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Abstract– Proportional fairness criterion, first proposed by Kelly, has outstanding properties in 
allocating fair rates to network users. For example, it resembles the Jacobson’s AIMD method in 
rate allocation to users, and there exists a well-established stability analysis relating to the stability 
of the rate allocation algorithm. Kelly’s algorithm uses a form of the scaled gradient ascent 
projection method for converging to the equilibrium point. The structure of Kelly’s algorithm is 
such that in some instants of time, the aggregate flow which is passing through a link may exceed 
the link capacity. In other words, the algorithm is not loss-free. In this paper, we have proposed a 
novel time-varying scaled gradient ascent projection method that, under some assumptions about 
the link penalty function, the rate allocation algorithm is loss-free in some network topologies. 
Also, it is shown by simulation that in a general network topology, the proposed algorithm does 
not have any loss event in comparison with the Kelly’s method.           
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1. INTRODUCTION 
 

Loss is an undesired phenomenon in any rate allocation algorithm. In the TCP/IP algorithm in the current 
internet, some bandwidth is consumed in reaction to loss events, which reduce bandwidth efficiency. 

Designing loss-free algorithms or algorithms that have the capability of reducing the packet loss is of 
crucial importance in developing future high speed networks that can guarantee the users’ Quality of 
Service (QoS) requirements.  

In this paper, our goal is to provide a simple framework based on deterministic fluid models [1] that 
can achieve loss-free fair rate allocation to a number of competing elastic users, and in fact, complements 
the work of Kelly [2] in some aspects. 

Stability analysis of dynamic systems is one of the important steps to design a controller or an 
algorithm [3-5]. We start with the nonlinear programming formulation of a rate allocation problem 
suggested in [6] from which a penalty function formulation is derived in [2]. In [2], it has been shown that 
a congestion controller can be designed such that the equilibrium point of the congestion controller is 
stable and converges to the unique solution of the penalty function form of the nonlinear optimization 
problem.  

In previous works we encounter the concept of utility function, which was first defined by S. Shenker 
[6]. As was discussed by Shenker in [6], the user’s utility function is a measure of his (her) satisfaction 
from the allocated rate 

Various notions of fairness can be defined in terms of appropriate utility functions [7-9]. While the 
well-known max-min fairness [10] cannot be defined in terms of a single utility function, it can still be 
defined in terms of a sequence of utility functions [7].  
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This paper is organized as follows. In Section 2, we briefly review the method used by Kelly and his 
colleagues in establishing proportional fairness between a set of elastic users and describe why this 
method is not loss-free. In Section 3, we explain the proposed loss-free algorithm in mathematical terms. 
Section 4 is devoted to simulation and we compare the proposed method with that of Kelly for a sample 
and general network topology. Section 5 concludes the paper and motivates interested readers to future 
research on this active research area. 
 

2. RELATED WORKS 
 

Consider a network with a set J of resources or links and a set R of users. Let cj denote the finite capacity 
of link j∈J. Each user has a fixed traffic route Rr, which is a nonempty subset of J. We define a zero-one 
matrix A, where A r,j =1 if link j is in user r’s traffic route Rr and Ar,j=0 otherwise.  

The user’s utility function is a measure of satisfaction from the allocated rate. In other words, when 
the throughput of user r is xr , user r receives utility Ur(xr). For example, suppose that a user is transferring 
a file. The per-transfer delay is inversely proportional to the rate he(she) receives. Hence, the utility of the 
user may be measured as a function of the rate. We assume that the utility Ur(xr) is an increasing, strictly 
concave and continuously differentiable function of xr over the range xr≥0. Furthermore, we assume that 
the utilities are additive so that the aggregate utility of rate allocation X=(xr,r∈R) is: Σr∈R Ur(xr).  This is a 
reasonable assumption since these utilities are those of independent network users. Let U=(Ur(.),r∈R), 
C=(cj , j∈J) and Ω=(ωr, r∈R) in which the ωr is a positive and constant weighting parameter associated 
with the user utility function. In the current paper, as in [2], we assume that the user utility is logarithmic 
and the objective is to solve the following optimization problem: 
NETWORK(A,C;Ω ) : 

                  Max          ∑
∈Rr

rr )log(xω                                                             (1) 

Subject    to         AT X≤C 
                                                            Over                    X≥ 0 

The Kelly’s discrete time algorithm for solving NETWORK(A,C; Ω ) is as follows[2]: 
 

xr[t+1]=xr[t]+ k (ωr – xr[t] ∑
∈ rRj

j (t)µ )                                                (2) 

 
where:        µj(t) = pj( ∑

∈ sRj:s
s [t])x                                                    (3) 

 
Where parameter kr controls the speed of convergence in Eq. (2) and pj(y) is the amount that link ‘j’ 

penalizes its input aggregate traffic ‘y’ and is a nonnegative, continuous and increasing function of its 
argument. "xs[t]" in relation (3) represents a typical user’s traffic traversing the link "j". 

