
Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 30, No. B6, pp 763-773
Printed in The Islamic Republic of Iran, 2006
© Shiraz University

CMI: A METHOD TO CONFIGURE CORBA REMOTE CALLS IN SUPPORT
OF FT-CORBA FAULT-DETECTION MECHANISMS*

M. SHARIFI** AND H. SALIMI
Dept. of Computer Engineering, Iran University of Science and Technology, Tehran, I. R. of Iran

Email: msharifi@iust.ac.ir

Abstract– Collocated CORBA objects that reside in the same address space can benefit from
special local calls which can be performed without ORB intervention. This type of invocation can
be particularly beneficial to fault detection mechanisms defined in FT-CORBA specifications.
According to FT-CORBA, a group of objects, namely fault detectors, periodically monitor the
status of replicated objects in the system to make sure that they are alive. In cases where a fault
detector object is collocated with some of the objects that are monitored by this detector, direct
invocations can improve the performance of fault detection mechanisms. All the known available
methods for direct calls to collocated CORBA objects are flawed either with unnecessary pre-
checks that are performed before each invocation, or with violation of the remote call semantics
(like bypassing ORB and POA). In addition, as this paper shows, in some cases the default pre-
checks that are performed before a call are not sufficient, and none of the available methods allow
the applications to perform domain-dependent pre-checks or to only override the default ones.
CMI (Configurable Method Invocation) is a new method that allows the pre-checks to be selected
before each direct call in order to avoid investigating unnecessary conditions. Furthermore, it
allows the developers to make application-dependent pre-checks or override the existing ones
before each call. To achieve these two properties, we have changed the CORBA IDL compiler in
such a way to generate a special code in addition to the code for collocation-safe stubs. This extra
code permits the developer to manipulate the execution of pre-checks which must be performed
before each call. Implementation results of our method show a 41% reduction of communication
overheads in a fault detection mechanism compared to the standard approach. The possibility of
checking a user-defined pre-check before each direct call is also shown.

Keywords– Collocation, FT-CORBA, fault-detection, standard and direct calls

1. INTRODUCTION

Although the earliest reliable CORBA (Common Object Request Broker Architecture) implementations
have been introduced during the last decade, and despite the adoption of the fault tolerant CORBA (FT-
CORBA) [1] standard by Object Management Group (OMG), CORBA is still not considered the preferred
platform for building dependable distributed applications [2].

The FT-CORBA specification divides the fault management process into three activities: (1) fault
detection, (2) fault notification and (3) fault analysis, and proposes appropriate mechanisms for each of
these activities. For example, for fault detection activities the so-called fault detector objects are used, in
which a sentinel object monitors the state of replicated objects.

There are mainly two methods for the detection of faults in FT-CORBA which include: (1) PUSH-
based monitoring and (2) PULL-based monitoring. In the PUSH-based approach, every object informs its
liveness to the fault detector object periodically. On the other hand, in the PULL-based approach, the fault
detector object pings the other replica objects in order to make sure that the other objects are alive.

∗Received by the editors October 16, 2005; final revised form November 5, 2006.
∗∗Corresponding author

M. Sharifi / H. Salimi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

764

An important point about the fault detection mechanisms introduced by FT-CORBA specifications is
that nothing is mentioned about the communication type between the fault detector and the replica objects.
For example, in PUSH-based methods, all invocations can be defined as one-way calls. Also, in PULL-
based methods, direct call techniques can be applied in order to achieve better performance.

Several methods have already been proposed in which two collocated objects can communicate, but
because of the limitations that exist in these methods, they cannot be used as a communication technique
for connecting a fault detector to replica objects. The reason for this problem is that none of the proposed
methods are capable of performing user-defined pre-checks in a way that collocated objects can
communicate in a CORBA-compliant way as well. In this paper, we extend the existing methods so that
direct calls are allowed to be configured, and at the same time, the calling is kept CORBA-compliant.

The remainder of this paper is organized as follows. Section 2 provides a minimal overview of the
architecture of CORBA remote invocations required in our discussions. Section 3 describes some notable
related works. Section 4 presents some of the important limitations of the existing methods. Section 5
presents our proposed approach. Section 6 illustrates some of the experimental results of our approach,
and finally, Section 7 concludes the paper.

