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Abstract– Formal verification of complex digital systems requires a mechanism for efficient 
representation and manipulation of arithmetic as well as random Boolean functions. Although the 
Taylor Expansion Diagram can be used effectively to represent arithmetic expressions at the vector 
level, it is not efficient in the use of memory for representing bit-level logic expressions. In this 
paper, we present modifications to TED that will improve its ability for logic representation while 
maintaining its robustness in arithmetic representation. Our experimental results show a 30% 
reduction in the number of nodes in some benchmarks.           
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1. INTRODUCTION 
 

Increasing the size and complexity of digital designs has made it essential to address verification issues in 
the early stages of the design cycle.  This requires verification tools with efficient data structures capable 
of representing designs at the RT-level. 

Most formal verification tools need a design to be converted to a canonical data structure in order for 
the formal verification algorithms to be used. Several data structures have been proposed to address this 
need, however none of them, with the exception of TED [1-3], can handle designs at the vector-level.  
Therefore, formal verification tools today do make use of bit-level representation for capturing a design, 
and therefore have limitations in processing large designs. On the other hand, a graph-based representation 
for designs at the RT-level, coupled with efficient algorithms, provides a mechanism for handling large 
designs. However, TED, which has a good performance in representing vector-level designs, is not good at 
representing Boolean expressions. Therefore, TED is not efficient for representing designs at the RT-level.  
In fact, RT-level designs consist of both vector-level and logic-level parts.  Many parts of an RT-level 
design including its controller may be described by Boolean expressions. So, in addition to a good vector-
level representation, having a good Boolean function manipulation is essential for an RT-level data 
structure. The focus of this paper is to introduce Attributed TED, a high-level graph-based representation 
for the manipulation of RT-level descriptions. This representation is based on TED. This paper addresses 
the mentioned shortcomings of TED for achieving a better data structure for RT-level representation and 
formal verification.  Experimental results demonstrate that Attributed TED yields better performance than 
TED using a number of benchmark circuits. 
This paper is organized as follows: The following section presents a brief overview of previous works in 
this area. In Section 3, a brief overview of TED comes. In Section 4, our Attributed TED is introduced. In 
Section 5, canonicity rules of Attributed TED are mentioned formally and it will be shown that this 
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structure is canonical. In Section 6, some examples are given using Attributed TED. In Section 7, we will 
show that there are some cases in which Attributed TED is better than TED by a factor of 2. Experimental 
results are discussed in Section 8, and the conclusion is presented in the last section. 
 

2. PREVIOUS WORKS 
 
Boolean functions are often represented and manipulated by Decision Diagrams (DDs).  Ordered Binary 
Decision Diagrams (OBDDs) [4] are the most commonly used form of decision diagrams in EDA 
applications [5].  OBDDs are based on a decomposition of Boolean functions commonly called the 
“Shannon expansion”.  A function f can be decomposed in terms of a variable x as: 
 

)1()0( =∧∨=∧= xfxxfxf                                                      (1) 
 

Despite its widespread use, some classes of Boolean functions cannot be represented efficiently by 
OBDDs [6, 7].  For representing these classes of Boolean functions other decision diagrams are proposed 
and used.  As an example, Ordered Functional Decision Diagrams (OFDDs) [8, 9] are proposed to better 
represent XOR based logic [10]. OBDDs and their derivations have been successfully used in 
manipulating gate-level designs, but have limitations in representing arithmetic circuits. 

For representing arithmetic circuits, Word Level Decision Diagrams (WLDDs) are proposed.  They 
use decomposition methods similar to the decomposition of Boolean functions, but at the arithmetic-level.  
MTBDDs [11, 12], EVBDDs [13], BMDs [14], HDDs [15], *BMDs [14], and K*BMDs [16] are examples 
of WLDDs. 

The multi Terminal Binary Decision Diagram (MTBDD) uses a decision graph like a BDD, but allows 
arbitrary values on the terminal nodes.  MTBDDs are very inefficient for representing functions yielding 
values over a large range. 

