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Abstract– Based on the wavelet transform and fuzzy set theory, we present a fuzzy wavelet 
network (FWN) for approximating feedback linearization control input. Each fuzzy rule  
corresponds to a sub-wavelet neural network (sub-WNN) consisting of wavelets with a specified 
dilation value. The degree of contribution of each sub-WNN can be controlled flexibly. The 
constructed  rules  used  to approximate the control signal in which the mathematical model of the 
system under control is unknown can be adjusted by learning the translation parameters of the 
selected wavelets and determining the shape of Gaussian membership functions of a fuzzy system. 
The proposed FWN shows good approximation accuracy and fast convergence. Finally a nonlinear 
inverted pendulum system is applied to verify the effectiveness and ability of the proposed 
network.           
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1. INTRODUCTION 
 

In recent years wavelet networks have found many applications in system identification, signal processing 
and function approximation [1-3]. 

A wavelet network is a nonlinear regression structure that represents input-output mappings by dilated 
and translated versions of a single function (mother wavelet) which is localized both in the space and 
frequency domains. Wavelet networks can approximate complex functions to an arbitrary precision [1, 4, 
5]. An appropriate initialization of wavelet neural networks allows fast convergence to be obtained. 
Orthogonal Least Square (OLS) algorithm can fulfill this aim [6]. The optimal dilations of wavelets 
increase training speed and ensure fast convergence. 

Fuzzy wavelet networks (FWNs) based on multi-resolution analysis (MRA) theory and the Takagi-
Sugeno-Kang (TSK) model [7, 8] not only reserve the multi-resolution capability of WNN, but also have 
the advantages of high approximation accuracy and good generalization performance [9]. According to 
these advantages, FWN can be applied to the problems of function approximation, system identification 
and control [9-11]. 

There is no general method to control nonlinear systems. Feedback linearization technique is a 
suitable and efficient method for controlling a special group of nonlinear systems [12, 13]. In the case that 
the mathematical model of the controlled system is unknown, the approximation of feedback linearization 
control input is an important issue. 

In this research, we present a FWN for approximating the control input. The proposed network shows 
high approximation accuracy and fast convergence. This paper is organized as follows. Sections 2 and 3 
discuss wavelet neural network and fuzzy wavelet network, respectively. Then a FWN is proposed for 
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approximating the control signal in Section 4. A simulation example is provided to verify the performance 
and capability of the network in Section 5. Finally a brief conclusion is drawn in Section 6. 
 

2. WAVELET NEURAL NETWORK 
 

Wavelet neural networks use a three-layer structure and wavelet activation functions. The structure of a 
wavelet neural network with one output y, q inputs {x1,x2,…,xq} and k nodes is given in Fig. 1 [1, 5]. 

The output signal of this network is calculated as  
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Fig. 1. Architecture of WNN 
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Naturally the mother wavelet ψ  is required to have zero mean. 
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In Eq. (2), the dilation parameter +ℜ∈ia  controls the support of the wavelet and the translation 
parameter q

ib ℜ∈
r

 determines its centeral position. 
In Eq. (1), if pairs )b,a( ii

r
 are taken from a grid Λ  given by 
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where the scalar parameters α  and β  define the step sizes of dilation and translation discretizations, 
(typically 2=α  , 1=β ) respectively, according to the above definitions any function )(Lf q2 ℜ∈  
(finite-energy and continuous or discontinuous) can be approximated to an arbitrary precision by the 
wavelet neural network [1, 5].  

The wavelets that Zhang and Benveniste [5] and Pati and Krishnaprasad [14] used in their networks 
are wavelet frames. Orthogonal bases are used in other wavelet networks structures [15]. 
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In [16], a number of methods are available to construct multidimensional wavelets in both single-
scaling and multi-scaling forms, based on one-dimensional wavelet frames. In the single-scale 
multidimensional wavelet frames, a single dilation parameter is used in all the dimensions of each 
wavelet, and multidimensional wavelet frames can be built by using a single mother wavelet. To fulfill 
this purpose the radial functions are used. 