2. OVERVIEW OF CORBA REMOTE CALLS

The architecture of CORBA remote calls is designed in such a flexible way that it can be easily configured
for different purposes. There are four main elements involved in a remote call [3]: (1) ORB, (2) POA, (3)
POA Managers and (4) Servants.

a) ORB

ORB (Object Request Broker) is responsible for connecting the client and server objects. ORB resides
on top of the operating system as a transparent layer and delivers the requests to the right objects,
regardless of their locations, platforms and also the languages in which those objects have been
implemented.

Fig. 1. The request flow of a remote invocation in CORBA

b) POA

The main purpose of a POA (Portable Object Adaptor) is to connect the abstract concept of a CORBA
object and the concrete representation of that object’s behavior in the form of a servant. In other words, a
POA can be seen as a mapping tool that redirects incoming requests to the relevant objects in the server’s
memory.

Each POA has seven policies that are associated with that POA when it is created (and remain in
effect without change for the lifetime of each POA). The policies control aspects of the implementation
techniques that are used by servants using that POA, such as the threading model and the persistent state
of object references.

c) POA manager

A POA manager acts as a request entrance gate that redirects the flow of received messages to one or
more associated POAs. Conceptually, a POA manager represents a transport endpoint (such as a host–port

Incoming
Requests ORB POA

Manager POA

Dispatch

Servants

CMI: a method to configure CORBA remote cells in…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

765

pair for TCP/IP). A POA is associated with its POA manager when the POA is created; thereafter, the
POA manager for a POA cannot be changed. A POA manager can be in one of the following four possible
states:

1) Active. This is the normal state in which the POA manager passes all of the incoming requests to the

target POA.
2) Holding. In this state, the POA manager holds requests in a queue. Once the POA manager enters the

active state, it passes all of the requests to their destination POAs.
3) Discarding. Incoming requests are rejected with a TRANSIENT exception. This exception indicates

to the client that the request cannot be delivered right now, but that it may work if retransmitted again
later.

4) Inactive. Requests are rejected; however, instead of raising an exception, the POA manager indicates
to the client that the connection to the server is no longer usable. Depending on how the client is
configured, this may result in an attempt by the client to locate a new instance of the server.

d) Servants

A Servant is a language-specific object that receives the requests. It receives the requests from its
associated POA, which is assigned to it at its creation time.
The general request flow into a server is shown in Fig. 1. Note that the diagram only represents a
conceptual view. In the implementation, requests are not physically passed in this way for efficiency
reasons.

3. RELATED WORKS

To put our proposed approach into context, first The ACE ORB (TAO) is described. After that, the
previous attempts at reducing communication overheads between CORBA objects which reside in the
same address space are discussed.

a) TAO

TAO (The ACE ORB) [4] is an ORB endsystem that includes the network interface, communication
protocol, operating system, and CORBA middleware components and features shown in Fig. 2. TAO is
based on the CORBA reference model, with the following improvements which are designed in order to
overcome the drawbacks of legacy ORBs in support of real-time applications:

Fig. 2. Components in the TAO Real-time ORB [5]

M. Sharifi / H. Salimi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

766

Real-Time IDL Stubs and Skeletons: In addition to marshaling and demarshaling of operation
parameters, TAO’s Real-time IDL (RIDL) stubs and skeletons are designed to ensure that application
timing deadlines are fulfilled.

Real-Time Object Adapter and ORB Core: In addition to associating servants with the ORB and
demultiplexing incoming requests to servants, TAO’s Object Adapter (OA) implementation dispatches
servant operations in accordance with various real-time scheduling strategies.

ORB QoS Interface: TAO’s QoS interface is designed to map real-time processing requirements to ORB
endsystem network resources. Common real-time processing requirements include end-to-end latency
bounds and periodic scheduling deadlines. Common ORB endsystem/network resources include CPU,
memory, network connections and storage devices.

Real-time I/O Subsystem: TAO’s real-time I/O subsystem performs admission control and assigns
priorities to real-time I/O threads so that the schedulability of application components and ORB endsystem
resources can be guaranteed.

b) Collocation Optimization

In this section, previous attempts at reducing communication overheads between CORBA objects
which reside in the same address space are discussed under four headings: (1) TAO strategies, (2) CCM
language mapping, (3) development of local CORBA components and (4) local ORB-like services.

TAO Strategies: Collocation optimizations for CORBA can be considered as a technique to transparently
optimize communication overheads when clients and servants reside in the same address space.
Collocation optimizations on TAO [5-7] have mainly focused on two different techniques: direct and
standard.

