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Abstract– This paper describes an architectural model to facilitate multiversion objects that are 
explicitly designed to enhance concurrency. The reader should be aware that version management 
has been used in the object literature in several ways, most commonly dealing with design issues. 
Our goal here is related to concurrency control and reliability, so care must be taken to ensure the 
reader is not misled by this overloading of terminology found in the literature. Within the context 
of concurrency the key aspects addressed by this paper are: 1) An architectural model is developed 
to support multiversioning that provides the well-known ACID transaction properties; 2) An 
optimistic concurrency control algorithm that functions on this architecture is described and 
demonstrated to be correct with respect to a correctness criterion; 3) The algorithm is enhanced to 
examine the history of past versions with the goal of inserting a committing transaction at a time 
earlier in the sequence when it would have been valid if other, later transactions had not been 
completed before this one attempted to commit; and 4) Based on static analysis information, other 
algorithms are developed to optimize the compiler in order to generate reconciliation procedures 
automatically from the initial transaction specification.           
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1. INTRODUCTION 
 

Traditional multiversion database environments have used data versioning for historical purposes as well 
as issues related to transaction management. Data versioning reduces the overhead involved in recovery, 
and impacts concurrency, especially in an environment where contention between read-only and update 
queries is problematic. This paper presents a model of versioned objects for an objectbase environment 
where the objectbase consists of a set of objects which contain structure and behavior. An object's 
structure is the set of attributes encapsulated by it. An object's behavior is defined by procedures called 
methods. A method's operations can read or write an attribute or invoke another method, possibly on 
another object. 

Multiple users may access the objectbase at the same time and their access must be controlled to 
avoid concurrency anomalies such as lost updates and inconsistent reads. Transactions are used to 
facilitate this control. Traditionally transactions are defined as a sequence of read and write operations on 
passive data. In an object-oriented system a transaction consists of a sequence of method invocations 
which perform operations on object attributes on the transaction's behalf. 

Concurrent execution of a set of transactions must be controlled so that the final result of the 
execution is equivalent to the result of some serial execution of the transactions (i.e. “serializable” [1], 
[2]). An objectbase system is provided with a scheduler that orders the operations of the concurrent 
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transactions based on a correctness criterion. Correctness criteria are enforced by concurrency control 
algorithms that ensure the serializability of concurrently executing transactions. Concurrency control 
algorithms are divided into two broad categories: pessimistic and optimistic. Pessimistic protocols block 
the transactions by deferring the execution of some conflicting operations. Optimistic algorithms do not 
block the transactions, but validate their correctness at commit time. Focusing on the centralized 
objectbase environment (not Distributed System [3]), this paper introduces an object versioning technique 
and develops a related optimistic concurrency control algorithm. Our model introduces two types of 
concurrency control: inter-UT and intra-UT concurrency. Inter-UT concurrency refers to the concurrent 
execution of multiple user transactions. Intra-UT concurrency refers to concurrent execution of multiple 
subtransactions originating from the same user transaction. 

One problem with optimistic concurrency algorithms [4-6] is that transactions are aborted and 
possibly restarted if they cannot be serialized based on the defined correctness criterion. The goal of this 
research is to reconcile unsuccessful transactions instead of aborting them. Two methods of reconciliation 
have been addressed in this paper: simple reconciliation and complex reconciliation. Simple reconciliation 
involves changing the commit order of some of the transactions without making the state of the objectbase 
inconsistent. Complex reconciliation involves partial re-execution if the data it used was incorrect. 
The paper begins by describing related work on multiversion concurrency control and transaction models 
for objects in Section 2. Section 3 describes our model and defines its key concepts. Architecture for our 
model and details of its components is presented in Section 4. Section 5 discusses reconciliation and 
explains the conditions under which transactions can be reconciled. The required static analysis 
information which demonstrates the steps required to generate reconciliation procedures at compile time is 
illustrated in this section. Finally, Section 6 makes some concluding remarks and suggests directions for 
future work. 
 

2. RELATED WORKS 
 
Using multiple versions of data items for transaction synchronization was first proposed by Reed [7]. 
Multiversioning allows for enhanced concurrency, simplifies recoverability, and supports temporal data 
management. This section reviews relevant multiversion and objectbase concurrency control literature. 
Nakajima [4] presents an optimistic multiversion concurrency control mechanism. Multiversioning 
techniques are applied to the concepts of backward and forward commutativity introduced by Weihl [8]. 
According to Weihl, two operations executing on an object commute if they can be scheduled in any order 
without affecting the result of computation. Nakajima argues that forward commutativity requires the 
latest committed versions of the objects to determine a conflict relation, while backward commutativity 
requires the current states of the objects. Using multiversioning, forward and backward commutativity 
relations are combined into a new relation called the general commutativity relation. A general 
commutativity relation exists between two operations if they either backward commute or forward 
commute. 

In Nakajima's model, each object consists of a collection of versions. The versions are classified into 
two groups: the committed and the uncommitted versions. The most recent committed version of an object 
of is called the last committed version of of (denoted LCV(of)), and the most recent uncommitted version of 
of  is called the current version of of (denoted CV(of) ). When transaction Ti invokes method Mf

k on object 
of, a new uncommitted version of of (denoted NV(of)) is created for Ti. If the return result from NV(of) 
backward commutes with CV(of) or forward commutes with LCV(of), NV(of) becomes the new current 
version of of and replaces the old current version. Otherwise, NV(of) is discarded and Ti invokes method 
Mf

k again. 
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Graham and Barker [5] proposed another optimistic concurrency control scheme for objectbase 
systems. In this algorithm each transaction Ti obtains copies of the objects it requires and is executed 
independently of other transactions. Thus, transactions do not interact with each other until commit time. 
At commit time, transactions that have read stale data must be reconciled before they commit. 