One of the interpretations that is expressed for the above system is that Eqs. (2-3) try to equalize ωr 

with xr[t]. ∑
∈ rRj

j(t)µ . pj( ∑
∈ sRj:s

s[t])x is in fact a form of penalty function [10] that is used for the constrained 

optimization problem NETWORK(A,C; Ω ). 
By Eqs. (2-3) we can see that the unique equilibrium x*r is the solution of the following equation:  

)x(xω
r sRj Rj:s

sj
*
rr ∑ ∑
∈ ∈

∗= p         , r∈R                                                (4) 

 
Although, Kelly and his colleagues have proved the stability of their algorithm by using a Lyapunov 

approach, there is no formal or mathematical discussion about the existence of an interval for ‘k’ 
parameter in which users can ensure the convergence of their rates in the discrete-time version of the 
Kelly algorithm (Eq. (2)).  
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Furthermore, the algorithm structure implies the probability that in some instants of time, the 
aggregate rate of some users traversing a link exceeds the link capacity [11] i.e. the algorithm is not loss-
free. To clarify this, consider the following simple example: 

Suppose that the network is composed of a single user whose traffic traverses a single link with finite 
capacity c. By considering the first two iterations of Eq. (2), if k is selected such that k>c/ω and by 
assuming x[0]=0 it can be seen that: 

 
x[1] = x[0]+ k (ω – xr[0] ∑

∈ rRj
j(0)µ ) = kω >c 

 
The rate through the link remains greater than the link capacity until the next iteration of Eq. (2) takes 

place and this leads to the loss event in the link.  
This means that we may have loss in rate allocation and the QoS requirements of rate allocation in 

future communication networks motivate us in designing a loss-free rate allocation mechanism. 
As it is shown in the mentioned example, blind selection of ‘k’ parameter as is the case in the Kelly’s 
method, can lead to the loss in the rate allocation. Therefore, as it can be verified in the later sections, we 
try to choose this parameter more intelligently based on some feedback from the core network in each 
iteration in order to overcome the mentioned shortcoming. 
 

3. LOSS-FREE ALGORITHM 
 

As in [11], the main purpose of this type of algorithm is to find a rate allocation strategy in which the 
aggregate rate of users traversing a link never exceeds the link capacity. One of the algorithms which is 
used in this paper in order to achieve the loss-free property is using an appropriate and intelligent method 
for varying ‘k’ parameter in the Kelly’s method with respect to time and based on the most recent 
knowledge about the user’s rate. 

It is shown that by using a time-varying version of Eqs. (2-3), in each step of the algorithm, the 
parameter ‘k’ changes as a function of xr[t] and other recent samples of the users’ rates. This selection of 
the parameter ‘k’ forces the aggregate rate through each link, to remain less than or equal to the link 
capacity which leads to a loss-free rate allocation strategy in a fluid-flow based network traffic point of 
view. 

In the following three subsections we will investigate three different scenarios which are the cases of 
one user-one link, multi user-one link, and finally the general case of multi user-multi link and discuss the 
probability of the existence of some methods for changing the gain parameter ‘kr’ in the Kelly’s algorithm 
that lead to a loss-free rate allocation in each scenario.  

The 1st scenario leads to an exact solution for parameter ‘k’ in each iteration of the relation (2). In the 
2nd scenario, by designing appropriate network layer protocols or under certain conditions, it is shown that 
the exact kr can be found for each user in each iteration. 

In the 3rd and general scenario, it is shown in Section 4 by simulation that by adopting an appropriate 
method, the kr parameter can converge to an exact value in a short period of time and the resulting rate 
assignment benefits from a better convergence rate and is loss- free. 

 
a) Single-user and single-link scenario: 

 
In this case, Eq. (2) changes to the following form:  

xn+1=xn+ kn  (ω – xn ))x( np                                                          (5) 
 

in which  p(.) is convex with positive 1st and 2nd derivatives and xn is the rate of the user at iteration 
‘n’.  
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We further assume that p(.) has the simple form of p(x)= τ.xγ, in which γ>2 and τ is a positive 
constant. 