In direct collocation technique, all requests are forwarded directly to the servant object. Thus, the
other intermediary elements are not involved at all. Performance results have shown that direct collocation
invocations of CORBA objects are almost comparable to virtual method invocations of ordinary C++
objects. But because of omitting some of the important elements like POA and POA manager, this
technique is no longer CORBA compliant.

The standard collocation technique uses a so-called collocation-safe stub to handle operation
invocations on a collocated object. Collocation-safe stubs perform a set of pre-checks before dispatching
the request to the target object. These pre-checks are performed in support of keeping the invocation
CORBA compliant, but these activities cause a significant amount of overhead [6].

Although the direct approach implemented in TAO yields better performance, there are some
problems because of not using the ORB and POA functionality. These problems, as discussed in Section
4, imply that this technique is not suitable to be deployed in FT-CORBA fault detection mechanisms.

CCM Language Mapping: The CORBA Component Model (CCM) Specification [8], contains language
mappings which define local interfaces. These interfaces are used to implement local components. The
local keyword was added in the CCM specification and can appear in an IDL before the interface
keyword. This keyword indicates that the interface can only be implemented by objects in the current
process.

A local interface is implemented by extending the CORBA::LocalObject class. IDL attributes and
operations are implemented in the same way as a regular servant object. But the difference is that the
invocations that are targeted to an object which implements a local interface will not pass through the
ORB and other intermediary elements.

CMI: a method to configure CORBA remote cells in…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

767

This approach extremely decreases the communication overhead between a component and its facets
residing in the same address space. However, as will be discussed in Section 4, this approach can not
guarantee a trusted communication mechanism for connecting a fault detector and a replica object.

Development of Local CORBA Components: The concept of Local Component Adapter Concept
(LCAC) is introduced in [9]. This approach separates the application code from the implementation of the
CORBA component logic. For every IDL definition of a CORBA interface or component, a corresponding
interface in the native implementation language is defined. Adapter classes provide CORBA mappings,
and link the implementation of business logic to the CCM component. By taking advantage of the adapter
concept, the developers can implement local components without a CORBA shell. Using a local path for
connecting components significantly reduces the communication overhead, but as some of the previous
research show, this approach will not remain CORBA compliant because of failure to use some of the
CORBA utilities (e.g. POA and POA manager).

Local ORB-Like Services: In our previous work, Local ORB-Like Services are presented [10]. This
approach tries to connect collocated components with local ORB like services support. In this approach, a
unit inside each container is responsible for handling communication between components within or
outside the container. Local requests are passed to the local components without ORB involvement. Local
or remoteness of a request is determined from the IOR of the called component which has been logged by
the relevant special unit upon the creation of the component in its container.

It has been shown that the above approach greatly reduces the communication overhead between a
component and its collocated components residing in the same address space. However, in the case of
fault detection systems, it is strongly required to have the components connected using some intermediate
elements like POA and ORB. So, as discussed in greater detail in Section 4, this approach cannot be
appropriate as a communication mechanism to be used between the fault detector and replica objects.

4. LIMITATION OF AVAILABLE METHODS TO BE USED IN FT-CORBA
FAULT DETECTION MECHANISMS

All available methods for decreasing the unnecessary overheads of collocated object calls can be
categorized into two main groups. The first group includes those techniques in which the remote calls do
not remain CORBA-compliant. In these techniques, some intermediate elements like POA are bypassed,
so the performance of invocations increases dramatically. The direct technique which is used by TAO and
the others described in Section 3b are some examples of this approach. On the other hand, the second
group includes those techniques that try to respect the principles of the CORBA remote call. A well-
known technique in this category is the standard call technique mentioned in Section 3b. Based on our
knowledge, this technique is the only method that can connect two collocated objects directly, and at the
same time tries to keep the invocations CORBA-compliant.

The techniques in the first group cannot be used for connecting a fault detector to a replica object. The
reason is that the replica object may encounter a failure due to the loss of its connection to ORB. Since the
ORB is not involved in this type of communication, the failure will not be detected at all.

