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Abstract– We propose a novel algorithm called RCA_MC, in which we use the breadth first 
search method (BFS) in conjunction with edge contraction and connectivity properties of a given 
undirected graph to enumerate and scan all its minimal edge cutsets. It is known that the problem 
of enumerating all minimal edge cutsets of a given graph is #P-complete. In addition, we introduce 
the concepts of pivot vertex and absorbable clusters, and use them to develop our enhanced 
recursive contraction for scanning all mimimal edge cutsets, called ERCA_MC, of a given graph.  
Simulation results provide empirical evidence that the complexity of the ERCA_MC algorithm is 
linear per cutset.           
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1. INTRODUCTION 
 

Scanning all minimal edge cutsets is an important issue in many applications [1], such as evaluating the 
reliability of networks [2-4], calculating the flow through a network [5], designing optimized networks 
[6], and analyzing stochastic networks [7]. A closely related problem is finding all (s,t)-cuts of a graph in 
which (s,t) is a vertex pair. This problem is equivalent to finding all minimal cutsets that separate vertices 
in a vertex pair (s,t)  from one another in a given graph  [8].  It is also extensively used for calculating the 
2-terminal reliability of networks [9, 10]. 

Provan and Ball [11] proved that the problem of enumerating all minimal edge cutsets of a given 
graph is #P-complete. The basic conventional approach for scanning all edge cutsets of a given graph uses 
state-space enumeration [12, 13]. Although it is conceptually simple, the state-space approach is 
impractical because the size of the state space grows exponentially with the number of nodes. Certain 
improvements to this approach focus directly on topological properties of a given graph to substantially 
reduce its state-space size. Using this concept, Tsukiyama et al. [14] proposed an algorithm for finding the 
(s,t)-cuts of a given graph in linear time per cutset. Their recursive algorithm enumerates all s-t separating 
subsets of vertices which induce connected subgraphs by considering only certain extensions (1-point 
extensions) for all possible s-t separating subsets. An efficient method for enumerating all (s,t)-cuts in 
directed graphs is the paradigm of Provan and Shier [8]. 

A fast random approach for enumerating all suboptimal edge cutsets within a multiplicative factor k 
of the minimal cutset was proposed by Karger [15]. This algorithm is based on iterative contraction of 
edges in a graph. It can be extended to obtain, with a high probability of success, a list of all edge cutsets 
of a graph, while the relative error can be reduced arbitrarily by increasing the number of trials in the 
algorithm. The complexity of the Karger algorithm is also O(n2k), which is exponential with respect to the 
maximum rank of all edge cutsets in a given graph. 

In this paper, we modify the method proposed by Tsukiyama et al. in [14] by using the concept of 
iterative contraction [15] and BFS ordering of vertices to develop a novel recursive contraction algorithm 
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(RCA_MC) for scanning (enumerating and visiting) all minimal edge cutsets of a given graph. In addition, 
we introduce the concepts of a pivot vertex and absorbable and inabsorbable clusters, and use them to 
develop the enhanced recursive contraction algorithm (ERCA_MC).  

The RCA_MC algorithm is a modification of Tsukiyama’s algorithm in [14]. Both algorithms are 
recursive methods that examine the connectivity of subgraphs obtained by deleting edge cutsets. Besides, 
they both exhaustively scan all connected subgraphs. However, they are different in their scanning 
methods; where in Tsukiyama’s algorithm the notion of 1-point extensions are used for this purpose, as 
compared to our proposed scheme which uses BFS ordering of vertices adjacent to a contracted node. This 
difference enables us to develop the ERCA_MC algorithm, which skips over those subgraphs that do not 
contribute to the list of minimal cutsets. As finding cutsets is a recursive process, significant reductions in 
the processing time can be achieved. In cases where no subgraph can be skipped, both the RCA_MC and 
the ERCA_MC algorithms have the same number of recursions. We use simulations to provide empirical 
evidence that the complexity of the ERCA_MC algorithm is linear per edge cutset.  

This paper is organized as follows. In Section 2 we present our notations and introduce some basic 
concepts. In Section 3 we develop the recursive contraction algorithm and its enhanced version for finding 
all minimal cutsets of a given undirected graph. In Section 4 we present the results of applying the 
proposed algorithm to different sample graphs and show that the complexity of our algorithm is linear per 
cutset. Finally, in Section 5 we present the conclusion and a summary of results. 
 