The Edge Valued Binary Decision Diagram (EVBDD) is the same as MTBDD, but incorporates 
numeric additive weights on the edges in order to allow greater sharing of sub-graphs. Although EVBDDs 
improve MTBDDs in many cases, there are still important classes of functions for which they have 
unacceptable complexity.  For example, EVBDDs representation of multiplication x * y grows 
exponentially. 

The Binary Moment Diagram (BMD) is based on a decomposition of functions commonly called the 
“Moment expansion”.  A function f can be decomposed in terms of a variable x as: 

  
xxfxff ∂+== )0(                                                                  (2) 

 
where )0()1( =−==∂ xfxff x . 

Multiplicative Binary Moment Diagram (*BMD) is an extension of BMD to incorporate multiplicative 
weights on the edges. For some classes of functions, EVBDDs are exponentially more compact than 
*BMDs, but the reverse can also hold.  To obtain the advantages of each, a hybrid form called “Kronecker 
Multiplicative Binary Moment Diagram” (k*BMD) [16] has been proposed.  In k*BMD, each variable has 
an associated decomposition which can be any one of the three given by Eqs. (1-3). All functions, to be 
represented, must follow a common variable ordering and every occurrence of a given variable must use 
the same decomposition. 
 

)1())1()0()(1( fffxf +−−=                                                        (3) 
 

All WLDDs are graph-based representations of functions with a Boolean domain and integer range; 
therefore an arithmetic function should be broken down into its bit-level format in order to be represented 
by a WLDD. 
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With increasing complexity of digital systems, the need for higher level abstraction becomes more 
evident.  TED [1-3] is proposed as an answer to this need.  TED can be used for representing functions 
with an integer domain and integer range.  Therefore, in contrast to WLDDs, an arithmetic function should 
not be broken down into bit-level in order to be represented. 

Although TED has good performance in representing arithmetic equations, its weak Boolean function 
manipulation is its main problem.  When a design consists of vector-level and bit-level parts (including 
Boolean parts), its TED occupies a large amount of memory. One solution is to use different Decision 
Diagrams for representing different parts of a design. This solution leads to more difficulties in the 
verification process.  Also using two or more different decision diagrams makes it hard, almost impossible 
to check the equivalency of two designs, since the equivalency of two designs does not mean that each of 
their parts is necessarily equivalent. 

The aim of this paper is to improve logic representation of TED. This paper provides a unique 
representation for better representing typical algebraic equations as well as Boolean functions. 
 

3. AN OVERVIEW OF TED 
 
TED is a graph-based representation which uses the Taylor series as its decomposition method [1-3]. The 
Taylor series of a real differentiable function f(x) around x=0 are: 
 

L+′′′+′′+′+= )0(
!3

1)0(
!2

1)0()0()( 32 fxfxfxfxf                                          (4) 
 
where )0(f ′ , )0(f ′′ , and )0(f ′′′  are first, second, and third derivatives of function f around x=0 
respectively.  The decomposition will be performed recursively using Eq. (4). 

Every node of a TED representation has a label that indicates its associated variable.  As in most 
canonical decision diagrams, e.g., OBDD, the variables of TED are ordered. The function of a node is 
determined by the Taylor series expansions, according to Eq. (4).  The out-degree of a node depends on 
the order of the associated variable of that node.  The out-degree of a terminal node is 0. 

 
 

 
                                                                   Fig. 1.  Decomposition in TED 

 
Figure 1 shows TED decomposition of function f  for variable x . In this paper, we refer to the k-th 
derivative of a function rooted at a node as k-child of that node: )0( =xf  is the 0-child, )0( =′ xf  is the 1-
child, )0( =′′ xf  is the 2-child, etc. We also refer to the corresponding edges as 0-edge (dotted), 1-edge 
(solid), 2-edge (double), etc.  From the Taylor expansion, it is evident that each edge has an implicit 
multiplicative factor, i.e., x0 for the 0-edge, x1 for the 1-edge, x2/2 for the 2-edge, etc.  In addition, each 
edge in a TED has a multiplicative weight, which is computed from the Taylor expansions. Figure 2 shows 
TED representation of x2+y. 
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Fig. 2. TED decomposition of yx +2  