The techniques in the second group are more akin to our proposed approach, but are flawed with two
drawbacks: (1) performing unnecessary pre-checks and (2) disability of overriding the default pre-checks.
These drawbacks are discussed in greater detail in Sections 4a and 4b.

a) Performing Unnecessary Pre-Checks

One of the weak points that makes the second group of methods inappropriate is the number of
unnecessary investigations that are performed before each invocation. Going through all these pre-checks

M. Sharifi / H. Salimi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

768

incurs a non-trivial amount of overhead [5]. The invocation of an operation via a collocation-safe stub
must undergo the following checks:

1) The server ORB (which may or may not be the ORB used by the invoking client) has not been

shutdown.
2) The POA managing the servant still exists.
3) The POA manager of this POA is queried to make sure invocations are allowed on the POA’s

servants.
4) The POA’s policies, e.g., the Thread Policy are respected.
5) Interceptors are invoked at the proper interception points.
6) The invocations are not re-directed elsewhere.
7) One way method calling semantics must be preserved.

What is important to note about these steps is that in many cases investigating all of the mentioned steps is
unnecessary. For example, in a direct call from a fault detector object to a replica object in a PULL-based
monitoring scheme, it is not necessary to check Steps 4 and 7, and sometimes Steps 5 and 6. Also in a
PUSH-Based monitoring scheme, there is no need to check Steps 3 and 4, and Steps 1 and 2 must be
performed in another way. Table 1 tabulates the necessary pre-checks before any invocation under these
two monitoring schemes.

Table 1. Pre-checks that must be performed under the two monitoring schemes before any call
from a fault detector to a replica object or vice versa

Required Investigations,
Needed to be Performed
before Each Invocation

PULL-Based Monitoring PUSH-Based Monitoring

1. Checking Servant's
ORB Liveness

Yes, because any failure on
servant's ORB must be
reported as a fault.

No, instead, the status of
the client ORB must be
checked.

2. Checking Servant's
POA Liveness

Yes, because any failure on
servant's POA must be
reported as a fault.

No, instead, the status of
the client POA must be
checked.

3. Checking Servant's
POA Manager
Liveness

Yes, because any failure on
servant's POA manager
must be reported as a fault.

No, because if POA
manager is on a non-
active state, the pre-
checks must be
performed

4. Checking Servant's
POA Thread Policy

No, because existing two
threads in a servant, one of
whom is the thread of fault
detector object, is not
dangerous (Call to is_alive()
method does not change the
state of the servant object).

Depends, this case
depends on the fault
detector object, i.e. is the
replica object in this
case.

5. Calling all Registered
Interceptors

Depends, it depends on
whether any interceptors are
registered or not.

Depends, for the same
reason mentioned for
PULL-Based monitoring.

6. Considering Re-
Directed Invocations

Depends, it depends whether
re-directed invocations are
enabled on ORB or no.

Depends, for the same
reason mentioned for
PULL-Based monitoring.

7. Respecting Oneway
Invocation Semantics

No, invocations from fault
detector object to replica
object can not be oneway.

Yes, because all
invocations from replica
object to fault detector
can be oneway.

CMI: a method to configure CORBA remote cells in…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

769

b) Disability of Overriding the Default Pre-checks

As is shown in Table 1, in some cases the default pre-checks to be performed before an invocation
must be changed to fulfill some of the domain-dependent requirements. For example, in a PUSH-based
monitoring scheme, instead of checking the status of the servant's ORB, the status of the client’s ORB
must be checked. The reason for this change is that the replica object must send a fault report to the fault
detector when its ORB is not alive.

5. OUR PROPOSED APPROACH

As discussed in Section 4, the techniques in which the current research is focused on have the following
drawbacks:
1) Some of them do not keep the invocations CORBA-compliant.
2) Those that respect the CORBA remote call principles (like the TAO’s standard approach), implicate a

number of unnecessary pre-checks.
3) None provides an application with embedded domain-dependent investigations.

To solve the above mentioned problems, a CMI approach is proposed. This approach is based on
TAO’s standard call. As depicted in Fig. 3, in addition to the TAO’s Collocation-Safe Stub (CSS), an
extra part, namely Extended Collocation-Safe Stub (ECSS), is designed which inherits from the main stub.
In this case, the client ORB creates an instance of ECSS when it wants to wrap an object reference, instead
of using an instance of CSS.

Many ORBs need some information to set a few policies up before running. As an example, our
version of ORBacus [11] needs a configuration file to be placed in the same path of the client application.
From this file, the ORB acquires the necessary information to be initialized, like its concurrency model.
The path of this file is passed to the orb_init() method as a parameter. In this file, we also provide the
ORB with the information about using the appropriate stub. In the case of using ECSS, we determine
which pre-checks should be investigated in this stub.