2. PRELIMINARIES 
 

An undirected graph G=(V,E) consists of a set V of vertices and a set E of edges whose elements are 
unordered pairs of vertices. The edge e=(u,v)∈ E is said to be incident with vertices u and v, where u and 
v are the end points of e. These two vertices are called adjacent. The set of vertices adjacent to v is denoted 
by Γ (v), and the degree of v is the number of vertices adjacent to v and is denoted by |Γ(v)|. Throughout, 
we will reserve n for |V| and m for |E|. In a graph G=(V,E), a partition (X,X') is defined as two proper 
disjoint subsets of V. The complement of X ⊆ V is denoted by X' = V-X. The open neighborhood of X is 
defined as Γ(X)={v∈ X' | (u,v)∈ E for some u∈ X }. The induced subgraph G[X] is a graph H = (X,F), 
where F={(u,v)∈ E | u,v∈ X}. 

An alternating sequence of distinct adjacent vertices and their incident edges, i.e., v0, (v0, v1), v1, ... , 
vk-1, (vk-1, vk), vk  is called a u-v path when v0= u and vk = v. If a u-v path exists between all vertices u and v 
in a given graph G, then G is connected. Otherwise, G decomposes into a number of connected subgraphs 
referred to as components of G. A graph G-{u}, obtained by deleting a vertex u, is defined as a subgraph 
of G induced by V-{u}, i.e. G-{u} = G[V-{u}]. 

 
DEFINITION 1. Cutset: For a given graph G= (V,E), a subset of edges C ⊂ E is a minimal cutset if and 
only if deleting all edges in C would divide G into two connected components and no subset of C is a 
cutset. An isolated vertex is considered as a component. A minimal cutset divides the vertices of G into 
two disjoint subsets X and X', each of which induce a connected subgraph. We denote a cutset by 〈X,X'〉. 
For convenience we say cutset instead of minimal edge cutset. 

 
DEFINITION 2. Cut Vertex: For a connected graph G, a vertex v is a cut vertex if the graph G-{v} = G[V - 
{v}] is not connected.  

 
DEFINITION 3. Biconnected and Separable Graphs: A biconnected graph does not have any cut vertex, 
and a separable graph has at least one cut vertex. The maximal induced subgraphs of a separable graph G 
which are not separable are called the blocks of G.  
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OBSERVATION 1. Each cutset of a block is a cutset of a separable graph. So the set of all cutsets of a 
separable graph is the union of all cutsets of its blocks. Therefore, without any loss of generality we 
assume that all graphs to which we apply our proposed algorithm are biconnected. 

 
DEFINITION 4. Edge Contraction: A graph denoted by G/uv is made by the contraction of an edge uv in 
Graph G in the following manner. Delete vertices u and v in G and replace them with a new contracted 
vertex g. Then remove all edges incident to both u and v (i.e., uv). For each edge incident to any one of the 
vertices u or v (uw or vw), there is an incident edge between g and the other vertex of the incident edge 
(i.e., gw) in G/uv. We extend this definition for a proper vertex set F⊂V by sequentially applying 
contraction to all edges of G[F] (the order of contractions is irrelevant). The resulting graph is denoted by 
G/F.  

 
OBSERVATION 2. For any subset F⊂ V, if the induced subgraph G[F] is a connected subgraph, then all 
vertices of F in the contracted graph G/F are contracted to a single contracted vertex g. This is a direct 
result of Definition 4. 
 

3. CUTSET SCANNING ALGORITHMS 
 

Given an undirected graph G(V,E), we develop an algorithm for scanning the set of all cutsets of G as 
ΓG={ 〈S,T〉 | S ⊂ V, T=V-S, G[S]∈ Ω, G[T] ∈ Ω }, where Ω is the set of all connected graphs. 

 
a) Simple partitioning of vertices 

 
The Simple Partitioning Algorithm (SPA) divides V(G) into two proper disjoint subsets, Ca and Cb. 

According to Definition 1, if subgraphs G[Ca] and G[Cb]  are connected, then partition 〈S = Ca, T = Cb 〉 is 
a cutset. In [12], a simple method, called SPA, is proposed for finding all cutsets. The SPA lists all 
possible combinations of vertices that produce two proper disjoint subsets Ca and Cb, and then select those 
whose induced subgraphs G[Ca] and G[Cb]  are connected [12],[13]. The simple partitioning algorithm is 
shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.  The simple partitioning algorithm (SPA) for scanning all minimal cutsets of a given graph 

 
b) Recursive contraction algorithm 

 
LEMMA 1. A partition C=〈S={v}, T = V-{v}〉 is a minimal cutset if and only if v is not a cut vertex of G. 
PROOF: Suppose that v is not a cut vertex of G. According to Definition 2, H =G[V-{v}] is a connected 
subgraph. The connected subgraphs F = ({v},∅) and H are two components of G connected to each other 
via incident edges in C. Therefore, according to Definition 1 the set of edges C =〈S={v}, T = V-{v}〉 is a 
minimal cutset for G. Conversely, let C =〈S={v}, T = V-{v}〉 be a minimal cutset of G. The subgraph 
induced by TG = V(G)-{v} must be connected. Therefore, according to Definition 2, v is not a cut vertex of 
G. � 

