partitioned real-life datasets show the superiority of the DDN approach rather than previously 
proposed method in terms of communication and computation time.  

Empirical evaluations also show that communication improvement of the DDN is more than its run 
time improvement rather than the well-known FDM algorithm. Therefore, our new algorithm is more 
useful in environments with communication bottleneck and bandwidth limitations.   
 

 7. FUTURE WORK 
 
As mentioned in section 4, Calders et al. [11] suggested using deduction rules up to depth 3 or 4 for 
centralized databases. However, further experiments are required in distributed environments to decide the 
depth of distributed deduction rules in order to reach a suitable tradeoff between the run time and 
communication costs.   

As some experiments in the previous section show, our new algorithm suffers from the scalability 
problem. Therefore, for future work we plan to add message optimization, presented on ODAM [4] on 
DDN, in order to achieve more scalability. On the other hand, Muhonen et al. recently proposed closed 
non-derivable frequent itemset representation which is more compact than both closed and non-derivable 
patterns [25]. We intend to use this type of representation to further reduction of communication and 
enhance run time in the distributed setting.  
 

REFERENCES 
 
1. Agrawal, R., Imiliniski, T. & Swami, A. (1993). Mining association rules between sets of items in large 

databases. In Proc. Of the ACM SIGMOD Conference on Management of Data, Washington, D.C.  
2. Agrawal, R. & Shafer, J. (1996). Parallel mining of association rules. IEEE Transaction on Knowledge and Data 

Engineering, Vol. 8, No. 6, pp. 962-969.  



Distributed association rules mining using non-derivable… 
 

December 2009                                                                         Iranian Journal of Science & Technology, Volume 33, Number B6 

525

3. Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the VLDB, 
Santiago de Chile, pp. 487-499.  

4. Ashrafi, M. Z., Taniar, D. & Smith, K. (2004). ODAM: an optimized distributed association rule mining 
algorithm. IEEE distributed systems online, Vol. 05, No. 3.  

5. Bodon, F. (2003). A fast apriori implementation. Proceedings of the IEEE ICDM Workshop on Frequent Itemset 
Mining Implementations.  

6. Bodon, F. (2004). Surprising results of trie-based fim algorithms. Proceedings of the IEEE ICDM Workshop on 
Frequent Itemset Mining Implementations (FIMI’04), Vol. 126 of CEUR Workshop Proceedings, Brighton, UK,.  

7. Borgelt, C. (2003). Efficient implementations of apriori and eclat. Proceedings of the IEEE ICDM Workshop on 
Frequent Itemset Mining Implementations (FIMI’03), Vol. 90 of CEUR Workshop Proceedings, Melbourne, 
Florida, USA.  

8. Boulicaut, J. F. et al. (2000). Approximation of frequency queries by means of free-sets. Proc. PKDD, pp. 75-
85.   

9. Brin, S., Motwani, R., Ullman, J. D. & Tsur, S. (1997). Dynamic itemset counting and implication rules for 
market basket data. Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, 
Vol. 26, No. 2, of SIGMOD Record, pages 255–264. ACM Press.  

10. Bykowski, A. & Rigotti, C. A (2001). Condensed representation to find frequent patterns. Proc. PODS.  
11. Calders, T. (2004). Deducing bounds on the support of itemsets. Database Technologies for Data Mining- 

Discovering Knowledge with Inductive Queries, Vol. 2682 of LNCS, pages 214-233. Springer-Verlag.  
12. Calders, T. & Goethals, B. (2002). Mining all non derivable frequent itemsets. Proc. Principles and Practice of 

Knowledge Discovery in Databases PKDD’02, Vol. 2431 of LNAI, pp. 74-85, Helsinki, FIN, Springer-Verlag.  
13. Calders, T. & Goethals, B. (2003). Mining k-free representation of frequent sets. Proc. Principles and Practice 

of Knowledge Discovery in Database PKDD’03, Vol. 2828 of LNAI, pp. 71-82, Cavtat-Dubrovnik, HR, 
Springer-Verlag.  

14. Calders, T., Rigotti, C. & Boulicautet, J. F. (2006). A survey on condensed representation for frequent sets. 
Constraint-Based Mining; Springer; Vol. 3848.  

15. Cheung, D. W. et al. (1996). A fast distributed algorithm for mining association rules. Proc. Parallel and 
Distributed Information Systems, IEEE CS Press, pp. 31-42.  

16. Geurts, K., Wets, G., Brijs, T. & Vanhoof, K. (2003). Profiling high frequency accident locations using 
association rules. Proc. of the 82nd Annual Transportation Research Board, p. 18.  

17. Han, J., Pie, J., Yin, Y. & Mao, R. (2003). Mining frequent pattern without candidate generation: A frequent-
pattern tree approach. Data Mining and Knowledge Discovery. 

18. Kryszkiewicz, M. (2001). Concise representation of frequent patterns based on disjunction free generators. In 
Proc. ICDM, pp. 305-312.  

19. Naghibzadeh, M. (1998). Modeling and performance evaluation of distributed system with coordinator. Iranian 
Journal of Science and Technology, Transaction B: Engineering, Vol. 22, No. B3, pp 317-328. 

20. Park, J. S., Chen, M. S. & Yu, P. S. (1995). An effective hash based algorithm for mining association rules. In 
Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, Vol. 24, No. 2, of 
SIGMOD Record, pp. 175-186. ACM Press.  

21. Pasquier, N. et al. (1999). Discovering frequent closed itemsets for association rules. Proc. ICDT, pp. 398-416.  
22. Schuster, A. & Wolf, R. (2001). Communication-efficient distributed mining of association rules. Proc. ACM 

SIGMOD International Conference on Management of Data, ACM Press, pp. 473-484.  



M. Deypir and M. H. Sadreddini 
 

Iranian Journal of Science & Technology, Volume 33, Number B6                                                                         December 2009 

526 

23. Schuster, A., Wolf, R. & Trock, D. (2005). A high-performance distributed algorithm for mining association 
rules. Knowledge And Information Systems (KAIS) Journal, Vol. 7, No. 4.  

24. Toivonen, H. (1996). Sampling large databases for association rules. T.M. Vijayaraman, A.P. Buchmann, C. 
Mohan, and N.L. Sarda, editors, Proceedings 22nd International Conference on Very Large Data Bases, pp. 
134–145. Morgan Kaufmann. 

25. Muhonen, J. & Toivonen, H. (2006). Closed non-derivable itemsets. The 10th European Conference on 
Principles and Practice of Knowledge Discovery in Databases (PKDD 06), 601-608, Berlin, Germany. 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