The single-scaling radial wavelet frames (with simpler structure than multiscaling wavelet frames) in 
[6] are defined as 

 

⎭
⎬
⎫

⎩
⎨
⎧

∈∈−== −− qnnq

nm ZmZnmxxF rrrr
r ,:)()( 2

1

, βαψαψ         (5) 

 
where ℜ→ℜq:ψ  is a radial wavelet function  (Like Mexican Hat wavelet) and q is the input 
dimension. 

In the multi-scaling multidimensional wavelet frames, an independent dilation parameter is used in 
each dimension, and the multidimensional wavelet frames can be built by a tensor product of one 
dimension (1-D) wavelet functions. Using a 1-D wavelet frame ℜ→ℜ:sψ , a multi-scaling wavelet 
frame ℜ→ℜq:ψ  is built by setting  
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According to the theory of MRA, the dilation parameter of a wavelet can be interpreted as the resolution 
parameter. In fact, based on the multiresolution property, it is possible to present a library of wavelets. The 
wavelets with coarse resolution can describe the global (low frequency) behavior and those with fine 
resolution can describe the local (higher frequency) behavior of the approximated function. Accordingly, 
compared to other functional approximators, WNNs have the advantages of fast convergence, easy 
training and high accuracy [9]. 
 

3. FWN STRUCTURE 
 

In the Takagi-Sugeno-Kang (TSK) model, a set of fuzzy rules can be described by 
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where i

jA  is membership function, T
qxxxx ),...,,( 21=

r
is input vector and iŷ  is output variable and a 

linear combination of inputs which is essentially a global function. 
In the FWN structure, iŷ  is the output of the local model for rule iR  which is equal to the linear 

combination of a finite set of wavelets with the same dilation parameter. 
 A FWN is decribed by a set of fuzzy rules which have the following form [9] 
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Assuming the number of fuzzy rules is c ; ci1 ≤≤ ; iT  is the total number of wavelets for the ith rule and 

iŷ  is the output of the local model for rule iR . ]t,...,t,t[t k
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, where ℜ∈k
jt  is the translation value 

for corresponding wavelet k. i
jA  is Gaussian-type membership function defined as 
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In (9), i

1jp  and i
jp 2  represent the center and the width of the Gaussian membership function and i

3jp  
determines the shape of the membership function. 
Wavelets  )()(
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tM i

rψ  are expressed by the tensor product of 1-D wavelet functions: 
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According to Eq.(10), in each rule or sub-WNN, the wavelets are single-scaling and the same dilation 
index is in all the dimensions. 

Output of the whole network is calculated as 
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iμ̂  determines the degree of contribution  of each sub-WNN in the output of the network and iŷ  is the 

output of the local model for rule iR . 
Notice that, in THEN-parts of fuzzy rules, FWN employs c sub-WNNs at different resolution levels to 

capture different behaviors (global or local) of the approximated function rather than using constants or 
linear equations as in the traditional fuzzy models. Unlike the traditional FNNs with only one localized 
approximation of function, the FWN uses both globalized and localized approximation of function. For 
this reason, the FWN inspired by both fuzzy model and WNN has the advantages of improved local 
accuracy, nicer generalization capability and faster convergence [9]. 
 

4. APPROXIMATING FEEDBACK LINEARIZATION CONTROL INPUT BY FWN 
 

In this section, motivated by the reason stated in the previous section, we present a fuzzy wavelet network 
that can approximate the feedback linearization control input with high accuracy for a large group of 
nonlinear systems. 

Consider the following qth order dynamical nonlinear system: 
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where f and g are unknown functions, u and y are the control input and the system output respectively, and 
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 is the state vector of the system which is assumed to be available 

for measurement. 
Define the tracking error e as 
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where yr is the desired output. According to Eqs. (12) and (13) the feedback linearization control input is 
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error vector. 
Substituting Eq. (15) into Eq. (12),  the error equation can be obtained as 
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The elements in vector cr  can be chosen appropriately such that all the roots of error equation are in 
the open left-half complex plane. Thus the controlled system is stabilized if the control input, Eq. (15), can 
be implemented. In practice, both f and g are unknown functions and so it is hard to implement Eq. (15). 
To solve the problem, a fuzzy wavelet network is proposed to approximate the feedback linearization 
control input. 