 

Algorithm SPA: 
simple_partitioning_algorithm 
{ 
  input: 1) graph G ; 
  output: 1) list of all cutsets S of G ; 
  Initialization: S=∅, partition list F=∅ ; 
   List all possible (p1, p2) partitions of  V(G) in F; 
   For every partition p1 and p2 in F do 
  { 
     find induced subgraphs H1=G[ p1]  and H2= G[ p2]  over G; 
     if H1 and H2 both are connected subgraphs 
    {         
        add partitions  p1 and p2 to cutset list S;  
    } 
  } 
}
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OBSERVATION 3. A subgraph obtained by deleting two adjacent vertices u,v∈ V of a graph G is 
equivalent to a subgraph obtained by deleting the contracted vertex g from G/uv, i.e., (G/uv)-{g}=G-{u,v}. 
This is a direct result of Definition 4. 

 
LEMMA 2. For two adjacent vertices u and v in a graph G, the partition 〈S={u,v},T=V-{u,v}〉 is a minimal 
cutset if and only if the contracted vertex g in G/uv is not a cut vertex in G/uv. 
PROOF: Let 〈S={u,v},T =V-{u,v}〉 be a minimal cutset for G. According to Definition 1, G-{u,v}=G[V-
{u,v}] must be a connected subgraph. From Observation 3 we know that (G/uv)-{g}=G-{u,v}. This means 
that the subgraph obtained by deleting the contracted node g is connected, or equally, g is not a cut vertex 
of G/uv. Conversely, assume that g is not a cut vertex of G/uv. This means that (G/uv)-{g} is a connected 
subgraph, i.e., G-{u,v} is a connected subgraph. We know that u and v are adjacent vertices, so the 
subgraph induced by them is connected and contains u, v, and the edge(s) uv. Thus from Definition 1, the 
partition 〈S={u,v},T =V(G)-{u,v}〉 is a minimal cutset of G. � 

 
OBSERVATION 4. For any subset of vertices F⊂ V, if the induced subgraph G[F] is a connected subgraph, 
then the induced subgraph G[V-F] of a given graph G is equivalent to a subgraph obtained by deleting the 
contracted vertex g from G/F, i.e., (G/F)-{g}=G[V-F]. This is a direct result of Definition 4 and 
Observation 2. 

 
LEMMA 3. For any subset of vertices F⊂ V, the partition 〈F,V-F〉 is a minimal cutset of graph G if and 
only if (i) the subgraph induced by F is connected, and (ii) the contracted node g is not a cut vertex in the 
graph G/F. 

 
PROOF: Let 〈F,V-F〉 be a minimal cutset for G. According to Definition 1, the induced subgraphs of G[F] 
and G[V-F] must be connected. From Observation 4 we know that (G/F)-{g} =G[V-F]. Thus (G/F)-{g} is 
a connected subgraph. Therefore, according to Definition 2 the contracted vertex g is not a cut vertex in 
the graph G/F. Conversely, assume g is not a cut vertex in the graph G/F. So the subgraph obtained by 
deleting the contracted vertex g from G/F (which is the same as the induced subgraph G[V-F]) is a 
connected subgraph. From (i) we know that G[F] is also a connected subgraph. Therefore, according to 
Definition 1 we conclude that 〈F,V-F〉 is a minimal cutset of G. � 

 
OBSERVATION 5. For any subset of vertices F⊂ V that has more than one vertex, if the subgraph induced 
by F is connected, then there is at least one adjacent vertex for any vertex in F. This is a direct result of 
connectivity and path definitions in graphs. 
LEMMA 4. Finding all connected subgraphs of G/uv that include the contracted vertex g is equal to finding 
all connected subgraphs of G that include u and v. 