As it has been shown in [2], another appropriate form for the penalty function p(.) is: 
 

pj(y)= (y-cj+ε1)+/ε1
2    , j∈J 

 
Where, ε1 is a very small positive constant and cj is the link capacity. But it can be verified in Fig. 1 

that, by selecting the form pj(y)=σ.(y/cj)γ for the penalty function and the proper selection of σ and γ 
parameters, the proposed penalty function converges to the ideal one.  

In Fig. 1 we have considered a link with normalized capacity 10, and selected parameter  
σ =10000. For three different values of γ parameter, the resulting penalty function shapes have been 
compared with that of Kelly in which we have used ε1=0.0001 as a good approximation of the ideal 
penalty function. As it can be verified, by increasing the γ parameter, we can better approximate the ideal 
penalty function which can be obtained by moving ε1>0 in the above equation towards zero.   

 

 
Fig. 1 Comparison of different penalty functions with that of Kelly   

 
As will be shown selecting the simpler form p(x)= τ.xγ for the penalty function, simplifies the 

mathematical computations.  
Assume that, kn in the rate allocation (5) is selected such that the following equality holds: 

 
xn+1  pn+1 = xn  pn + ρ (ω- xn  pn)                                         (6) 

where: 

10 ≤< ρ     and    pn

∆

=p(xn) 
 

Then, it is shown in theorem 1 that the resulting rate allocation is loss-free i.e. the allocated rate to the 
user never exceeds the link capacity (or equilibrium x* in the single user-single link case as has been 
discussed by Kelly in [2]).  

 
Theorem 1:  Consider the following equation:  

xn+1=xn + kn (ω – xn  pn)           
 

if there exists a real kn which causes Eq. (6) to be valid, and further assuming that: 
 

10 ≤< ρ     and       x0 p0 < ω 
Then: 

a) kn>0 
b) xn+1>xn 
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c) ω = x*p(x*)     and    *xxlim =
∞→

nn
 

 
Proof: From (6), we can write 

ω-xn+1pn+1 = (1-ρ)(ω- xn pn)                                           (7)  
By induction we have 

ω-xn+1 pn+1 = (1-ρ) n (ω- x0 p0)                                         (8) 
 

For part (a) from relation (8) and 10 ≤< ρ  and x0.p0 < ω we conclude that  
ω – xn  pn>0. 

The function p(.) is convex and strictly increasing, and ω – xn . pn>0 and 10 ≤< ρ . If we rewrite Eq. 
(6) in terms of Eq. (5) we have 

 
 [ xn+ kn (ω – xn ))x( np ] p( [xn+ kn ( ω – xn ))x( np ]) = xn  pn + ρ (ω- xn  pn) 

 
From the theorem assumptions, the LHS (Left Hand Side) of the above equation is equal to its RHS 

(Right Hand Side) only if: kn>0.  
For part (b) it suffices to use the relations kn>0 and ω – xn  pn>0. 
For part (c), from relation (8), we conclude that:  

 
0)xω(lim nn

n
=−

∞→
p                                                               (9) 

By considering Eq. (4), we conclude that: 
 

ω = x* p(x*)     and    *

n
xxlim =

∞→ n      
 

We have assumed that the real solution of Eq. (6) with respect to kn can be found mathematically, but 
this assumption is true only for some forms of p(.). For example, as we said before, if we consider the 
form: 

p (x)=τ xγ =σ (x/c)γ    , γ>2  and  τ,σ>0                                           (10) 
 

then the real solution of Eq. (6) with respect to kn can be obtained. It is necessary to say that the form of 
(10) is not the only form which leads to an obtainable real solution for kn and finding the set of functions 
that lead to such solutions can be considered as an open area. If we assume the form (10) for p(.) and solve 
Eq. (6) for kn, we can see that 

 
kn={[(1-ρ) xn

γ+1 +ρ ω/τ]1/(γ+1) –xn}/(ω-τ xn
γ+1)              , ∀n .             (11) 

 
Furthermore, using L’Hospital’s rule we have: 

 

( ) 1
1

n ω/x
lim

+→ γτ
kn = ρ / [τ (γ+1) (ω/τ)γ/γ+1]. 