Two types of reconciliation are introduced: simple reconciliation and complex reconciliation. Simple 
reconciliation merges the result of the execution of two versions, of1 and of2 of object of accessed by two 
transactions T1 and T2, respectively and provides a serialization order between T1 and T2. If versions of1 
and of2 cannot be directly merged (due to the use of stale data), complex reconciliation is attempted. 
Complex reconciliation of two transactions, T1 and T2 may require the less costly transaction be re-
executed (partially or entirely) against the state created by another transaction. The cost of the re-
execution of a transaction is estimated by static compile time analysis [9]. Graham and Barker's model is 
limited to flat transactions and therefore does not consider the advanced transaction models. Further, their 
work does not explain how reconciliation procedures are generated at compile time. 
 

3. THE COMPUTATIONAL MODEL 
 
The objectbase system introduced in this paper consists of a set of objects. Each object has a unique 
identifier with a set of attributes and methods. Attributes form the structure of the object, and methods 
modify the state of the attributes. An object with identifier f is denoted of . Objects are versionable in that 
several versions can be derived from a given object. The versions of the objects are either committed or 
active.  An active version i of an object of (denoted vfi ) begins as a copy of a persistent object and is 
manipulated independently of all other versions. Methods of object of are denoted as m1

f , m2
f , m3

f , …, 
etc.  

Transactions are submitted to the objectbase and are executed concurrently. We have employed the 
nest transaction model introduced by Moss [10] and have divided the transactions into two categories: 
User Transactions and Version Transactions.  Each User Transaction contains a set of method invocations 
of objects. Each method associated with a user transaction is converted to a Version Transaction that is 
executed on a version of an object. For example, if User Transaction i (UTi), consists of three methods ma

1 

, mb
2, and mc

3, the version transactions generated from these three methods are denoted as VTa
i1, VTb

i2, and 
VTc

i3 respectively.  In general, each version transaction VTf
ik  corresponds to the kth version transaction of 

UTi that should be executed against the version of object of called vfi. 
Unlike user transactions, version transactions manipulate local attributes using read and write 

operations, execute pre-commit operations on the object versions, and may also invoke other methods. 
Version Transactions that are generated from the methods of the same object are all executed against one 
object version. However version transactions that are generated from methods of different objects execute 
on separate versions.  

Concurrent execution of a set of truncations forms a schedule. In order to ensure that the objectbase 
always moves from one consistent state to another, the schedule must be serializable. This means, the end 
result of the concurrent execution of a set of transactions must be equivalent to a serial execution of those 
transactions. A serializable schedule is correct if it is done based on some correctness criteria. The most 
common correctness criterion is Conflict-serializability [1]. We have introduced a new correctness 
criterion called value-serializability that relaxes the limitation of conflict-serializability. For a complete 
definition of user transaction, version transaction, user and version transaction schedules and all related 
issues to value-serializability the reader can refer to [6].  
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4. THE ARCHITECTURE 
 
A versioned object store is comprised of two portions: a non-persistent unstable working store, and a 
persistent objectbase. An unstable store contains active versions. An active version is derived from a 
committed version, undergoes some changes, and may eventually become a new committed version. 
Committed versions are maintained in the objectbase.  If the number of committed versions exceeds a 
system defined limit, some are archived. An object, with its committed versions, constructs an object 
family. To distinguish different version types of of, we denote vfi and ofi to represent an active version, and 
a committed version respectively.  

Creating an active version, vfi, from a committed version of the object family f, requires copying a 
committed version and giving it a unique version identifier i. Promoting an active version vfi requires 
recording vfi  as ofi  in the objectbase.  

 
The architectural model: Three major components form the basis of our architecture: the Transaction 
Processor, the Version Processor, and the Validation Processor (Fig. 1). The Transaction Processor accepts 
user transactions and returns results to the user. It processes transactions for syntactic correctness and 
performs coordination functions for inter-object method executions by converting the method invocations to 
version transactions and scheduling version transactions for user transactions. The version transactions are 
scheduled (using the depends function) so that version transactions of a single user transaction invoked on 
the same active version are ordered before they are processed. Version transactions of multiple user 
transactions are executed concurrently.  

 
 

Fig. 1. The main components of the architecture 
 

The Version Processor receives the scheduled version transactions from the Transaction Processor 
and creates new active versions of the objects required by the version transactions by copying from the 
committed versions of the objects from the objectbase. The active versions associated with the version 
transactions of a given user transaction (UTi) are logically grouped into a version list}(VRLST(UTi)) after 
their completion and are submitted to the Validation Processor.  

The Validation Processor examines the version lists and decides whether to abort or commit the user 
transactions. It has two components: the Decision Manager and the Commit Manager (Fig. 2).  

The Decision Manager compares each updated active version (vfi), referred by its object family id in 
the version list with the most recent committed versions of object family f (ofl's) in the objectbase. The 
purpose of the comparison is to determine if updated active versions would create inconsistency in the 
objectbase. An updated version vfi is consistent with the state of other committed versions of of if the 
attributes accessed in vfi have not been accessed since vfi was created. If this is the case for every active 
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version vfi of UTi, VRLST(UTi) is sent to the Commit Manager, the Commit Manager promotes the updated 
versions to committed versions and records them beside other committed versions in the objectbase. 

 

          
Fig. 2. The validation processor 

 
If the states of some active versions of UTi are not consistent with their corresponding committed 

versions in the objectbase, UTi has read stale data and should be aborted. In complex systems where 
transactions are usually long and the overhead involved with the execution of each transaction is not 
trivial, aborting and restarting an unsuccessful transaction UTi may significantly degrade the system 
performance. Our approach modifies the Decision Manager to reconcile UTi before it decides to abort it. 
The Decision Manager checks if it is possible to change the commit order of UTi and some recently 
committed user transactions. This is called simple reconciliation. Changing the commit order of the user 
transactions is possible if both intra-object and inter-object serializability are ensured and the objectbase 
consistency is still maintained after simple reconciliation is complete. If simple reconciliation is not 
possible, complex reconciliation is performed. In complex reconciliation of UTi, the stale data are reread 
from the objectbase and some operations of UTi, only the ones related to these stale data, are re-executed 
against the updated active versions of UTi. When the results made from all the updated versions of UTi 
become consistent with the current state of their corresponding objects in the objectbase, VRLST(UTi) is 
passed to the Commit Manager. If both simple reconciliation and complex reconciliation fail, UTi is 
aborted and its active versions are disposed. 