 
PROOF: Suppose we find the set of all connected subgraphs S(g) that include the contracted vertex g of 
the graph G/uv, as well as the set of all connected subgraphs S(u,v) that include the vertices u and v of a 
given graph G. For each connected subgraph F∈ S(g) there is a connected subgraph H∈ S(u,v) obtained by 
replacing g with u and v in F. Therefore finding S(g) for the graph G/uv is equivalent to finding S(u,v) for 
G. � 

 
1. Scanning connected subgraphs. We use the results of Lemmas 1-4, and propose the Recursive 
Contraction Algorithm for scanning all Connected SubGraphs (RCA_CSG) of a given graph. In this 
algorithm, we produce a list of all connected subgraphs S(v) in G that include the vertex v. In doing so, we 
use topological properties of a given graph G to reduce the number of partitions whose associated 
subgraphs must be checked for connectivity. We begin by choosing a vertex of G as the seed vertex. We 
denote all proper subsets of V that include the seed vertex v and induce the connected subgraphs as S(v), 
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i.e., S(v)={ F⊂ V | v∈ F, G[F]∈ Ω }. Suppose the neighborhood of v is Γ(v)={u1,…,uk}. Using 
Observation 5, we conclude that every proper subset F⊂ V in S(v) except {v} must include an adjacent 
vertex ui , i.e.,  

                                      S(v)= {v}∪ S(v,u1)∪….∪ S(v,uk)                                                    (1)  
where S(v,ui)={F⊂ V | v∈ F, ui ∈ F, G[F] ∈ Ω }. But the sets S(v,ui),  i=1,…,k are not disjoint, and 
therefore, some partitions will be visited several times. To explain this, suppose that the vertex z∈ Γ(v) is 
adjacent to y∈ Γ(v). Then {v, y, z} belongs to both S(v,z) and S(v,y), and all subsets  of vertices in S(v) that 
include these three vertices belong to both S(v,z) and S(v,y) as well. We must exclude parts of S(v,z) that 
were previously scanned in S(v,y).  

 
2. BFS ordering constraint. To prevent re-examination of recurring subsets, we use the inclusion-
exclusion principle and rewrite (1) as 

 
                     ),,,,(),,(),(}{)( 11121 −∪∪∪∪= kk uuuvSuuvSuvSvvS LL                       (2) 

 
where }][,1,,1,,,|{),,,,( 11 Ω∈−=∉∈∈⊂=− FGjiFuFuFvVFuuuvS ijjj LL . In (2), 

),,,,( 11 −jj uuuvS L  denotes all connected subgraphs which include v and uj, but do not include u1 , u2 , 
…,  and  uj-1. To find S(v), we arrange the vertices in the order of their position in the BFS tree of the graph 
when the seed vertex v is considered as its root. In (2) we arrange the adjacent vertices uj ∈ Γ(v) in the 
same BFS order. According to Lemma 4, in order to find S(v,u1), we must find all connected subgraphs of 
G/vu1 that include the contracted vertex g. Furthermore, to find ),,,,( 11 −jj uuuvS L  we must find all 
Connected Sub-Graphs (CSGs) of G-{ui , i=1,…, j-1}/vuj that include the contracted vertex g. It means 
that we can recursively find all CSGs of a connected graph CG by finding all CSGs of contracted graphs. 
In order to preserve the BFS ordering of vertices in all consecutive subproblems, we derive the BFS order 
of each contracted CSGs G/vui from the previous BFS ordering of G. The Recursive Contraction 
Algorithm for scanning all Connected SubGraphs (RCA_CSG) is now developed as shown in Fig. 2. As 
shown in the first line of the recursion loop in Fig. 2, in order to exclude the vertices that have already 
contributed to the recursion in (1), in each recursion, we use a new reduced graph TG by deleting all 
vertices that have a BFS order lower than the current BFS order of the contracted vertex g (the current 
BFS order of the last vertex contracted to vertex g), from the contracted graph CG.  

 
THEOREM 1. Considering the BFS ordering constraint in the RCA_CSG algorithm, all connected 
subgraphs of G that include the seed vertex v are scanned once. 

 
PROOF: Consider a connected subgraph induced by a subset of vertices F⊂ V, where v∈ F. There is a 
unique BFS ordering for all vertices in F, denoted by v-u2-…-uk where k<n. From Observation 5 we know 
that there is at least one adjacent vertex in F for each vertex in F. The RCA_CSG algorithm scans all 
adjacent vertices in the vertex list F to construct all possible connected subgraphs in the next recursion 
level. This ensures that in the recursion level j-1, a vertex uj  that is adjacent to one of the vertices v-u2-…-
uj-1 is added to the list of vertices in F, and after k level of recursion, the desired connected subgraph is 
scanned. Since the BFS order of vertices is unique, a connected subgraph cannot be scanned more than 
once without contradicting the BFS ordering constraint. � 

 
3. The recursive contraction algorithm for scanning all minimal cutsets (RCA_MC). The RCA_CSG 
algorithm applies constraint (i) in Lemma 3 and produces a list of all connected subgraphs. To develop the 
Recursive Contraction Algorithm for scanning all Minimal Cutsets (RCA_MC) of a graph G we must also 
apply the second constraint in Lemma 3 and check the connectivity of the induced subgraph G[V-F].The 
RCA_MC algorithm shown in Fig. 3 finds all cutsets in a given graph G by generating all possible 
connected subgraphs induced by F⊂V in G and checking that the contracted node g is not a cut vertex in 
G/F. 
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Fig. 2. The RCA_CSG algorithm for scanning all connected subgraphs of a given graph G 
 

THEOREM 2. Considering the BFS ordering constraint in the RCA_MC algorithm, all cutsets of a given 
graph G are scanned once. 