 
It can be concluded from this simple case that, in this scenario, by selecting kn according to relation 

(11), a loss-free rate allocation can be achieved. 
 

b) Multi-user and single-link scenario 
 

As you can see in Fig. 2, in this case, we assume that ‘m’ users are traversing a single link and Eq. (5) 
changes to 

  0,1,2,...n                         m1,...,i  

 ))x(-x(ω k  xx
m

1j
nj,ni,ini,ni,1ni,

==

+= ∑
=

+ p
                                                 (12) 
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Fig. 2. The scenario in which ‘m’ users are traversing one link 

 
The function p(.) has the same properties which was discussed in part (3-a) and we have: 

 
 m1,...,i ,  )xω(xx nni,iinni,1n1ni, =−+=++ pρpp                                       (13) 

 

∑
=

∆
≤<=

m

1j
inj,n 10     and       )x(      :where ρpp  

 
We further assume that: i  ,   ωx i0i,0 ∀≤p . 

As before, our goal is finding a time-varying ki,n in Eq. (12), such that the resulting xi,n satisfies Eq. 
(13) for every i.  

As before, we can write 
 

ωr-xr,n+1 pn+1 = (1-ρr) (ωr- xr,n pn)                                       (14)  
 

By induction: 
 

 = (1-ρr) n (ωr- xr,0 p0)        , r = 1,2,…,m 
 

For simplicity, if we assume, , i , kk nni, ∀= then the following holds: 
Corollary: If we assume, , i , kk nni, ∀= then Eq. (13) has at least one positive solution kn>0 for each i. 
Proof: If we replace xi,n+1 from Eq. (12) into Eq. (13), for each i we have 

 

∑
=

−+=++
m

1j
nni,iinni,nnj,jnnj,nni,inni, )xω(x)))x-ω(k(x())x-ω(k(x pρpppp         (15)  

 
Consider the LHS of the above equation, as we know: ni,   0.xω nni,i ∀>− p and if we pay 

attention to the properties of p(.) function (described before), we conclude that the LHS of (15) is a 
continuous strictly increasing function of  kn. 

On the other hand, we can verify that for kn =0, the LHS of (15) is less than or equal to the RHS of 
(15) and as kn goes to infinity, the LHS of (15) is greater than or equal to the RHS of (15), as LHS is a 
continuous and increasing function of kn, and there exists exactly one positive solution for kn in (15).  

One of the consequences of the above corollary is the fact that Eq. (6) always has a positive 
solution for kn for any form of penalty function (as far as penalty function satisfies the mentioned 
conditions).   

In reality, the assumption i , kk nni, ∀= may not be true in a distributed network because each user 
‘i’ updates its ‘ki’ parameter based on feedback information received from the core network. These 
feedbacks are user dependent (as can be verified in Eq. (11)) and may be different for different users. 
Thus we must try to find other strategies to solve (13) for ni,k . In the sequel, we assume that the link 
penalty function is in the form (10). 

Equation (13) is equivalent to 
 

∑
=

++ =−+=
m

1j
nni,iinni,1nj,1ni, m1,...,i ,        )xω(x)x(x pρpp                              (16) 

As we can see 
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nj,i,      
)xω(x

)xω(x
  

x

x

nni,iinni,

nnj,jjnnj,

1ni,

1nj, ∀
−+

−+
=

+

+

pρp

pρp
                                          (17) 

And we can write 

∑ ∑
=

≠
=

+
++

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+
−+

+=
m

1j

m

ij
1j

nnj,jjnnj,
nni,iinni,

1ni,
1ni,1nj, )]xω([x

)xω(x
x

x)x( pρp
pρp

pp         (18) 

 
 
It is clear from (13) and (18) that if by an appropriate network layer protocol, the information 

∑ ∑
≠
=

≠
=

m

ij
1j

m

ij
1j

nj,jj x and ωρ and γ and τ parameters in Eq. (10) are sent to user ‘i’ from the common link, he (she) 

can compute its ki,n coefficient independently as it is discussed in the scenario (3-a). 
 

c) Multi-user and multi-link scenario 
 

In the case of a network with general topology, Eq. (6) changes to 
 

       )λxω(λxλx ni,ni,iini,ni,1ni,1ni, −+=++ ρ                                            (19) 
where 

∑
∈

∆
=

iRj
nj,ni,λ p  

 
As before, the stability and convergence of (19) can be verified by the following equation: 