 
5. RECONCILIATION 

 
This section details algorithms related to simple reconciliation and complex reconciliation. 
 
a) Simple reconciliation 
 

Figure 3 shows an example of the case when the execution of a user transaction is not successful and 
reconciliation is required.  

Figure 3a shows the original state of the object family f. UT1 and UT4 start first and each receives a 
copy of of0 denoted by vf1 and vf4, respectively. UT1 executes mf

1 against vf1 and UT4 executes mf
4 against 

vf4. UT1 commits and its associated committed version of1 is recorded in the objectbase (Fig. 3b). Then UT2 
starts, obtains a copy of of1 (vf2), executes mf

2 against vf2, and commits. vf2 is promoted to of2 and is 
recorded in the objectbase (Fig. 3c). Next UT3 starts, obtains a copy of of2 (vf3), executes mf

3 against vf3 and 
commits. vf3 is promoted to of3 and is recorded in the objectbase (Fig. 3D). Now UT4 terminates; however, 
vf4 can not be committed as the last committed version in the chain because the value of c read in vf4 is 
stale. Although vf4 cannot be placed at the top of the version chain in the object family f, it might be 
possible to insert it in the lower levels without making the state of other committed versions inconsistent. 
Simple reconciliation is the process that checks and inserts vf4 in an appropriate position in the version-
chain. This is done by the Validation Processor. 
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Fig. 3. An example when simple reconciliation is required 

 
b) Decision manager 
 

If it is found that a user transaction UTi cannot be committed normally, the Decision Manager 
processes VRLST(UTi) and finds if simple reconciliation of UTi is possible. Simple reconciliation is 
performed if two conditions are satisfied. First, promoting each active version vfi to ofi and locating ofi in 
the object family, f must ensure intra-object serializability at the object family f. Second, the entire 
transaction system must be inter-object serializable. 
 
Intra-object serializability-Consider Fig. 4. Suppose active version vfi originates from ofj when UTi 
references object family f. The following data structures are required: 
 
 [BeforeImage(v)]: is a snapshot of a version v before v is modified. This snapshot is required to validate 

v at commit time. 
[readset(v)]: is a set of data items read in version v by some transactions.  
[writeset(v)]: is a set of data items written in version v by some transactions.  
[ValidPos[]]:is a one dimensional array of integers. The index of each element corresponds to an active 

version vfi. ValidPos[vfi] refers to the position in the version-chain of object family f where vfi  can 
be inserted.  

                        
Fig. 4. Finding a position in the chain 
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When UTi terminates, the Validation Processor checks if vfi  can be inserted in  the proper position in the 
chain. This process starts from the top of the chain where ofn is located and proceeds down until either a 
position is found to insert vfi  or no position can be found. vfi  can be inserted between any two committed 
versions ofp and  ofp+1 if: 
 

1. committed transactions UT0, UT1, ..., UTp can be serialized before UTi in object family f, and  
2. committed transactions UTp+1, UTp+2,..., UTn can be serialized after UTi in object family f. 

 
The first condition holds if UTi (the user transaction associated with vfi) can read the same information 
from ofp as it originally read from ofj. The second condition can be satisfied if for every data item x in the 
object family f, in which UTp+1, UTp+2,,... UTn reads x from one of UT0, UT1,... UTp, the value of x should 
not have been modified by UTi in vfi. For example, suppose x is read by UTp+1 (x ∈ readset(ofp+1) and it 
was modified last by UTp in ofp (x ∈ writeset(ofp). If vfi does not contain the same value for x as ofp does, 
UTp+1 cannot be serialized after UTi in object family f. 

 
x in  
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Fig. 5. Possible cases when reconciliation may or may not succeed 

 
Figure 5A shows all possible cases that arise when the scheduler attempts to insert vfi below ofk (ofp+1  ≤ ofk  
≤  ofn ).  Similarly, Fig. 5B checks if it is possible to place vfi above ofm  (of0 ≤ ofm ≤ ofp). The truth tables in 
Figure 5 show that vfi  can be inserted in the chain between ofp and ofp+1 if: 
 
∀ ofk (ofp+1 ≤ ofk ≤ ofn) 

if x ∈ readset(ofk ) and x ∈ writeset(vfi) and x ∉  ⋃ s=p+1
k-1 writeset(ofs) then 

UTk reads the same value for x as UTi writes into x.   
and 
∀  ofm  (of0 ≤ ofm  ≤ ofp) 

if x ∈ writeset(ofm) and x ∈ readset(vfi) and x ∉  ⋃ s=m+1
p  writeset(ofs) then  

UTi reads the same value for x as UTm writes into x. 
 
Lines 1 through 14 in Fig. 6 attempt to find a proper position in the version-chain where vfi  can be 
inserted. The process starts from the top of the version-chain (lines 2-3) and proceeds down the version-
chain (lines 5-7). To determine if vfi can be inserted above a committed version ofp, it must be checked to 
be sure that every data item xfi read in vfi  is still unchanged in ofp.  