 
PROOF: Each cutset divides a given graph G into two unique connected subgraphs, one of which includes 
the seed vertex v. In order to specify a cutset, it is sufficient to find its corresponding connected subgraph 
that includes the seed vertex v. We know from Theorem 1 that the RCA_CSG algorithm scans only once 
all connected subgraphs that include the seed vertex v. Since the RCA_MC algorithm uses the same 
approach and examines all possible connected subgraphs, we conclude that this algorithm scans only once 
all cutsets of the graph G. � 

 
c) Enhanced recursive contraction algorithm 

 
Now, we develop the Enhanced Recursive Contraction Algorithm to scan all Minimal Cutsets 

(ERCA_MC) of a given graph. We will provide empirical evidence that the computational complexity of 
the ERCA_MC algorithm, similar to the complexity of the RCA_MC algorithm, is linear per cutset, but 
the former is less than the latter. 

 
DEFINITION 5. A cluster and its pivot: According to Definition 2, when we delete a cut vertex from a 
graph G, more than one distinct component remains in the resulting graphs. Each one of such components 
is called a cluster, and the deleted cut vertex is called the pivot vertex of the respective clusters. 

 
DEFINITION 6. The absorbable cluster: A cluster in which all its vertices have a BFS order greater than 
the BFS order of its pivot (the BFS order of the last vertex contracted in the pivot) is an absorbable cluster. 
Otherwise it is an inabsorbable cluster (Fig. 4). To find absorbable and inabsorbable clusters we must 
consider the BFS order of the original graph G. 

Algorithm RCA_CSG: 
all_connected_subgraphs_recursive_algorithm 
{ 
  inputs: 1) graph G,   2) seed vertex v; 
  output: 1) list S(v) of all connected subgraphs of G which contain the seed vertex v; 
  Initialization: S(v)=∅, vertex list F={v}, vertex index list ORDER={1,2,…,|v|}, 
                       vertex index list BFS_ORDER=∅, graph CG=G; 
 
BFS_ORDER= BFS ordering tree of the graph G with seed vertex  v as its root and   
                           ORDER as the vertices selection order for the same level; 
   
   recursive subroutine: find_all_connected_subgraphs (CG , v, F, BFS_ORDER) 
   { 
     Local Variables: graph TG, vertex v', vertex list H, vertex index list NXT_BFS_ORDER, 
                                Vertex list Γ (v);  
  
     add the vertex list F to S(v); 
     find the neighborhood set Γ (v) for vertex v; 
     if  Γ (v) is empty 
     { 
      return; 
     } 
    else 
    { 
     recursion loop: for all vertices u of Γ (v) do 
       { 
        TG= CG –{ all vertices of Γ (v)  whose BFS order is smaller than u } ; 
        NXT_BFS_ORDER= BFS ordering tree of the graph TG with seed vertex u as its                  
                    root and BFS_ORDER as the vertices selection order for the same level; 
        copy the vertex list F to the vertex list H; 
        contract the edge (v, u) and find TG/uv; 
        add vertex u to the vertex list H; 
        set the seed vertex v' to the new contracted vertex g of TG/uv; 
        find_all_connected_subgraphs (TG/uv, v', H, NXT_BFS_ORDER); 
       }  
    } 
  } 
} 
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Fig. 3. The RCA_MC Algorithm for scanning all minimal cutsets of a given graph G 
 

 
Fig. 4. a) A sample graph, b) The breadth first search ordering m of node n is shown in the form of n(m), c) Graph 2 

is generated by contracting nodes 1,2,3,4,8. The BFS order of the contracted node g(1,2,3,4,8) is 6 (BFS  
order of the last node, i.e., node 8). The cluster <9> is inabsorbable, but the cluster <5,6,7> is  

absorbable, d) Graph 3 is generated by contracting nodes 1,2,3,8. The BFS order of the 
 contracted node is 6. Both clusters <9> and <4,5,6,7> are inabsorbable, since the 

 BFS order of node 4 is 5, which is lower than the BFS order of the pivot 
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Algorithm RCA_MC: 
all_cutset_recursive_algorithm 
{ 
  inputs: 1) graph G,   2) seed vertex v; 
  output: 1) list of all cutsets S(v) of G ; 