 
It has been proven that with a special restriction on the order of variables, TED becomes a canonical 

representation. For functions typically encountered in RTL specifications (e.g., x – y, x + y, x * y and xk for 
arbitrary k, etc.), TED is linear in the number of variables. TED can also represent functions containing 
both algebraic and Boolean expressions. To represent Boolean expressions, the following formulae should 
be used [1-3]: 

NOT(x) = a′  = 1 – a                                                                (5) 
 

AND(a, b) = a ∧  b = a * b                                                            (6) 
 

OR(a, b) = a ∨  b = a + b – a * b = a(1 – b) + b                                          (7) 
 

4. ATTRIBUTED TED 
 
Representing Boolean functions is the main problem of TED. This means that the TED representation of a 
Boolean function has a larger size when compared with BDD representation of the same function. 
Consider the TED representation of three basic Boolean functions (AND, OR, NOT) in Fig. 3 and BDD 
representation of these functions in Fig. 4. 
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     Fig. 3. TED representation of basic Boolean functions         Fig. 4. BDD representation of basic Boolean functions 
 

As shown, NOT and AND functions are presented with minimal nodes, but the OR function has some 
extra nodes in comparison with its BDD. Since the OR function is one of the basic Boolean functions, 
extra nodes would be produced during the process of TED construction for Boolean functions, and the size 
of TED increases drastically. So improving the TED representation of the OR function would reduce the 
size of TED representation of Boolean functions.  

As explained, the TED of OR function is constructed according to Eq. (7), where ‘a’ and ‘b’ are two 
valued integer variables (0 and 1).  If we consider the ‘a’ variable as root, then two edges are originated 
from it: 

• 0-child, which is equal to ‘b’ 
• 1-child, which is equal to ’1 - b’. 
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As ‘a’ and ‘b’ are two valued variables (0 and 1), ‘ b−1 ’ function logically is the complement of ‘b’. 
This property can be used for graph reduction. Indeed, the sub-graph of ‘b’ representation can be shared 
between 0-child and 1-child of the root node.  This can be done by adding an attribute to the structure of 
the edges. This attribute is used to show the complement of the following node.  For example, the TED 
representation of the OR function is converted to the graph shown in Fig. 5. 
 

b

0 1

a

b
b

0 1

a

0
0

1
1

1

1 0 1

1
1

  
Fig. 5. Attributed TED representation of OR function 

 
If an edge points to a sub-function which should be complemented, only the attribute of the edge is set 

to indicate this. These edges are called attributed edges. This change should be done in such a way that the 
Attributed TED remains canonical as the original TED. Although attributed edges have the advantage 
shown here, their use must be restricted in order for the resulting structure to be canonical. We will show 
how freedom in the use of attributed edges can cause two equivalent expressions to be represented 
differently, by use of the example of expressions (8) and (9).  

-x                                                                         (8) 
 

       1 – (x + 1)                                                                    (9) 
 

It is evident that expressions (8) and (9) are equal, but the TEDs with attributed edges of these two 
equations are different. For the former, the TED of “–x” is created, but for the latter, the TED of “x + 1” 
is created and then the attribute of the created TED is set true. As shown in Fig. 6, the two TEDs are not 
the same. 

 

x

0 1
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-1

(a) (b)

0

1
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1

  
Fig. 6. a) TED of expressions (8), b) TED of expressions (9) 

 
In the next section, some rules are introduced for restricting the use of attributed edges and for 

preserving the canonicity of the Attributed TED.  It will be shown that canonical Attributed TED can 
reduce the size of certain Boolean functions by a factor of 2. 

 
5. CANONICITY RULES  

Attributed TED remains canonical, if we follow rules discussed below.  
1. Remove all 1-terminals in a TED graph. For representation of a 1-terminal, the edge leading to a 0-

terminal must be attributed. 
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2. If a 0-edge is attributed and its weight is 1, we remove the attribute of the 0-edge, negate the value 
of weights of other neighboring edges, and instead attribute the incoming edge of that node. 