Simple comparison of each data item xfi read in vfi with its corresponding xfp in ofp is not possible 
because during the manipulation of vfi, xfi may have been modified. Thus, when a version is created, a 
snapshot of its original state (BeforeImage of the version) is preserved before the version is modified. The 
BeforeImage contains the original values of the attributes in the version. Therefore, to ensure that all of the 
data items read from vfi are still unchanged in ofp, xfp in ofp is compared with the value of xfi in the 
BeforeImage of vfi (line 4). 
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Fig. 6. The Decision manager  

If a proper ofp is found, the Decision Manager has to check whether vfi can be placed below the 
committed versions  ofp+1, ofp+2,... ofn in the version chain (i.e: serializing UTp+1 , UTp+2, ..., UTn after UTi 
in object family f). This process starts from ofp+1 and proceeds up to ofn. For every ofk between ofp+1 and ofn 
in the version-chain, if x is a variable that is read in ofk and it has been last modified by one of of0, of1, ... 
ofp, the value of x read in ofk becomes invalid if UTi writes a different value into x in vfi (lines 8-12). If a 
valid position for the insertion of vfi is found, this position is recorded in a data structure called ValidPos 
(line 14). Otherwise, if valid positions cannot be found for some of the active versions of UTi, UTi is 
aborted (lines 12,13). 
 
Inter-object serializability: The above process only ensures intra-UT serializability at each object family 
referenced by UTi. The Decision Manager must also check if UTi is inter-object serializable with respect to 
other committed transactions in the objectbase. The following example describes a situation when inter-
UT serializability may not be ensured. 

Suppose three user transactions UT1, UT2, and UT3 each accessing both object family f and object 
family e. UT1 starts first, commits, and creates committed versions of1 and oe1 in the objectbase. Then UT2 
and UT3 start, make copies (active versions) of the committed versions created by UT1 in object families f 
and e, and execute concurrently.  

Figure 7 shows the state of the object families f and e after UT2 and UT3 commit. Clearly, since of2 
occurs before of3 (UT2 →  UT3) in object family f (Fig. 7a) and of3 occurs before of2 (UT3 →  UT2) in object 
family e (Fig. 7b), inter-object serializability may not be ensured. The Global Serialization Graph 
provided by Zapp and Barker [11] can be used to control inter-object serializability.  

Algorithm for Decision Manager 
begin 
!!!!!!!!! CHECKING INTRA-OBJECT SERIALIZABILITY 
for every vfi ∈ VRLST(UTi) do (1

pos ← 0 (2
ofp ← ofn !!! STARTING FROM TOP OF THE CHAIN (3
if ∃ xfi ∈ readset(vfi) such that BeforeImage(xfi) ≠ xfp  then (4

pos ← pos +1 (5
ofp ← next committed version (going down the chain)  (6
go to line 4 (7

if a ofp is found, then (8
for every ofk that occurs above ofp in the chain (9
if ∃ xfk ∈ readset(ofk) such that  xfi ∈ writeset(vfi) and  xfk ≠ xfi then (10

∀  ofs (ofp+1 ≤ ofs ≤ ofk), if xfs  ∉  writeset(ofs) then (11
Abort UTi (12

or else  
Abort UTi (13

ValidPos[vfi] ← pos  (14
!!!!!!!!! CHECKING INTER-OBJECT SERIALIZABILITY 
for every vfi ∈ VRLST(UTi) do (15

for every ofk that occurs above vfi  in the chain do (16
if readset(vfi) value-∩ writeset(ofk) ≠ {} OR readset(ofk) value-∩ writeset(vfi) ≠ {} then (17

add an edge from UTk to UTi in GSG (18
for every ofm that occurs below vfi in the chain do (19

if readset(vfi) value-∩ writeset(ofm) ≠ {} OR readset(ofm) value-∩ writeset(vfi) ≠ {} then (20
add an edge from UTk to UTi in GSG (21

if there is a cycle in GSG then (22
Abort UTi (23

Send VRLST(UTi) and ValidPos[] to the Commit Manager (24
end 



Reconciling instead of aborting unsuccessfull transaction… 
 

April 2006                                                                                 Iranian Journal of Science & Technology, Volume 30, Number B2 

189

              
Fig. 7. Example of a possible inter-object serialization Problem 

 
The Global Serialization Graph for a set of user transactions Τ = {UT1, UT2,..., UTn} denoted GSG(Τ) 

is an acyclic graph (V,E), where V is a set of vertices and E is a set of edges. Each vertex vi ∈ V represents 
a user transaction UTi and an edge from vi to vj indicates that there exist a committed version of an object 
family f, ofi, associated with UTi which occurs above the committed version ofj associated with UTj in the 
version-chain of object family f and UTi and UTj have accessed some value-conflicting operations in ofi 
and ofj, respectively. Thus, if there is an edge going from vi to vj in GSG(Τ) then there must be a pointer 
going directly or indirectly from ofi to ofj. An edge in the global serialization graph shows the serialization 
order of two user transactions.  

We now define the value-∩ (value-intersection) of two sets A and B to be a set C={x1, x2,..., xn} if for 
1≤i≤n, xi ∈ A, xi∈B, and the value of xi in A is not equal to the value of xi in B. Consider Fig. 4 again. Let 
ofk be a committed version in the version-chain located between ofp+1 and ofn. An edge from UTk to UTi is 
added to the global serialization graph if the following condition holds. 
 

writeset(ofk) value-∩ readset(vfi) ≠ {} OR 
writeset(vfi) value-∩ readset(ofk) ≠ {} 

 
Similarly, let ofm be a committed version located between of0 and ofp. An edge from UTi to UTm is added to 
the GSG(Τ) if the following condition holds:  

writeset(vfi) value-∩ readset(ofm) ≠ {} OR 
writeset(ofm) value-∩ readset(vfi) ≠ {}  

When the edges are added to the GSG(Τ), the graph is checked for a cycle. As long as no cycle is detected, 
inter-object serializability is ensured. When both intra-object and inter-object serializabilities are ensured 
VRLST(UTi) and ValidPos are passed to the Commit Manager (see Fig. 6 lines 15-24). 
 
Commit manager: Before an active version vfi is added between ofp and ofp+1, in the version-chain, the 
Commit Manager must ensure that insertion of vfi in the chain leaves other committed versions in a 
consistent state. Note that during the execution of UTi against vfi, some other user transactions may operate 
on the data items in their own versions in which UTi does not access the corresponding data in vfi.  