  Initialization: S(v)=∅, vertex list F={v},  vertex index list ORDER={1,2,…,|v|}, 
                       vertex index list BFS_ORDER=∅, graph CG=G; 
 
BFS_ORDER= BFS ordering tree of the graph G with seed vertex  v as its root and   
                           ORDER as the vertices selection order for the same level; 

 
   recursive subroutine: find_all_cutsets (CG,v, F, BFS_ORDER) 
   { 
     Local Variables: graph TG, vertex v', vertex list H, vertex index list NXT_BFS_ORDER,
                                vertex list Γ (v);  
       
     if vertex v is not a cut vertex of the graph G/F 
     {  
       add the vertex list F to S(v); 
     } 
     find the neighborhood set Γ (v) for vertex v in CG; 
     if  Γ (v) is empty 
     { 
      return; 
     } 
     else 
     { 
       recursion loop: for all vertices u of Γ (v) do 
       { 
        TG= CG –{all vertices of Γ (v) whose BFS order is smaller than u};   

      NXT_BFS_ORDER= BFS ordering tree of the graph TG with seed vertex u as its      
                    root and BFS_ORDER as the vertices selection order for the same level; 

         copy the vertex list F to the vertex list H; 
         contract the edge (v, u) and find TG/uv; 
         add vertex u to the vertex list H; 
         set the seed vertex v' to the new contracted vertex g of TG/uv; 
         find_all_cutsets(TG/uv, v', H, NXT_BFS_ORDER); 
        }  
     } 
   } 
} 
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THEOREM 3. In the RCA_MC algorithm, if the contraction vertex g in G/F is a pivot with more than one 
inabsorbable cluster, then there is no cutset <X, X’> for which F⊆X, and that would be found by the 
algorithm by continuing with recursive calls, therefore, the remaining recursions are skipped.  

 
PROOF: The contraction of vertices in the RCA_MC algorithm eventually results in complete absorption 
of all absorbable clusters in the contracted node. When only one cluster remains, the contracted vertex is 
transformed into a non-cut vertex of the graph. If there is more than one inabsorbable cluster, the 
contraction of vertices in the RCA_MC algorithm does not transform the contracted vertex into a non-cut 
vertex of the graph. This is due to the fact that there is at least one vertex in each inabsorbable cluster 
whose BFS order is lower than the BFS order of the last vertex contracted in the pivot vertex. According 
to the BFS ordering constraint, this vertex cannot be selected for contraction, resulting in at least two 
distinct clusters in the graph. Thus, the pivot vertex always remains a cut vertex of the graph. � 
OBSERVATION 6. A pivot vertex with one inabsorbable cluster cannot become a non-cut vertex unless the 
vertex with the highest current BFS order among all vertices of absorbable clusters is contracted in the 
pivot vertex. 

 
The ERCA_MC Algorithm. As shown in Fig. 5, we use Theorem 3 to modify the RCA_MC algorithm 
with a view to preventing further contractions when the contracted vertex is a pivot vertex with more than 
one inabsorbable cluster. When the contracted vertex is a pivot vertex with one inabsorbable cluster, we 
use Observation 6; this algorithm goes through a cut-through transient phase until the contracted node is 
transformed into a non-cut vertex. At this time, the algorithm returns to a normal recursive form. During 
the cut-through transient phase, the contraction process is carried out as before, but the first part of the 
recursion loop (lines 6 to 28 in Fig. 5), which is the most time consuming part of the algorithm, and which 
checks if the contracted node is a non-cut vertex, is not performed. This is due to the fact that according to 
Observation 6, the contracted node is a cut vertex for the resulting contracted graph until the highest 
current BFS order vertex of the absorbable clusters is contracted to the contracted node. Therefore, the end 
of the transient phase is detected by the contraction of the highest current BFS order vertex among all 
vertices of the absorbable clusters. The complexity of the ERCA_MC algorithm is less than that of the 
RCA_MC algorithm, because the search space of the ERCA_MC algorithm does not include several 
groups of connected subgraphs that cannot generate any new cutsets. The number of these groups can 
increase exponentially with the size of the graph. 
 

4. PERFORMANCE COMPARISONS 
 

In this Section, we present the results of implementing the SPA, the RCA_MC, and the ERCA_MC 
algorithms. The SPA algorithm is equivalent to the state-space enumeration method [12], [13] and the 
RCA_MC algorithm is a modified version of the Tsukiyama [14] algorithm for scanning all minimal 
cutsets instead of all (s,t)-cuts of an undirected graph. 