Theorem 1: The above rules do not change the function corresponding to TED. 
Proof: by Rule 1, we mean that a 1-terminal is replaced with a 0-terminal, and an attribute in the edges 
pointing to it is set true to perform complementing. It is obvious that these modifications do not change 
the function corresponding to the resulting TED.   

Rule 2 needs more explanations. For complementing a function named f(x), 1 – f(x) should be 
constructed (i.e., Eq. (5)). The Taylor series of 1 – f(x) is as follows: 
 

L−−′′−′−−=− )0(
!3

1)0(
!2

1)0()0(1)(1 )3(32 fxfxfxfxf                               (10) 
 

By comparing Eq. (4) and (10), it is obvious that for calculating the complement of f(x), we should 
complement its 0-edge (i.e., f(0)) to come up with 1 – f(0).  Furthermore, we should negate the weights of 
all other edges of this function. By Rule 2, we mean that attributed edges should not be used in the 0-edges 
of the Attributed TED with weight 1. This is done so that all required attributes move as far up in the 
Attributed TED as possible. This procedure is exemplified in Fig. 7 and discussed as follows: If the 0-edge 
of a node has its attribute true and its weight is 1, it is complemented (i.e., the precedence of attribute is 
higher than weight, so only if weight is 1, the function of that edge is complemented), we de-complement 
the function of the node by resetting the attribute of the 0-edge and negating the weights of other edges, 
and instead set the attribute of the incoming edge of that node itself.  

 

W0=1 w1 w2
w3 -w1 -w2

-w3W0=1

F0 F1 F2 F3 F0 F1 F2 F3   
Fig. 7. Exemplifying the procedure of Rule 2 

 
Theorem 2: Attributed TED made by Rules 1 and 2 is canonical. 
Proof: The proof of this theorem is conceptually straightforward. The proof proceeds by induction on the 
size of the argument set of a function (f). 

If the size of the argument set is 0, f must be a constant function. This constant function has a terminal 
(T) and an edge with a weight (W) and an attribute (A). Let’s say that this constant function is represented 
by two such graphs, G1(T1, W1, A1) and G2(T2, W2, A2). Since we have used Rule 1, a terminal value can 
only be 0. So, the two graphs cannot be different in their terminal values (T1 = T2).  So, if G1 and G2 are 
different, either W1 and W2 or A1 and A2 are different. W1 and W2 cannot be different because both graphs 
originated from the same TED and Rule 1 only changes attributes and not the weights. Note that because 
f(x) is a constant, only Rule 1 can be applied to it.  On the other hand, if G1 and G2 are to be different, A1 
and A2 must be different. This would result in two different functions, which is contradictory to our 
original assumption of having only one function. 

The above discussion proved that Attributed TED representation of function f with k number of 
variables when k is 0 is canonical. Now we will prove this theorem for all k greater than 0. For this 
purpose we assume that functions of less that k variables have a canonical representation. Based on this 
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assumption we will show that representation of functions of k variables are also canonical. Note that 
function f is represented in Attributed TED by a node and several child functions of k-1 variables. 

Now if the Attributed TED representation of f is not canonical, there must be two different G1 and G2 
representations of it. According to our earlier assumption, the representations of all functions of the root’s 
children are independently canonical. Figure 8 shows this decomposition. Merging functions of the root’s 
children into the root forms the complete representation of f. In this formation, individual nodes of 
functions of the root’s children remain unchanged, and the only possible change will be in the weights or 
attributes of the edges that connect the children to the root.  

The weights of G1 and G2 Attributed TED graphs of function f cannot be different, since these weights 
are the greater common divisor of all weights of edges that connect children to the root. Similarly, based 
on Rule 2, attributes affect all edges of G1 and G2 in the same way and cannot make these graphs different. 
This means that the only possible difference between G1 and G2 is in their root’s label, which would make 
two different functions if they were different. Since this contradicts our main assumption, G1 and G2 must 
be the same. 
 

f0-child f1-child f2-child f3-child

(W0,A0)

0-Child

(W1,A1) (W2,A2) (W3,A3)

1-Child 2-Child 3-Child

...