A typical fuzzy wavelet network for the approximation of (15) can be described by a set of fuzzy 
rules: 

iR (ith rule): 
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where )qj1(x j ≤≤ is the jth state variable of xr  in the controlled system (12), and iû  is the control 
signal (output) of the local model for ith rule. The structure of fuzzy wavelet network for approximating 
control input (15) is given in Fig. 2 and the structure of each WNN is given in Fig. 1. 

According to Eqs.(9) and (10), the output of the network in Fig. 2 is calculated as 
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iμ̂  determines the degree of contribution of the control signal (output) of the wavelet based model with 
resolution level Mi . 

After calculating the feedback linearization control input of FWN, the training of the network starts. 
Consider the training data set of the nominal model system: 
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where L is the total number of the training patterns. Our goal is to train the network in  Fig. 2  based on 
data  set  in  (19)  so  that   the error  between  the output of  FWN and dur  is minimized. 

Most work done in the wavelet networks uses simple wavelets. For fuzzy wavelet network in [9, 10], 
Mexican Hat wavelet and B-spline wavelets are used respectively. We have selected the Mexican Hat 
function )

2
exp()1()(

2
2 xxx −−=ψ  as the wavelet function and accordingly, based on data set, dilation 

values Mi is chosen to be in the range from -3 to 4. 
After determining the dilation parameters, wavelet candidates are selected based on the input space 

training data. Wavelet candidates with various translation parameters, which are selected according to 
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input training data (desired state variables), are often redundant for constructing FWN [9]. Thus the OLS 
(Orthogonal Least Square) algorithm can be used for purifying wavelet candidates [6]. 
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Fig. 2. Structure of fuzzy wavelet network for approximating control signal 
 

The set of wavelet candidates { }
wLW ψψψ ,...,, 21=  are a set of regressor vectors which construct the 

output of the network. In this step, the number of wavelet functions, S, from set W that best span the 
training data of the control signal are selected. Since these regressors are usually correlated, the degree of 
contribution of each regressor to the output energy is not clear. The OLS algorithm transforms the set of 
regressor vectors into a set of orthogonal basis vectors and it is possible to calculate the degree of 
contribution of each basis vector to the output energy [17]. 

From the initial set of wavelet candidates, the OLS algorithm first selects the wavelet that best fits the 
training data, and then repeatedly selects one of the remaining wavelets that best fits the data when 
combined with all previously selected wavelets. For computational efficiency, later selected wavelets are 
orthonormalized to earlier selected ones. 

Using S selected wavelets, the approximated control signal is expressed as 
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where {l1,l2,…,lS} is a subset of {1,2,…,Lw }. According to a set of training data as defined in (19), we can 
write  
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uer is the error vector of the approximation problem defined by the training data (19). 
Our goal is to minimize the sum of square errors ∑
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performed by the least squares method. Let us define the following notations: 
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Then (21) can be rewritten as  
uevQu rrr

+=                              (24) 

And the vector ω
rr Av =  can be determined by the least squares solution 
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and the variance of ur  is calculated as  
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It can be seen from (26) that the term 
iii l

T
ll qqv rr2  is the part of the variance of u explained by regressor 

il
qr . A regressor is significant if this amount is large. Therefore, error reduction ratio (err) can be defined 
in the following form: 
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The OLS method uses err to select the important wavelets which have significant contribution to the 

output of the network. Then Ti, i = 1, 2…c the number of selected wavelets at dilation Mi, ∑
=

=
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1i
i ST  the 

total number of selected wavelets and initial weights k
i t,M
rω  are determined. Details of the network 

initialization can be found in [9].  
The EKF (Extended Kalman Filter) Method is used for training parameters i

jrp  , k
jt  and then LS 

(Least-Squares) algorithm for updating k
i t,M
rω  where j = 1,2,…,q ,  r = 1,2,3 , k =1,2,…,S. In [18], EKF 

and BP training algorithms are compared and it is shown that the EKF method has the advantages of better 
convergence and faster training speed.  