We compare the number of iterations needed to scan all minimal cutsets in each sample graph shown 
in Fig. 6 for the above algorithms. The number of cutsets for Graphs 1, 2, 3 and 4 are 66, 2232, 17518, and 
28448, respectively. 

All three algorithms give the correct values of cutsets irrespective of the seed vertex. We calculate the 
number of recursions as a measure of complexity for different seed vertices. The complexities of the SPA, 
the RCA_MC, and the ERCA_MC algorithms are compared in Fig. 7. It is evident that the complexity of 
the ERCA_MC algorithm is substantially lower compared to those of the SPA and the RCA_MC 
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algorithms for all seed vertices. The number of iterations in the RCA_MC and the ERCA_MC algorithms 
for larger graphs are several orders of magnitude less than that of the SPA Algorithm. In the RCA_MC 
algorithm, the minimum number of recursions is obtained by choosing the lowest degree node as the seed 
vertex. This is not the case for the ERCA_MC algorithm, for which the variance of the number of 
recursions as a function of the seed vertex is low compared to the RCA_MC algorithm. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The ERCA_MC Algorithm for scanning all minimal cutsets of a given graph G 

Algorithm ERCA_MC:
Enhanced_all_cutset_recursive_algorithm 
{ 
  inputs: 1) graph G,   2) seed vertex v; 
  output: 1) list of all cutsets S(v) of G ; 

Initialization: S(v)=∅, vertex list F={v}, vertex index list ORDER={1,2,…,|v|}, 
            vertex index list BFS_ORDER=∅, graph CG=G, dummy_flag=FALSE; 

 
BFS_ORDER= BFS ordering tree of the graph G with seed vertex  v as its root and   
                           ORDER as the vertices selection order for the same level; 

   
  recursive subroutine: find_all_cutsets (CG,v, F, BFS_ORDER) 
   { 
     Local Variables: graph TG, vertex v', vertex list H, vertex list Γ (v),     
                               vertex index list NXT_BFS_ORDER;                                 
     If (dummy_flag is FALSE) 
     { 
        if vertex v is not a cut vertex of the graph G/F 
        {  
          add the vertex list F to S(v); 
        } 
        else 
        { 
          find the set of clusters clst for pivot vertex v in G/F; 
           if there is more than one inabsorbable cluster in clst 
            { 
              return;       
             } 
             else 
             { 
                 if there is one inabsorbable cluster in clst 
                 { 
                   highest_BFS_order_vertex = find the highest current BFS order vertex               
                                                  among vertices of absorbable clusters; 
                   dummy_flag=TRUE;   
                  } 
              }  
           } 
      }     
     find the neighborhood set Γ (v) for vertex v in CG; 
       if  Γ (v) is empty 
       { 
         return; 
       } 
      else 
     { 
       recursion loop: for all vertices u of Γ (v) do 
       { 
        TG= CG –{ all vertices of Γ (v) whose BFS order is smaller  than u};   

      NXT_BFS_ORDER= BFS ordering tree of the graph TG with seed vertex u as its            
                    root and BFS_ORDER as the vertices selection order for the same level; 

         copy the vertex list F to the vertex list H; 
         contract the edge (v, u) and find TG/uv; 
         add vertex u to the vertex list H; 
         set the seed vertex v' to the new contracted vertex g of TG/uv; 
         if (dummy_flag is TRUE) 
          { 
            If (u= highest_BFS_order_vertex) dummy_flag=FALSE;          
          } 
         find_all_cutsets (TG/uv, v', H, NXT_BFS_ORDER);         
        }  
     } 
   } 
} 
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Fig. 6. Sample graphs for comparing the performances of the SPA, the RCA_MC and the ERCA_MC algorithms 
 

In order to show that the number of recursions in the RCA_MC and ERCA_MC algorithms is 
proportional to the number of cutsets in a given graph, we generate 10 random graphs for each network 
size and average-node-degree, and apply the RCA_MC and ERCA_MC algorithms to them. Fig. 8 shows 
the results for a graph with 20 nodes and different average-node-degrees from 2 to 10. In Fig. 9 we show 
the results for random graphs with an average node degree equal to 3 and different network sizes from 10 
to 36 nodes. 

For each sample point in Figs. 8 and 9, we apply the RCA_MC and ERCA_MC algorithms ten times 
for different random biconnected graphs and calculate the mean values for the number of recursions as 
well as for the number of cutsets. It is evident from Figs. 8 and 9 that for the RCA_MC and the 
ERCA_MC algorithms, the number of recursions follows the number of cutsets. We conclude that the 
complexities of both the RCA_MC and the ERCA_MC algorithms are linear per cutset irrespective of the 
size of the graph, but the complexity of the latter is less than that of the former. This is because the latter 
avoids scanning some classes of disconnected subgraphs due to utilizing the notion of inabsorbable 
clusters. If the node-degree is increased, the difference in the performances of the RCA_MC and the 
ERCA_MC algorithms become smaller and for larger node degrees, both asymptotically approach the 
performance of the SPA algorithm. 