 
   )λ.xω.()1()λ.xω).(1(λ.x-ω n0,n0,0

n
ini,ni,ii1ni,1ni,i −−=−−=++ ρρ                    (20) 

 
In the simple case in which each user’s traffic traverses one link we can say: 

 

  
)xω(x

)]xω([xx

xλ
iRj nj,ni,iinj,ni,

m

i
1

nj,n,nj,n,1ni,

1ni,1ni, ∑

∑

∈

≠
=

+

++

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

−+

+=
pρp

pρp

p l
l

llll

                   (21) 

If we define 

 
)xω(x

)]xω([x

1ξ
nj,ni,iinj,ni,

m

i
1

nj,n,nj,n,

in,j, pρp

pρp

−+

−+

+=

∑
≠
=∆ l
l

llll

                                     (22) 

We can write  
∑ ∑
∈ ∈

+++ ==
i iRj Rj

1ni,in,j,j1nj,1ni, )x.ξ(λ pp                                             (23) 

 
If we assume that for all of the links, the penalty function p(.) is in the form pj(y)=τj . yγ in which γ>2 

and τj>0 are constant values, then  
∑∑
∈

+
∈

++ ==
ii Rj

γ
n,ij,j

γ
1ni,

Rj

γ
n,ij,

γ
1ni,j1ni, ξτ.xξxτλ .                                    (24) 

 
The term ∑

∈ iRj

γ
in,j,j.ξτ is independent of xi,n+1and if we assume that the network can send this value to 

the end user through the nodes in the user’s traffic route, according to relation (20), the user can compute 
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its corresponding 0k ni, > and uses this parameter in Kelly’s algorithm. This results in a loss-free rate 

allocation algorithm. 
Another special case that we can apply Eqs. (21-24) to a general network topology is the case that we 

can express the network topology in a hierarchical manner as you can see in Fig. 3. In this figure, the gray 
areas represent users’ subnetworks and the dashed area represents the network backbone. If the network 
congestion occurs in the backbone, those users that are in a subnetwork and traverse the same route in the 
backbone, have the same ni,λ parameters that represent the congestion level in the user’s traffic route.  

  

 
Fig. 3. A hierarchical network topology 

 
 In the general case, solving Eq. (19) with respect to ‘k’ is very difficult, but as it is shown in Section 

4, some iterative methods can be used for converging towards the exact solution of ‘k’. 
As you will see in the next section, we have used an iterative method by which we can converge 

towards the exact ‘k’ parameter in a general network topology. 
Although we may lose the loss-free property in some occasions because of inaccurate estimation of 

‘k’ in the initial steps of the iterative method, it is shown by simulation that the proposed iterative method 
has no loss with respect to Kelly’s method, at least in the simulated scenarios. The stability and 
convergence property of the revised method cannot be proved by Eq. (20), therefore these properties must 
be proved using theorem 2. 

 
Theorem 2: Consider the following continuous-time system: 

 

∑
∈

=
rRj

jrrrr t))(µ(t)x-ω ((X)k(t)x
dt
d                                          (25) 

where 
∑
∈

=
sRj:s

sjj (t))x((t)µ p  

We further assume that: 
Rr       0(X)k r ∈∀>                                                           (26) 

Then the function: 

∑∫∑
∈∈

∆ ∑ ∈−=
Jj

x
0 j

Rr
rr sRjs: s dy (y) xlogω)X(V p                                          (27) 

 
is a Lyapunov function for the above system and the vector X maximizing V(X) is a stable point of the 
system, to which all trajectories converge [2].  

 
Proof: See the Appendix.  
 

4. SIMULATION 
 

In this section, we use the sample networks in [11] and [12] to compare the proposed algorithm with that 
of Kelly. The first network consists of three users with two links as you can see in Fig. 4, and the second 
and more general topology consists of 20 users and 28 links (Fig. 5). 
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Fig. 4.  The first topology with 3 users and 2 links 

 

  
Fig. 5. The second topology with 20 users and 28 links 

 
As we have used the macroscopic fluid-flow traffic model [1] for our purpose and considering the 

behavior of network queues and packet-level processing of network traffic (microscopic model) are not 
important for us, the MATLAB® package seems to be a good candidate for performing simulations. With 
this package, we have simulated the networks and compared the proposed method with that of Kelly.  