Thus when vfi is inserted above ofp, the Commit Manager must check if the value of every attribute xfi 
in vfi that is not accessed by UTi is the same as its corresponding attribute xfp in ofp. If this is not the case, 
the value of xfp is propagated to xfi overwriting the old value of xfi (Fig. 8 lines (1-6)). 
An example is shown in Fig. 9. Suppose UTi has obtained a copy of of0 and during its lifetime other 
committed versions of1, of2, and of3 have been created (9A). Suppose the Decision Manager has found that 
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vfi can be inserted between of1 and of2 (9B). Although attribute cfi in vfi has not been accessed by UTi, the 
value of cf1 has to overwrite the value of cfi in order to serialize UTi after UT1 in the object family f. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. The commit manager 
 

 
Fig. 9. Propagation of the values to higher level committed versions 

 
Further, consider Fig. 9B. If a user transaction requests a copy of the most recent information in the object 
family f, a copy of of3 is obtained. However, of3 in Fig. 9B does not include all of the recent information 
after vfi joins the object family f. The reason is that the value of d in of3 is 5, which is not the most recent 
value of d in the object family f. The most recent value of d is 50, seen only in vfi. This problem can be 
solved by propagating the values of the variables in the writeset of vfi to their corresponding variables of 
the other committed versions which occur above it (Fig. 8 lines 7-10).   

Finally, vfi is promoted to the committed version ofi and inserted in the proper position in the version 
chain. When all active version transactions of user transaction UTi are promoted to committed versions 
and recorded in the objectbase, the Commit Manager stores the promoted active versions referenced by 
UTi in the objectbase and commits UTi (Fig. 8 line 11). Figure 9C shows the correct states of all 
committed versions in version family f. 
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Algorithm for commit manager 
begin 
for every vfi ∈ VRLST(UTi) do  (1

level ←ValidPos[vfi] (2
ofp  ← the committed version in object family f that is supposed to occur just below vfi  (3
for every data xfi in vfi and corresponding xfp in ofp do (4

if xfi ≠ xfp and xfi ∉  (readset(vfi) ⋃  writeset(vfi)) then (5
 xfi ← xfp  (6

for each xfi ∈ writeset(ofi) do  
for each ofk that occurs above ofi do  (7

if xfk ∉  writeset(ofk) then  (8
xfk ← xfi ! PROPAGATING THE VALUES  (9

else  
break;  (10

promote vfi to ofi and store it in ValidPos[vfi] 
Commit UTi (11
end  
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Complex reconciliation: Figure 10 shows an example of the case when simple reconciliation of a user 
transaction is not successful and complex reconciliation is required. 
 
Figure 10A shows the state of the object family f before UT1, UT2 and UT3 start executing. of contains the 
attributes Af={a,b,c,d,e} and the methods Mf={m1

f, m2
f, m3

f}. UT1 starts, obtains a copy of of0 called vf1, and 
executes m1

f against vf1. Then UT2 and UT3 start and each obtains a copy of of0. UT2 executes m2
f against its 

own copy vf2 and UT3 executes m3
f against vf3 (Figure 10B). Suppose UT1 and UT2 commit, thereby 

creating new committed versions of1 and of2, respectively. Now UT3 terminates. It is not possible to 
serialize UT3 after UT1 and UT2 because the value of b=20 read by UT3 is stale since UT2 has modified b 
(b=50 in of2). Similarly, the value of a=10 read by UT3 is stale since UT1 has modified a (a=40 in of1). 
Thus vf3 can neither be placed above of2 nor between of1 and of2 in the version-chain of object family f. 
Further, placing vf3 between of0 and of1 serializes UT1 after UT3. This cannot be done either because UT1 
reads attribute c which is being modified by UT3 in vf3. Since vf3 can not be located anywhere in the 
version-chain, it is considered an invalid version. Note that the stale data read by UT3 are a and b. To 
validate vf3, the new values should be read for a and b from of2 (the last committed version in object family 
f) and the code related to a and b in m3

f should be re-executed. An algorithm is now developed to show 
how to generate a reconciliation procedure for a method which accepts a set of stale data and re-executes 
only the code related to the stale data. 
 

                
Fig. 10: Case when simple reconciliation fails and complex reconciliation is required 

 
If a statement si in a method should be re-executed, related statements to si should also be found and re-
executed. The data dependency [12], [13] relation between the statements in a method is determined by 
considering the Three Address Code for the method. The three address code is an encoded program in 
which all of the complex statements have been decomposed to their simplest form and cannot be 
decomposed further [14]. Section 5.2.1 explains complex reconciliation for simple methods where routines 
include simple read and write statements. Then the approach is extended in Section 5.2.2 for complex 
methods which may contain loops and other conditional statements. 
 
Simple methods: Some notation is required. Suppose mk

f is a method of object of. WS(mk
f) and RS(mk

f) 
denote the writeset and readset of attributes written and read, respectively, by mk

f. These are generated 
conservatively at compile time [15]. 3mk

f denotes the corresponding three address code for mk
f and si refers 
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to statement i in 3mk
f. rs(si) and ws(si) denote the readset and the writeset of si, respectively. If si and sj are 

two statements in 3mk
f, si<sj  indicates that si precedes sj in 3mk

f. Similarly, si>sj means si follows sj in 3mk
f. 

 
The following data structures are associated with method mk

f. 
TACMkf[]:  is a one dimensional array of records. TACMkf (Three Address Code for mk

f) represents 
3mk

f. Each record contains four fields: op, arg1, arg2, and result where op is the operation and 
other fields contain the operands.  