Root

Merging

f0-child f1-child f2-child f3-child ...

  
Fig. 8. Merging Root’s children into the Root 

 
6. EXAMPLES 

 
In this section, applications of the above rules are presented by use of several examples. Consider the TED 
representation of the OR function in Fig. 3. The first step towards attributed representation is replacing 1-
terminals by 0-terminals. According to Rule 1 attributes of the edges which are pointing to terminals 1 
should be set. This step is shown in Fig. 9b. 
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Fig. 9. Steps of applying Rules 1 and 2 to the TED representation of OR function 

 
Rule 2 implies that, the attribute of 0-edges are removed, weights of other neighboring edges are 

negated and instead, the attribute of the incoming edge of that node is set. This rule applies to nodes that 
have attributed 0-edge with weight 1. This step is shown in Fig. 9c. The last step is the merging of 
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redundant nodes. As shown in Fig. 9c, two b nodes are exactly similar and they can be merged. The result 
and the final Attributed TED of the OR function is shown in Fig. 9d. 

The efficiency of this method would be shown when the TEDs of more complex Boolean functions 
are compared with the attributed ones.  As an example, consider function cbaF ∨∧= )( .  The TED of this 
function is shown in Fig. 10a. 

This graph can be reduced by applying the previous rules. Figure 10b shows the result graph after 
applying Rule 1 and Fig. 10c shows the result graph after applying Rule 2. As shown, some redundant 
nodes are generated in the graph after these conversions. The final step is merging the redundant nodes. 
Figure 10d shows the final Attributed TED representation of cbaF ∨∧= )( . 
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Fig. 10. Steps of applying Rules 1 and 2 to TED representation of  cbaF ∨∧= )(  

 
By comparing this graph and the initial TED representation graph, a gain of 25 percent is evident. 
 

7. CASE STUDY 
 
Lemma 1: The total number of nodes for representing i

n

i
xOR

1=
(OR of n different Boolean variables) by the 

original TED is computed from the following recursive equation:  
2)1()( +−= ndesTotalNumNondesTotalNumNo

TEDTED
 

 

Proof: For representing i

n

i
xOR

1=
 by TED, the following arithmetic equation should be constructed: 
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To represent this equation by TED, we need a root node that is associated with variable x1. The root’s 

children are )0(
1
=xf (0-child) and )0( 1

1
=x

dx
df (1-child). 
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It is evident that )0(
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construction. On the other hand, )0( 1
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. We need another TED node with 
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an associated variable being x2 for representing this function. The children of this new node are 

)0,0( 21
1

== xx
dx
df (0-child) and )0,0( 21

21
== xx

dxdx
df (1-child). 
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By comparing the above equations, we conclude: 
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This function is already constructed during generation of )0(

1
=xf . Also it is clear 

that )0,0( 21
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== xx
dxdx

df is negation of the )0,0( 21
1

== xx
dx
df  (if the weight of )0,0( 21
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== xx

dxdx
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the weight of )0,0( 21
1

== xx
dx
df  is -w). So, by connecting an edge with negative weight to the node which 

represents )0,0( 21
1

== xx
dx
df , this function is constructed. 
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Fig. 11. TED of i
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TED nodes.  

Lemma 2: The total number of nodes for representing i
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(OR of n different Boolean variables) by the 

Attributed TED is computed from the following recursive equation: 
 

1)1()( +−= ndesTotalNumNondesTotalNumNo
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Proof: the proof is the same as Lemma 1, but the 1-edge of the root points to the )0(
1
=xf (i.e., 0-child), 

while having its attribute true to indicate that this function is complemented.  

Therefore, for construction of i

n

i
xOR

1=
 

 
1)1()( +−= ndesTotalNumNondesTotalNumNo

ATEDATED
 

 
Attributed TED node is needed.  
 

f(x1=0)

x3

x2

x3

x1

f

  

Fig. 12. Attributed TED of i

n

i
xOR

1=
 

 
Theorem3: In representing a chain of OR gates, Attributed TED is better than the original TED by a factor 
of 2. This can be deduced from Lemmas 1 and 2.  