Fig. 3. Communication architecture of two collocated objects
using Extended Collocated-Safe Stub (ECSS)

The code for ECSS is generated by a CORBA IDL compiler. We have changed the IDL compiler in

such a way to generate a code for this extended part. ECSS is used to override the default pre-checks of
CSS. In this stub, the developer can either put his own pre-checks or use the default ones prepared at the
main stub.

In order to provide the ability for selecting the pre-checks that must be performed before each call,
another strategy is employed. As shown in Fig. 4, the CSS is equipped with a utility called the
Configuration Manager (CM). The CM is responsible for providing the CSS with the checks that must be

Collocation
Safe Stub

Extended
Collocation
Safe Stub

CORBA
Object

POA

POA
Manager

Client
ORB

CORBA
Object

POA

POA
Manager

Server
ORB

M. Sharifi / H. Salimi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

770

performed before each invocation. The CM interface is implemented in such a way to return the calling
parameters to CSS. The default implementation of this interface reads the settings from a file. Other
implementations may realize this interface, and read the configurations from somewhere else, e.g. a
system registry.

Fig. 4. CMI’s configuration management strategy

To clarify our proposed approach, some parts of the generated code for the is_alive method at the
IPULLMonitorable interface is depicted below.

CORBA::Boolean

OBDirecStubImplEx_IPULLMonitorable::is_alive(

CORBA::AbstractBase_ptr p)

{

 PortableServer::POA_ptr _col_poa_;

 if (_col_poa_ = OBGetCollocated_poa(p))

 {

 if (!_OBCheck_Prerequisites())

 OB::RaiseFailureException();

return ((POA_IPULLMonitorable*)(_ob_servant_))->is_alive();

 }

 else

 return OBDirectStubImpl_IPULLMonitorable::is_alive();

}

CORBA::Boolean

OBDirectStubImplEx_IPULLMonitorable::_OBCheck_Prerequisites()

{

unsigned long _direct_call_config_;

_direct_call_config_ = _ob_config_mgr_base -> get_config();

 if (_direct_call_config_|CHECK_ORB) if (!_ob_check_orb())

 return false;

 if (_direct_call_config_|CHECK_POA) if (!_ob_check_poa())

 return false;

 // Other Checking for POA Manager, Interceptors

 // and … will be placed here.

 Return true;

}

Collocation
Safe Stub

Extended
Collocation
Safe Stub

Configuration
Manager

File
Configuration

Manager

CMI: a method to configure CORBA remote cells in…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

771

According to the given code, there are two main classes in the generated code:
OBDirectStubImpl_IPULLMonitorable and OBDirectStubImplEx_IPULLMonitorable. The former is
collocation-safe stub, and the later class plays the role of extended collocation-safe stub.

As illustrated, the collocation check in the OBDirectStubImplEx_IPULLMonitorable::is_alive method
is performed in order to see if the target object is collocated or not. If the target object is collocated, first
the prerequisites are checked. If the prerequisite checks are successful, the target object is called directly;
otherwise a system exception is raised.

For checking the prerequisites of a call, a method, namely _OBCheck_Prerequisites, is provided. This
method gets the pre-checks from the CM and makes sure that the CORBA remote call semantics are
preserved.

6. PERFORMANCE EVALUATION

To measure the performance gain from CMI’s optimization, we ran client and server objects, O1 (as a
fault detector) and O2 (as a replica object) in the same process. As depicted in Fig. 5, O2 realizes an
interface, namely IMainObject. This interface inherits from the IPULLMonitorable interface defined in the
FT-CORBA specification. The only method of the IPULLMonitorable interface is is_alive, which is used
by fault detectors to monitor the state of replica objects.

Fig. 5. The class diagram of our benchmark program

The platform used to benchmark the test program was an Athlon 1.8 MHz running Microsoft Windows
XP with SP1. The test program was developed using ORBacus (Version 4.4.1) and the codes were
compiled by Microsoft Visual C++ 6.0 compiler.

To compare performance systematically, the test program was run with the CMI strategy, the
standard collocation strategy, and the direct collocation strategy, as well as with no collocation
optimization, i.e., using remote stubs. To compare the performance gain of collocation optimizations to
the optimal performance, we also measured the time to perform the same tasks by making direct virtual
function calls on the target servant. In all of these tests, the is_alive method was the target function which
was called by O1.