FinalWriteMkf[]: is a one dimensional array of integers. The index of each element corresponds to a 
variable x ∈ RS(mk

f). If FinalWriteMkf[x] = si, si  is the last statement of 3mk
f that modifies x. 

i.e: si  makes the final write operation on x.  
ReadsFromMkf[ ]: is a two dimensional array of integers. Each row corresponds to a variable x ∈ 

RS(mk
f) and each column corresponds to a statement of 3mk

f. If ReadsFromMkf[x,si]=sj, si 
reads x from sj (i.e: sj is the last statement that modifies x prior to the execution of si).  

bitstringMkf[]: is a one dimensional array of bits. A bitstring is associated with each variable x ∈ RS(mk
f) 

(bitstringMkf[x]). The length of each bitstring is equal to the size of the array TACMkf. The 
value of each bit is either 1 or 0. A 1 in the ith position of the bitstringMkf[x] indicates that the 
si should be re-executed if x is stale.  

 
Figure 11 shows a three address code for 3mk

f, and the arrays TACMkf, FinalWriteMkf, and 
ReadsFromMkf. TACMkf is created by the compiler. The values in arrays ReadsFromMkf and 
FinalWriteMkf can be calculated by scanning through TACMkf. The following discusses how to find the 
values of bits in each element of bitstringMkf.    

  <result  arg1    op  arg2>   s1 s2 s3 s4 s5 s6 s7 s8 s9 k s7 

s1:k = k+c s1:       k         k        +         c k     s1             c s4 

s2:h=h−2 s2:       h         h        −         2 c                   h s2 
s3:x=x*k; s3:       x         x        *         k h       s2         s2 x s3 
s4:c=x*h s4:       c         x        *          h x       s3     s3     m s9 
s5:m=m*70 s5:       m       m        *         70 m           s5   s5 s8 j s6 
s6:j=j/m s6:         j        j          /         m j                   
s7:k=x*3 s7:        k        x         *         3 
s8:m=m+1 s8:        m       m        +         1 
s9:m=m/h 

 

s9:        m       m         /         h 

 

 

 

 
                   a) 3 Mfk               b) TACMkf [ ]   c) ReadsfromMkf[ ]                 d) FinalWriteMkf[ ] 

 
Fig. 11. The three address code for mk

f and associated data structure 
 

m1
f: m2

f: m3
f: m4

f: m5
f:  

------------------------------------------------------------------------------------------------------------------------- 
|s1:..... |s1:..... |s1:..... |s1:..... |s1:..... 
|..... |..... |..... |..... |..... 
|..... |..... |sf: p=m*n |sf:p=m*n |..... 
|..... |..... |..... |..... |..... 
|si-1:... |si-1:... |si-1:... |si-1:... |si-1:... 
|si:k=p*q |si:k=p*q |si: k=p*q |si: k=p*q |si: k=p*q 
|si+1:... |si+1:... |si+1:... |si+1:... |si+1:... 
|..... |..... |..... |..... |.....  
|..... |st:p=u*v |..... |st:p=u*v |st:k=u*v 
|..... |..... |..... |..... |..... 
|sn:..... |sn:..... |sn:..... |sn:..... |sn:..... 
------------------------------------------------------------------------------------------------------------------------- 

 
Fig. 12. Finding the related statements 
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Suppose user transaction UTj has obtained a copy of the last committed version of of, vfj, and has 
executed one of the methods mk

f (1 ≤ k ≤ 5) shown in Fig. 12 against vfj. Suppose UTj cannot be committed 
and reconciliation is required. If si:k=p*q is a statement in mk

f  that is either directly or indirectly related to 
the stale data read by UTj, si should be re-executed. Consider operand p∈rs(si). There are four possible 
cases when the re-execution of si may cause the re-execution of other statements: 
 
Case 1: p is neither modified in s1 .. si-1 nor in si+1.. sn 
Case 2: p is unmodified in s1.. si-1, but is modified in si+1.. sn 
Case 3: p is modified in s1 .. si-1, but is unmodified in si+1.. sn 
Case 4: p is both modified in s1.. si-1 and in si+1.. sn 
 
In Cases 1 and 2, since p is not modified prior to si , a new value for p is reread from the objectbase and re-
execution of si may only cause re-execution of the statements which relate directly or indirectly to the 
other two operands k and q. In Case 3, let sf  (s1≤sf≤ si-1) be the last statement that modifies p before si. 
Since p is not modified in si+1.. sn, sf is the statement that makes the final write on p during the execution. 
This value of p that is created by sf is available in the updated version vfj and is reread when si is re-
executed. In Case 4, the correct value of p is neither available in the objectbase nor in vfj. This is because p 
is modified both before and after the execution of si. Let sf be the last statement that modifies p prior to si , 
and st be the statement that issues the final write on p during the execution. In order to re-execute si, sf 
must also be re-executed to calculate the value of p that should be read by si. However, re-execution of sf 
overwrites the value of p that is in the vfj. Thus st must also be re-executed so that the correct final value of 
p can be re-recorded in the objectbase when re-execution terminates (Note: operation q∈rs(si ) is handled 
analogously).  

Now consider the following case for operand k∈ws(si). In Cases (1-5) shown in Fig. 12, when si is re-
executed, every other statement in si+1 .. sn that reads the value of k produced by si must be re-executed. 
Further, in Case 5, since st overwrites the value of k that is written earlier by si (st > si), the statement that 
executes the final write on k must also be re-executed.  
 
The algorithm: Suppose x∈RS(mk

f) and set X, contain the statements in 3mk
f which read the value of x 

from the objectbase. If it is found that x is stale, every statement si ∈ X plus other statements in 3mk
f  

which directly or indirectly relate to each si should be re-executed. Procedures BitString and 
FindRelatedCode shown in Fig. 13 and Fig. 14, respectively, find the statements which directly or 
indirectly relate to each variable x ∈ RS(mk

f). 
 