 
8. EXPERIMENTAL RESULTS 

 
In this section, we describe experimental results that have been carried out on a PC Pentium 4 with 1 
GByte of memory.  All runtimes are given in CPU seconds. BDD, BMD, TED, and Attributed TED 
packages are implemented by the authors with Visual C++ v6. 

Table 1 provides a summary of the results obtained for several gate-level benchmark circuits.  These 
circuits have BDDs with at least 50 nodes.  The column labeled BDD shows the result of converting these 
circuits to BDD, while sub-columns show the number of BDD nodes and time of conversion. TED and 
Attributed TED columns show the same parameters for TED and Attributed TED diagrams.  All diagrams 
are built based on the same variable orderings. 

The number of nodes in the Attributed TED is always less than that of the original TED. TED is better 
than Attributed TED in terms of time of conversion. This is due to the complexity of handling the edge’s 
attribute in the Attributed TED.  

It can be seen that the advantages of Attributed TED algorithms and structure are more significant 
when the difference between the number of original TED nodes and BDD nodes is considerable.  This is 
partly due to the fact that Attributed TED has more options to improve its representation than TED. In the 
Attributed TED, we try to optimize an original TED and make it a near-optimum diagram.  BDD is the 
best diagram for logic representation. It is clear that when an original TED is similar to BDD, we are short 
of space for optimization. 
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The circuits selected for experiments are the real world arithmetic units. Table 1 shows that on 
average, we have a 9% improvement when using Attributed TED as compared with TED. However, 
Attributed TED has about 7% more nodes than BDD. 
 

Table 1. TED, Attributed TED, and BDD construction results for various circuits 
 

Original TED Attributed TED BDD Circuits Inputs Outputs Nets Gates Time Nodes Time Nodes Time Nodes 
Hamming (8 bit) 8 7 94 96 0.3 1851 0.5 1765 0.0 1570 
Address decoder 21 4 23 27 0.0 150 0.0 111 0.0 108 
Parity Gen.(15 bit) 15 2 45 47 0.0 423 0.1 415 0.0 401 
Parity Gen(11 bit) 11 2 33 35 0.0 391 0.0 367 0.0 364 
Parity Gen(27 bit) 27 2 86 91 0.1 656 0.3 623 0.0 603 
Parity Gen(36 bit) 36 2 99 102 0.6 823 0.9 802 0.1 796 
Array Divider(8 bit) 16 16 476 485 0.0 375 0.0 261 0.0 170 
Array divider 
multiplier(8 bit) 17 16 1399 1412 1.1 71464 1.8 34902 0.8 10234 

Comparator(16 bit) 32 1 78 79 8.0 197921 9.8 197921 1.7 197889 
Comparator(8 bit) 16 1 38 39 0.0 963 0.0 955 0.0 955 
Simple adder(16 bit) 16 8 123 142 10.0 213543 11.1 203567 7.8 199344 
CLA(8 bit) 17 9 86 95 16.3 12895 23.3 12885 0.1 11466 
CLA(4 bit) 9 5 42 47 0.1 693 0.1 687 0.0 612 
FADDER(8 bit) 17 8 84 92 15.2 10358 21.8 10348 0.1 9437 
FAdder (4 bit) 9 4 40 44 0.0 548 0.0 542 0.0 495 
FAdder(16 bit) 33 16 4166 186 4.1 22345 7.2 22213 3.4 18324 
CSA(8 bit) 25 16 80 96 0.0 408 0.0 384 0.0 352 
CSA(16 bit) 49 32 160 192 0.1 808 0.2 768 0.0 704 
CPA(6 bit) 13 9 54 62 0.0 473 0.0 465 0.0 445 
CPA(8 bit) 17 11 78 93 0.0 567 0.0 544 0.0 532 
Mux(2 * 4) 12 4 18 22 0.0 85 0.0 77 0.0 64 