The strategy for finding ‘k’ is based on the following iteration: 
 

R  i,          ]}ωλ.x).1[(λ.tanh{xεkk ii1-ni,1-ni,ini,ni,ni,1ni, ∈∀+−−−=+ ρρ              (28) 
 

In which, ε>0 is some small constant. 
The idea behind iteration (28) is that each user tries to follow the exact solution to (19) with one 

sampling delay and based on the most recent traffic information.  
If ki,n in relation (28) converges for every ‘i’, the resulting *

ik  is the exact solution to Eq. (19) for 
every ‘i’.  

The important point which must be mentioned here is that, each user for computing his or her 
corresponding ni,k , parameter, only needs the ni,λ which might be available to him from the network by 
designing an appropriate network layer protocol. This results in distributed solution [13] for ni,k . The 
simulation consists of two parts: 

 
a) Lack of loss in rate allocation of the Kelly method 

 
In this part, the ‘k’ parameter for the Kelly method and the initial ‘k’ in the proposed method are 

selected small enough for the users. So, there is not any loss event in the network. 
For topology of Fig.4, we have selected ‘k’ of the Kelly method and the initial ‘k’ of the proposed 

method in the iteration (28) to be 0.0009. 
The normalized link capacity for all links is selected to be 30. We have also used 

Rr ,01.0r ∈∀=ρ and ε=0.01 in relation (28). 
We have selected σ=1 and γ=600 in equation (10).  

The users’ utility functions are in logarithmic form with the following parameters: 
 

ω(1) = ω(2) = 0.5 and ω(3) = 0.3 
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It can be verified in Figs. 6-7 that the rate allocated to users 2 and 3 have a higher convergence rate in 
the proposed method. 

                
Fig. 6. Comparing rate of user 1 in proposed method  

       with Kelly’s method in the 1st topology 
Fig. 7. Comparing rate of user 3 in proposed method     

with Kelly’s method in the 1st topology 
 

The time evolution of ‘k’ parameters in the proposed method for typical users 2 and 3 are depicted in 
Fig. 8. 

The second network topology is depicted in Fig. 5 in which 20 users, denoted: by ‘S’ are traversing a 
network which consists of 28 links and each user’s destination denoted by ‘D’ letter. The links that are 
traversed by each user traffic are shown below: 

 
Table 1. The route traversed by each user traffic in topology 2 

 
User 1: L1-L17-L27-L25-L7 User 11: L2-L18-L27-L24-L6 
User 2: L1-L17-L27-L23-L22-L5 User 12: L2-L10-L20-L22-L5 
User 3: L1-L17-L27-L24-L6 User 13: L8-L26-L24-L13-L5 
User 4: L1-L16-L15-L7 User 14: L8-L26-L24-L13-L5 
User 5: L1-L17-L27-L23-L22-L5 User 15: L8-L26-L24-L6 
User 6: L2-L10-L11-L4 User 16: L8-L15-L14-L6 
User 7: L2-L10-L11-L4 User 17: L3-L20-L21-L4 
User 8: L2-L10-L11-L4 User 18: L3-L20-L21-L4 
User 9: L2-L18-L27-L25-L7 User 19: L3-L11-L4 
User 10: L2-L18-L27-L25-L7 User 20: L3-L19-L27-L25-L7 

 
For topology of Fig. 5 we have selected ‘k’ of the Kelly method and the initial ‘k’ of the proposed 

method in the iteration (28) to be 0.001. 
The normalized link capacity for all links is selected to be 30. We also have used Rr ,01.0r ∈∀=ρ and 

ε=0.01 in relation (28). 
We have selected σ=1 and γ=600 in Eq. (10). The users’ utility functions are in logarithmic form with 

the following parameters:  
Table 2. User utility function parameters for topology 2 

 
ω(1) = 0.5 ω(5) = 0.4 ω(9) = 0.25 ω(13) = 0.3 ω(17) = 0.2 
ω(2) = 0.5 ω(6) = 0.7 ω(10) = 0.3 ω(14) = 0.2 ω(18) = 0.25 
ω(3) = 0.3 ω(7) = 0.3 ω(11) = 0.2 ω(15) = 0.25 ω(19) = 0.3 
ω(4) = 0.3 ω(8) = 0.25 ω(12) = 0.25 ω(16) = 0.3 ω(20) = 0.2 

 
In Fig. 9, the rate allocated to the typical user 11 has been compared between the proposed method 

and Kelly method. It can be verified that the proposed algorithm has a higher convergence rate. 
In Figs.10-13, the aggregate rates through bottleneck links "2","4","8" and "27" have been compared 

and it can be concluded that the proposed method is faster in convergence rate. 
The time evolution of ‘k’ parameters in the proposed method for typical users 4 and 11 are depicted in 