 
 
 
 
 
 
 

Fig. 13. Procedure BitString forsimple methods 
 

First, for each variable x∈RS(mk
f), procedure BitString finds the statements which are related directly 

to x (Figure 13 lines 1-2), and then calls procedure FindRelatedCode to search for the statements which 
are indirectly related to x (lines 3-4). The FindRelatedCode is a recursive procedure that accepts a 
statement si and marks statements which are related directly or indirectly to si (refer to Fig. 14). It contains 
three parts. First, statements in which si reads from them are recursively found and marked (lines 1-4). 
Then si is marked (line 5). Finally, given that k ∈ ws(si), statements which read k from si are recursively 
selected and marked for re-execution (lines 6-9). In addition, the last statement that modifies k 
(FinalWriteMkf[k]) should also be marked for re-execution (lines 10-12).  
 

Procedure Bitstring(RS(mk
f))  

begin 
for every x ∈ RS(mk

f) do  (1) 
X← set of statements in 3 mk

f that read x from the objectbase  (2) 
for every si ∈ X do  (3) 

FindRelatedCode(si, ReadsFromMkf[], FinalWriteMkf[], bitstringMkf[x])  (4) 
end 
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Fig. 14. Find related code procedure for simple methods 
 
Procedure ReconcilM-k-f (see Fig. 15) accepts a set of stale data and re-executes the code related to these 
stale data. The bitstrings of all stale data are merged into one bitstring called string to find out what code 
should be re-executed (lines 1-3). The value of each bit in string is either 0 or 1. A 1 in the ith position of 
string indicates that si in 3mk

f should be re-executed (lines 4-6). 
 

 
 
 
 
 
 
 
 
 
 

Fig. 15. The reconciliation procedure for method mk
f 

 
Complex methods: In methods which include conditional statements, finding the values of the bitstrings 
is complicated by two problems. First, it may not be possible to determine all of the values of 
ReadsFromMkf and FinalWriteMkf arrays at compile time for a method mk

f. For example in Figure 16A, 
the last write operation on p is either s4 or s6 depending on whether a>b or not. Also it is not possible to 
know if s7 reads c from s3 or s5 until the code is executed. To solve this problem, statements related to a 
variable (such as c in the example) can be selected conservatively for re-execution in both if and else 
blocks.  

The second problem is that, although some statements are not affected directly or indirectly by the 
stale data, they may still have to be re-executed. For example, in Fig. 16B, when k is stale, only s1, s3, s4, 
and s5, should be re-executed. However, the final value of t in s2 depends on the number of times the loop 
is executed. If the number of iterations in the loop changes during the re-execution, it changes the value of 
t calculated during the execution. Our approach is to consider all of the statements in a conditional block 
for re-execution, whenever a particular statement in that conditional block must be re-executed. This is 
excessively conservative and can be improved, but we leave this goal as a subject for future research. 

We now turn our attention to improving these algorithms as more execution sequences can be 
reconciled, thereby increasing concurrency. This enhancement is performed by modifying some of the 
algorithms previously presented to support complex methods. We begin by introducing the concept of 
control flow information [16-18].  
 

Procedure FindRelatedCode(si, ReadsFromMkf[], FinalWriteMkf[], var bitstringMkf[x]) 
begin  
for every y ∈ rs(si) do  (1) 

sj ← ReadsFromMkf[y, si]  (2) 
if (sj is not marked) and (FinalWriteMkf[y] > si) then  (3) 

FindRelatedCode(sj, ReadsFromMkf[], FinalWriteMkf[], bitstringMkf[x])  (4) 
set bit si in bitstringMkf[x] to 1  (5)  
Let k be such that k ∈ ws(si) then  (6) 
for every sj in which si = ReadsFromMkf[k, sj] do  (7) 

if sj is not marked then  (8) 
FindRelatedCode(sj, ReadsFromMkf[], FinalWriteMkf[], bitstringMkf[x])  (9) 

st ← FinalWriteMkf[k]  (10) 
if st is not marked then  (11) 

FindRelatedCode(st , ReadsFromMkf[ ], FinalWriteMkf[ ], bitstringMkf[x])  (12) 
end 

Procedure ReconcilM-k-f(StaleData) 
begin 
string ← empty (1) 
for every x ∈ StaleData do  (2) 

string ← string OR bitstringMkf[x]  !!!!!!! bit union of two string  (3) 
for i = 1 to sizeof(TACMkf) do  (4) 

if ith  bit of string = 1 then  (5) 
re-execute si   !!!ACTUAL RE-EXECUTION TAKES PLACE IN HERE  (6) 

end  
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 s1: k=p*10 s1:while (a<b) do 
 s2: if (a>b) then        s2:t=t+5 

        {s3: c=x+1        s3: a=k*2 
           s4:p=5}        s4: k=k+10 
     else s5:endwhile 
          {s5: c=x+2 
             s6: p=10} 
 s7: h=c*10 
             a)             b)  
                                                   Fig. 16. Finding related blocks using loop 
 
Control flow information: A method contains a collection of executable sections called basic blocks. A 
basic block is a sequence of consecutive steps entered at the beginning and exited at the end without halt 
or branching except on the last operation. An algorithm to derive the basic blocks of a program routine is 
presented by Aho, et al [16]. In brief, the algorithm accepts the Three Address Code of a method and 
determines the basic block leaders. A leader is the first statement of each basic block and is defined as the 
first statement in the program, or any statement that is the target of a conditional or unconditional goto, or 
any statement that immediately follows a goto or conditional goto statement. For each leader, its basic 
block consists of the leader and all statements up to, but not including the next leader or the end of the 
program.  

A basic block may contain a branch statement which links the basic block to another basic block. 
Relationships between basic blocks are captured in a control flow graph [16]. The control flow graph of a 
method mk

f is a directed graph CFG(mk
f) = (V,E) where each vertex vx ∈ V represents a basic block x (BBx) 

and an edge from vx to vy  indicates that the control may pass from BBx to BBy in mk
f. A control flow graph 

does not provide any information regarding how many times a basic block may be visited (reflecting the 
loop structure). It only shows if and when a basic block may be executed. Figure 17 provides an example 
of a program, and its corresponding control flow graph. 