Total 55.9 537740 77.1 490602 14 454865 
Average 2.661905 25606.667 3.671429 23362 0.666667 21660.24

 
Figure 13 shows a chart for the number of nodes in three structures. As shown, charts corresponding 

to Attributed TED nodes and BDD nodes are close, but for TED, it is significantly different. 
The time spent for circuit conversion of different structures is shown in the chart of Fig. 14. More 

time is spent for the conversion of Attributed TED when compared with TED and BDD.  This is because 
of the high complexity of algorithms in this structure.  
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  Fig. 13. Number of nodes in different structures              Fig. 14. Time of conversion in different structures  
For implementing attributed edges in Attributed TED, we have used bit-fields in the C++. A structure 

like that of the Fig. 15 pseudo-code is used. 
By using this technique, one bit out of 32 bit of a long int has been used for the attribute and the rest 

are used for the weight. In this way, the Attributed TED has exactly one bit overhead per each edge. For a 
diagram with 100,000 edges, this overhead is 12.5 k, which is not very significant. 
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struct Edge is
{

signed long int weight : 31;
unsigned long int attrib : 1;

}   
Fig. 15. Pseudo code of edge in Attributed TED 

 
In the last series of experiments, we compared the capabilities of BMD, TED and Attributed TED for 

representing RT-level benchmarks. Table 2 provides a summary of the results obtained for these 
benchmark circuits.  Of the ten benchmarks, Paulin is a differential equation solver, described in detail in 
[17].  Chain_mult is based on the circuit given in [18].  The SimpleCPU is a processor and described in 
[19]. The SimpleRTL is described in [20].  The 5th Order Elliptical filter is described in detail in [21].  The 
Avenhause filer is described in [22].  All other benchmarks are described in [23].  All diagrams are built 
based on the same variable orderings.  

Attributed TED is better than TED in terms of the number of nodes. However, its conversion time is 
almost the same as TED’s. This is due to the fact that logic-level representation of Attributed TED is better 
than TED’s. In addition, because of the smaller number of nodes, the time of conversion of TED’s and 
Attributed TED’s are almost the same (smaller number of nodes compensate the higher complexity of 
algorithms of Attributed TED). Also, Attributed TED and TED are better than BMD in terms of the 
number of nodes and time of conversion. Table 2 proves that Attributed TED is a good candidate for 
representing designs at the RT-level. 
 

Table 2. Comparison among BMD, TED, and Attributed TED  
through several RT-level benchmarks 

 
BMD TED Attributed TED Benchmark 

Nodes Time Nodes Time Nodes Time 
SimpleCPU 687 31 407 15 381 15 
Chain_mult 282 15 114 15 98 16 
Paulin 1017 62 380 31 367 32 
SimpleRTL 334 16 159 2 150 3 
Avenhaus Filter 1093 46 372 15 351 17 
3rd Order IIR 1129 62 380 15 362 15 
4 Point DCT 1332 62 406 16 391 16 
5th Order Elliptical Filter 4718 313 2240 141 2103 145 
6 Tap Wavelet Filter 4363 219 1171 62 1023 64 
6th Order FIR 3737 219 727 31 635 32 

 

9. CONCLUSION 
 
In this paper, Attributed TED has been proposed.  An attribute has been added to each edge of our new 
Attributed TED. When an edge needs to point to a complemented part, it simply points to a non-
complemented one and sets its attribute to show this.  This way, only non-complemented functions and 
sub-functions should be constructed directly. 

For representing other parts, we use non-complemented functions and simply set the attribute of the 
edges pointing to them.  Although using attributed edges is not by itself a novel idea [24, 25], this paper is 
the first article that uses them to improve the logic representation of TED.  Experimental results on various 
benchmark circuits showed reasonable effectiveness of our method for improving the logic representation 
of TED.  On the other hand, the arithmetic representation of Attributed TED is still good, i.e., the added 
attributes do not have any negative effects on the arithmetic representation.  Therefore, Attributed TED is 
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a better solution for representing designs containing both gate-level (Boolean expressions) and vector-
level (arithmetic equations) parts than TED. 
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