Fig. 14. 
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Fig. 8. Time evolution of parameter ‘k’ in the proposed 

method in the 1st topology 
Fig. 9. Comparing rate of user11 in proposed and  

       Kelly methods in the 2nd topology 
 

         
Fig. 10. Comparing aggregate rate through bottleneck 2 

in different methods in the 2nd  topology 
Fig. 11. Comparing aggregate rate through bottleneck 4 

in different methods in the 2nd  topology 
 

    
Fig. 12. Comparing aggregate rate through bottleneck 8 

in different methods in the 2nd  topology 
Fig. 13. Comparing aggregate rate through bottleneck 27 

in different methods in the 2nd  topology  
 

b) Loss in rate allocation of the Kelly method  
 

In this part, the parameter ‘k’ in the Kelly method is higher than part (a) and loss occurs in the 
network. 

For the topology of Fig. 4 the ‘k’ parameter of the Kelly method and the initial ‘k’ of iteration (28) are 
selected to be 0.4. Other parameters are the same as part (a). 

In Fig.15 the aggregate rate through typical bottleneck link "2" are compared between the Kelly and 
the proposed methods. 

The number of loss events (when the aggregate rate through a link exceeds its capacity) in the Kelly 
and the proposed method are 50 and 0 respectively.  

In Fig. 16, the time evolutions of parameter k are sketched for typical users 4 and 11. 
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Fig. 14. Time evolution of two typical ‘k’ parameters in  

the proposed method in the 2nd topology 
Fig. 15. Comparing aggregate rate through bottleneck 2  

in different methods in the 1st topology 
 

For the topology of Fig. 5 the ‘k’ parameter of the Kelly method and the initial ‘k’ of iteration (28) are 
selected to be 0.095. Other parameters are the same as part (a). 

In Fig. 17, the rate allocated to the typical user 11 has been compared between the proposed and Kelly 
methods.  

In Figs. 18-21 the aggregate rates through bottleneck links "2","4","8" and "27" have been compared 
between the Kelly and the proposed methods. 

The time evolution of ‘k’ parameters in the proposed method for typical users 4 and 11 are depicted in 
Fig. 22. 

The number of loss events in the Kelly and the proposed method are 1092 and 0 respectively.   
It must be mentioned that the correct selection of the simulation parameters is of crucial importance in 

having a realistic simulation scenario. 
For example, the incorrect selection of γ and σ parameters of the penalty function as it can be checked 

in Fig.1, can lead us to an incorrect estimation of ideal link penalty function.  

            
Fig. 16. Time evolution of parameter ‘k’ in the  

proposed method in the 1st topology 
Fig. 17. Comparing rate of user11 in proposed and  

Kelly methods in the 2nd topology  

                
Fig. 18. Comparing aggregate rate through bottleneck 2  

in different methods in the 2nd  topology 
Fig. 19. Comparing aggregate rate through bottleneck 4 

in different methods in the 2nd  topology 
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Fig. 20. Comparing aggregate rate through bottleneck 8   

in different methods in the 2nd  topology 
Fig. 21. Comparing aggregate rate through bottleneck 27  

in different methods in the 2nd  topology 
 

 
Fig. 22. Time evolution of two typical ‘k’ parameters in  

the proposed method in the 2nd topology 
 

5. CONCLUSION 
 

One of the deficiencies of the Kelly’s method in [2] is the lack of presentation of a way by which each 
user can compute its ‘k’ parameter in a distributed way so that he (she) can ensure the loss-free property in 
his (her) allocated rate.    

In this work, we have presented an algorithm by which users can change their ‘k’ parameter and the 
loss-free property of the allocated rate is guaranteed in a number of network topologies. We have 
investigated three different scenarios of communication networks including a simple one link-one user 
scenario, one link-multi user case and general multi user-multi link case. For a general network topology, 
finding an analytic and distributed solution for equation (19) is very difficult, thus we have tried to find an 
approximate and distributed solution for ‘k’ parameter. For this purpose we have used penalty function 
(10) and iterative method (28) and have shown by simulation that, the proposed method has a higher 
convergence rate and no loss with respect to the Kelly method.  