We ran our benchmark program 100 times and in each run, for every invocation technique, we made
10000 calls from the fault detector to the replica object. Using all the measured data, we calculated the
average calls per second for each invocation type. Figure 6 shows the performance improvement,
measured in calls-per-second. With the CMI optimization, we obtained a performance improvement of
41% compared to the case when the calls were made using the standard strategy. It should be noted that
although other approaches such as virtual and direct show better performance than CMI, they are not
suited to fault detection mechanisms because of violation of remote call semantics. A feature-wise
comparison of our approach with other approaches is briefed in Table 2.

O1 Pings

IMainObject

IPULLMonitorable

O2

M. Sharifi / H. Salimi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

772

Fig. 6. The results of CMI’s performance optimization

Table 2. A feature-wised comparison of our proposed approach

Collocation

Optimization

Environment

Preserving
CORBA

Remote Call
Semantics

Configuring
the

Pre-Checks

Overriding
of

Pre-Checks

Collocation
Optimization Yes TAO Yes No No

CCM
Language
Mapping

Yes CCM Spec. No No No

Local CORBA
Components Yes MicoCCM No No No

Local ORB-
Like Services Yes MicoCCM No No No

CMI Yes ORBAcus Yes Yes Yes

7. CONCLUSION AND FURTHER WORKS

In this paper we presented the limitations of the current methods for supporting CORBA collocated object
calls. As a case study we showed why these methods are not suitable for connecting a fault detector to a
replica object. A new approach was presented based on TAO’s standard calling. This approach allows the
collocated objects to be connected without entailing customary CORBA overheads, and at the same time
permits the invocation settings to be fully configured or customized. Both features are handled by an
extended stub called Extended Collocation-Safe Stub, which is generated by a special IDL compiler.
Experimental results have shown a 21% performance improvement in cases where a fault detector and its
entire replica objects are collocated.
To continue the current research, we are planning to work on the following topics in future:
1) Creating a set of policies modeled after CORBA, ORB, and POA policies that could be applied on the

client to configure the checks that are done for the collocated case.
2) Introduce efficient techniques in order to omit the overhead of the collocation check before each call

to an object.
3) Extend the PULL-based fault detection mechanism in such a way that could tune its call period

proportional to the loss of oneway calls in a real environment.

Calls Per Second

555

2298850
1960784

928505

1311237

0

500000

1000000

1500000

2000000

2500000

3000000

Remote Virtual Direct Standard CMI

CMI: a method to configure CORBA remote cells in…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

773

4) Designing mechanisms in which objects that are involved in a fault detection mechanism could
change their selected scheme dynamically.

REFERENCES

1. Object Management Group, (2001). Fault Tolerant CORBA (Final Adopted Specification). OMG Technical

Committee Document, formal/01-12-29.
2. Felber, P. & Narasimhan, P. (2004). Experiences, strategies and challenges in building fault-tolerant CORBA

systems. IEEE Transactions on Computers, Vol. 53(5).
3. Object Oriented Concepts, Inc. (2000). CORBA/C++ programming with ORBacus. Student Workbook, Version

1.0.5, http://www.ooc.com
4. Center for Distributed Object Computing, TAO, (2002). A high-performance real-time object request broker.

Washington University www.cs.wustl.edu/~schmidt/TAO.html
5. Pyarali, I., O’Ryan, C., Schmidt, D.C., Wang, N., Kachroo, V. & Gokhale, A. (1999). Applying optimization

patterns to design of real-time ORBs, in Proceedings of the 5th Conference on Object-Oriented Technologies and
Systems, (San Diego, CA), USENIX.

6. Schmidt, D.C., Wang, N. & Vinoski, S. (1999). Object interconnections: Collocation optimization for CORBA,
SIGS C++ Report.

7. Schmidt, D. C., Wang, N. & Levine, D. (2000). Optimizing the CORBA Component Model for High-
Performance and Real-Time Applications, Middleware, New York.

8. Object Management Group, (2000). CORBA Component Model. Technical Report 01-11-03.
9. Teiniker, E., Mitterdorfer, S., Kreiner, C. & Kovacs, Z. (2002). Local components and reuse of legacy code in

the CORBA component model. EUROMICRO 2002, Dortmund, Germany.
10. Sharifi, M., Rahmani, A.T., Rafe, V., Momeni, H. (2004). CORBA components collocation optimization with

local ORB-like services support. Lecture Notes in Computer Science (LNCS), No. 3291, Springer-Verlag, 1143-
1154.

11. IONA Technologies Co., ORBacus 4.1.1, http://www.orbacus.com