In a particular execution of a method, only a subset of the basic blocks is visited. This is because, 
based on the current state of the object, the control (conditional) statements may prevent the execution of 
some basic blocks. For example, in Fig. 17B, if expr1 is true during the execution, BB2 is visited; 
otherwise, control is passed to BB3. A sequence of basic blocks visited during an execution of a method 
forms a control flow path [16]. A Control Flow Path (CFPx) through method mk

f is a sequence of basic 
blocks <BBko, BBk1,..., BBk(n-1)> where BBko is the entry node in the control flow graph for the method mk

f, 
BBk(n-1)  is an exit node of the graph, and there exists an edge from BBkc to BBk(c+1) (0 ≤ c <n-1) to indicate 
that the control flows directly from BBkc  to BBk(c+1).  

 

                                   
Fig. 17. Control flow graph of a program segment 

 

if expr1 then 
s1; 
s2; 
s3; 

else 
while expr2 do

s4; 
s5; 

endwhile; 
endif; 

if not 
expr1 
go BB3 

s1; 
s2; 
s3; 
Goto BB5; 

if not 
expr2 
go BB5 

s4; 
s5; 
Goto BB3; 

BB1

BB2

BB3

BB4

BB5

a) The program routine b) The control flow graph 
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If a method contains n control statements, there are at most 2n control flow paths. Prior to the execution of 
a method, it may not be possible to determine which path will be executed. However, it is possible to 
enumerate the control flow paths of a method at compile time. The following table shows all possible 
control flow paths through the program in Fig. 17A. 

 
expr1 expr2 path 
true true <BB1, BB2, BB5> 
true false <BB1, BB2, BB5> 
false true <BB1, BB3, BB4, BB5> 
false false <BB1, BB3, BB5> 

 
In this example, there are only three distinct paths because when expr1 is true, the result of expr2 is 
irrelevant. Consider method mk

f again. For each control flow path CFPkj of mk
f, we define 3CFPkj to be the 

corresponding three address code for CFPkj. TACCFPkj, ReadsFromCFPkj, and FinalWriteCFPkj are 
similarly associated with CFPkj. The following additional data structure is associated with mk

f: 
 

CondBlkMkf[]: is a one dimensional array of records. Each record contains two fields: begin and 
end. The index of each element corresponds to a statement si in 3mk

f. If CondBlkMkf[si].begin 
= sb and CondBlkMkf[si].end= se, si is within a conditional block where sb and se are the start 
and the end of that conditional block. If si is within a nested conditional block, sb and se  
represent the begin and the end of the outermost block. If sb and se are zero, si is not in a 
conditional block. 

condqueueMkf: is a queue of statements in 3mk
f. Every time a statement si is marked for re-

execution, it is pushed into condqueueMkf if it is within a conditional block. When si is 
popped from the condqueueMkf, the begining and the end of its associated conditional block, 
sb and se, are searched and all of the statements within sb and se are selected for re-execution.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18. Procedure bit string for complex methods 
 
The BitString procedure requires a major modification. In Fig. 13, statements related to each x ∈RS(mk

f) 
are searched within mk

f only. This is because mk
f consists of only a single basic block. This is extended in 

Fig. 18(lines 1-6) where related statements to each x ∈ RS(mk
f) are searched for along all possible control 

flow paths in mk
f. In addition, if any statement si that is directly or indirectly related to x is within a 

Procedure Bitstring(RS(mk
f)) 

begin 
for every x ∈ RS(mk

f) do  (1) 
X ← set of statements in 3mk

f  that read x from the objectbase  (2) 
for every si ∈ X do  (3) 

for each CFPkj do  (4) 
if si is in the CFPkj then  (5) 

FindRelatedCode(si, ReadsFromCFPkj[], FinalWriteCFPkj[], bitstringMkf[x])  (6) 
 
!!!! FINDING THE STATEMENTS IN THE CONDITIONAL BLOCK  (7) 
while condqueueMkf is not empty do  (8) 

sk ← pop an element form condqueueMkf  (9) 
sb← CondBlkMkf[sk].begin  (10) 
se ← CondBlkMkf[sk].end  (11) 
for si= sb to se do  (12) 

for each CFPkj do  (13) 
if si is in the CFPkj then  (14) 

FindRelatedCode(si, ReadsFromCFPkj[], FinalWriteCFPkj[], bitstringMkf[x])  (15) 
end 
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conditional block, all statements in that conditional block are considered to be related to x. The 
FindRelatedCode procedure has been slightly modified to find statements such as si and put them in 
condqueueMkf (Fig. 19 lines 5-8). The BitString procedure pops statements such as si from the 
condqueueMkf, searches for the beginning and the end of the conditional block associated with si, and 
processes all statements within that conditional block for re-execution (Fig. 18 lines 8-15).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 19. Procedure find related code for complex methods 

 
6. CONCLUSION 

 
We have presented a formalism for describing multiversion objects and transactions on them. We have 
also presented architecture which can be used as the basis for the development of optimistic concurrency 
control protocols. In this paper, we showed that preserving previous states of an object can enhance 
concurrency. We also illustrated how to generate a reconciliation algorithm for the object models. 
Reconciliation procedures accept a set of "incorrect'' data items, but make them consistent with the rest of 
the information in the objectbase. We discussed what a compiler requires so it can generate the 
reconciliation algorithms based on static analysis information. Future work may relax some constraints 
and improve the reconciliation algorithms. This paper does not address the issues related to the reliability 
of the system. Perez [19], [20] and Wang [21] suggested developed additional recovery components that 
could be added to the architecture, but do not consider reconciliation into account in detail. A proper 
recovery manager algorithm should be developed to ensure the system reliability at least in case of 
transaction and system failures. Further, this work may be improved to extend this research to a distributed 
objectbase environment  
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