One shortcoming of this distributed solution is that the proposed rate allocation algorithm may not be 
loss-free in general, but the important point about the approximate method in (28) is its distributed 
structure, i.e., each user can choose its ‘k’ parameter intelligently with only the help of the congestion 
parameters ni,λ and 1-ni,λ  that are fed back to him from the network.  

 
NOMENCLATURE 

 
A routing matrix 
cj   link ‘j’ capacity 
C links capacity vector 
J set of  network links 
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kr gain parameter for user ‘r’ 
(.)jp  link ‘j’ penalty function 

R set of  network users 
T time (iteration) 
ur(.) user ‘r’ utility function 
U vector of  user utility functions 
V(.) lyapunov function 
xr rate (throughput) allocated to user ‘r’ 
X users’ allocated rate vector 

 
Greek letters 

 
ε  small positive gain parameter 
γ  penalty function parameter 

iλ  aggregate penalty of user i’s route 

(.)µ j  link ‘j’ penalty function 

ω r user ‘r’ utility function parameter 
Ω  user’s utility function parameter vector 
γ  penalty function parameter 
ρ  gain parameter in our algorithm 
σ penalty function parameter 

 
REFERENCES 

 
1. Jacobson, V. (1988). Congestion avoidance and control. Comput. Commun. Rev., 18(4), 314-329. 
2. Kelly, F., P., Maulloo, A. K. & Tan, D. K. H. (1998). Rate control for communication networks: shadow prices, 

proportional fairness and stability. J. Oper. Res. Soc., 49(3), 237-252. 
3. Sheikholeslam, F., Tahani, V. & Zangeneh, H. R. Z. (2000). Periodic solutions of nonlinear equations based on 

extended stability theorems of nonlinear systems. Iranian Journal of Science & Technology, 24(1), 111-117 
4. Tahani, V. & Sheikholeslam, F. (1999). Total stability of fuzzy feedback control systems.  Iranian Journal of 

Science & Technology, 23(Jan), 7-34 
5. Teshnelab, M. & Afyooni, D. (2004). An artificial intelligent system for traffic forecasting in virtual stations of 

highways Tehshnehlab. Iranian Journal of Science and Technology, Transaction B: Engineering, 28(3) B, 2004, 
pp 395-400 

6. Shenker, S. (1995). Fundamental design issues for the future Internet. IEEE J Selected Areas Commun., 13(7), 
1176-1188. 

7. Kelly, F. P. (1997). Charging and rate control for elastic traffic. Eur. Trans. Telecommun., 8, 33-37.  
8. Mo, J. & Walrand, J. (2000). Fair end-to-end window-based congestion control. IEEE/ACM Transactions on 

Networking, 8(5), 556-567. 
9. Massoulié, L. & Roberts, J. (1999). Bandwidth sharing: objectives and algorithms. Proc. IEEE INFOCOM, 3, 

New York, 1395-1403. 
10. Bertsekas, D. & Gallager, R. (1987). Data networks. Prentice Hall, Englewood Cliffs, NJ. 
11. Kunniyur, S. & Srikant, R. (2000). End-to-end congestion control schemes: utility functions, random losses and 

ECN marks. IEEE INFOCOM 2000-Tel Avive, Israel. 
12. La, R. J. & Anantharam, V. (2002). Utility-based rate control in the internet for elastic traffic. IEEE Trans. On 

Networking, 10(2), 272-286. 
13. Kalantari, A. & Kouhsari, S. M. (2005). A distributed computing approach for power system analysis. Iranian 

Journal of Science and Technology, 29(B4). 
 



A proportionally-fair algorithm for loss-free… 
 

April 2006                                                                                 Iranian Journal of Science & Technology, Volume 30, Number B2 

221

APPENDIX 
S. M. Proof of theorem 2: 

 
We will follow the lines of proof, which is presented in [1] with some modifications. 

The assumptions on ωr >0, r∈R and pj, j∈J ensure that V(X) is strictly concave on X≥0 with an 
interior maximum; the maximizing value of X is thus unique. Observe that: 
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Setting these derivatives to zero identifies the maximum. Furthermore, we have: 
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As kr(X) is a positive parameter with a positive limit as t goes to infinity, it can be easily verified that 

V(X(t)) is strictly increasing with ‘t’, unless X(t)=X*, the unique X maximizing V(X(t)) which is the same 
solution as Eq. (4) displays. Thus the function V(X(t)) is a Lyapunov function for the system.  

Although our proof is presented for a continuous-time system, we can easily extend this proof to a 
discrete-time system as Kelly described in [1].  

 
 

 