Figures 10 and 11 show the ratio of the average number of cutsets to the average number of iterations, 
which we call the efficiency factor. As this value gets closer to 1, the efficiency of the algorithm is 
improved. For a ring network in which the average-node-degree is 2, all iterations correspond to a cutset, 
so the efficiency factor of the RCA_MC and the ERCA_MC algorithms is equal to 1. However, in mesh 
networks, in which the average node degree is greater than 2 and less than the number of nodes in the 
graph, the efficiency factor increases gradually towards 1 as the average-node-degree of the graph 
increases. In Figs. 10 and 11, it is shown that the ERCA_MC algorithm is more efficient than the 
RCA_MC algorithm for all node degrees and network sizes. As shown in Fig. 11, the efficiency factor of 
the ERCA_MC algorithm is relatively independent of graph size, and is about 0.56 when the average node 
degree is 3, but the efficiency of the RCA_MC algorithm decreases for larger network sizes. The 
difference in the performances of the RCA_MC and the ERCA_MC algorithms is more significant for 
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large bounded degree mesh networks, which represent the majority of actual telecommunications 
networks. 

Finally, we compare the time complexity of the ERCA_MC and the Tsukiyama algorithms in Table 1. 
Enumeration of checked partitions is a possible measure for time complexity. The execution times of the 
ERCA_MC and the Tsukiyama algorithms for 6 different size mesh networks and 5 complete networks 
[16], K6-K10 on a personal computer with a full cache and a  2 GHz Pentium IV CPU and 256 MB RAM 
is shown in the last two columns of Table 1. It is evident that the time complexity of the ERCA_MC 
algorithm is less than that of the Tsukiyama algorithm, except for the small network G1. For large 
networks, the time complexity of the ERCA_MC algorithm is less than that of the Tsukiyama algorithm 
by as much as 20 percent and for complete networks by up to 50 percent. 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Fig. 7. Comparison of complexities of the SPA, the RCA_MC and the ERCA_MC for sample graphs in Fig. 6 
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Table 1.  Time complexities of the ERCA_MC and the Tsukiyama algorithms 
 

Network Number  Number  Number  ERCA TSU  ERCA  TSU 
  of vertices of edges of Cutsets  Iterations Iterations Exec. Time  Exec. Time 

G1 9 14 66 95 87 0.43 ms 0.36 ms 
G2 16 35 2232 4155 7371 28 ms 35 ms 
G3 25 46 17518 45120 78120 535 ms 550 ms 
G4 25 56 28448 80747 146590 1170 ms 1450 ms 

NSFNET[17] 14 21 799 1469 1658 8 ms 8 ms 
COST239[17] 18 39 6049 10783 22723 80 ms 110 ms 

K6 6 15 31 31 31 0.09 ms 0.11 ms 
K7 7 21 63 63 63 0.2 ms .29 ms 
K8 8 28 127 127 127 0.42 ms 0.68 ms 
K9 9 36 255 255 255 0.83 ms 1.5 ms 

K10 10 45 511 511 511 1.78 ms 3.52 ms 
 

5. CONCLUSION 
 

In this paper we presented a novel and efficient recursive algorithm for scanning all minimal cutsets of a 
given undirected graph. This algorithm is based on the consecutive contraction of edges in the graph and 
uses the concept of cut vertex for checking the connectivity of the induced subgraphs that are generated 
from partitioning the graph. We used the BFS ordering of vertices to prevent visiting a possible state more 
than once. We also used the concept of an absorbable cluster for a cut vertex (pivot) in a given graph to 
substantially reduce the complexity of the algorithm. 

We applied our proposed algorithms to different graphs and provided empirical evidence that 
scanning all cutsets is done in linear time per cutset. We also applied the RCA_MC and the ERCA_MC 
algorithms to biconnected randomly generated graphs with different sizes and average-node-degrees, and 
showed that the efficiency of the ERCA_MC algorithm improves significantly as compared to the 
RCA_MC algorithm for large bounded degree mesh networks. We also showed that the efficiency of the 
ERCA_MC algorithm does not change considerably with network size when the average node degree is 
kept constant. 

Finally, simulation results indicate that the ERCA_MC algorithm performs better than the Tsukiyama 
algorithm. 
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