The learning procedure will be repeated according to a performance index Ji at ith iteration which is 
defined as 
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where d

lu  is the desired control input and lû  is the estimated output from the FWN in Fig. 2. 
 

5. SIMULATION RESULTS 
 

To demonstrate the capability of the proposed FWN we apply it to approximate the control signal for a 
second-order inverted pendulum system. In this simulation example, the objective is to approximate an 
appropriate control signal u to control the motion of the cart, such that the pole can track a desired output. 
Assume that θ=1x  is the angle of the pole with respect to the vertical axis, and θ&=2x  is the angular 
velocity of the pole.The inverted pendulum system is shown in Fig. 3. 
The state equations can be expressed by 
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gr(acceleration due to gravity) = 9.81 m/s2  

L (half length of the pole) = 0.5 m 

M (mass of the cart) = 1.0 kg    

m (mass of the pole) = 0.1 kg 
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θ
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θ

 
 

Fig. 3. Inverted pendulum system 
 

For this system our FWN has two inputs (x1, x2) and one output u. In the simulation, we use 300 pairs 
{ }dd ux ,r

 as training data sets of the nominal model system. By using the OLS algorithm [6], five fuzzy 
rules or sub-WNN are represented to approximate the control input for tracking the desired 
output tsin5.0)t(yr =  (case 1). The number of the selected wavelets and dilation parameter value 
presented by the OLS method in each sub-WNN are given in Table 1. The total number of the selected 
wavelets is 17, and 74 unknown parameters are used for training. 

In case 2, for tracking the desired output )t2sint(sin2.0)t(yr += , the feedback linearization 
control signal is approximated by 8 rules and the total number of the selected wavelets is 28. The number 
of the selected wavelets and dilation parameter value presented by the OLS method in each sub-WNN are 
given in Table 2. The performance of FWN is shown in Table 3. 

 
Table 1. The number of the selected wavelets and dilation value in each sub-WNN for Case 1 

 
Mi(dilation parameter value)  

 
-4 -3 -2 -1 0 1 2 

Ti (number of wavelets in each sub-
WNN) 

3 2 2 2 2 4 1 

 
Table 2. The number of the selected wavelets and dilation value in each sub-WNN for Case 2 

 
Mi(dilation parameter value)  

 
-4 -3 -2 -1 0 1 2 3 

Ti (number of wavelets in each sub-
WNN) 

5 5 2 4 3 3 3 3 

 
Table 3. The performance of proposed FWN 

 

 yr(t) 
Number of 

rules 

Number of unknown 
parameters used for 

training 

Performance 
index (Ji) 

 
Number of 
iterations 

Case 1 0.5sint 7 74 0.028 351 
Case 2 0.2(sint+sin2t) 8 104 0.070 198 

 
In case 1, Figs. 4 and 5 show the desired input data and approximated control signal constructed by 

FWN, respectively. In Fig. 4, the dot curve shows the desired output and solid curves show the input 
training data. In Fig. 5, the thin and thick curves are desired control signal and approximated control signal 
constructed by FWN, respectively. The same results are presented for case 2 in Figs. 6 and 7. In both 
cases, our FWN has fast convergence and appropriate accuracy. 
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Fig. 4. Input training data 
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Fig. 5. Approximated control signal 
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Fig. 6. Input training data 
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Fig. 7. Approximated control signal 

 

0 50 100 150 200 250 300
-8

-6

-4

-2

0

2

4

6

Approximated Control Signal
Desired Control Signal



M. Zekri / et al. 
 

Iranian Journal of Science & Technology, Volume 31, Number B6                                                                         December 2007 

662 

6. CONCLUSIONS 
 

In this paper, we presented a fuzzy wavelet network for approximating feedback linearization control 
input in which the mathematical model of the controlled system is unknown. The proposed FWN with the 
combination of WNN and fuzzy logic has advantages of the approximation accuracy and good 
generalization performance. Fuzzy rules correspond to sub-WNNs with different resolution levels such 
that the degree of contribution of various sub-WNNs can be controlled flexibly. The obtained results of 
simulation examples demonstrated the efficiency of the presented approach.  
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