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Abstract– In this paper, we present a new technique for separating two speech signals received 
from one microphone or one communication channel. In this special case, the separation problem 
is too ill-conditioned to be handled with common blind source separation techniques. The 
proposed technique is a generalized approach to model-based speaker-dependent single channel 
speech separation techniques in which a priori knowledge of the underlying speakers is used to 
separate speech signals. The proposed technique not only preserves the advantages of model-based 
speaker dependent single channel speech separation algorithms (i.e. high separability), but also is 
able to separate the speech signals of an unlimited number of speakers given the speakers' models 
(i.e. generality). The whole algorithm consists of three stages: classification, identification, and 
separation. The identities of speakers speech signals form the mixed signal are first determined at 
the classification and identification stages. Identified speakers' model is then used to separate the 
underlying signals using a novel approach consisting of Gaussian mixture modeling, maximum 
likelihood estimation and Wiener filtering. Evaluation results conducted on a database consisting 
of 100 mixed speech signals with target-to-interference ratios (TIR) ranging from -9 dB to +9 dB 
show significant performance improvements over those techniques which use a single model for 
separation.          

 
Keywords– Source separation, single channel speech separation, speaker identification, model-based single channel 
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1. INTRODUCTION 
 

The human auditory system is able to pick one conversation out of dozens in a crowded room. This is a 
capability that no artificial system comes close to matching. Recently, many efforts have been carried out 
to mimic this fantastic human ability. Inspired by this, the separation of two speech signals received from 
one communication channel is a challenging topic in the speech processing context. Currently, blind 
source separation techniques [1]-[7] are commonly used in the speech separation problem. In fact, if the 
requirements of BSS methods are satisfied, these techniques separate out speech signals with higher 
accuracy in comparison with other state-of-the art techniques such as computational auditory scene 
analysis (CASA) [7]. One of these requirements is that the number of observations must be at least equal 
to the number of sources, a condition which is not held when we have just one microphone and two 
speakers. This drawback, which significantly confines the usefulness of the BSS techniques in the problem 
at hand, can be explained as follows. In the BSS context, the separation of I source speech signals when 
we have access to J observation signals can be formulated as 

 
tt AXY =  
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the thj  observation and thi source signals, respectively. Additionally, T][⋅  denotes the transpose operation 
and the superscript t indicates that the signals are in the time domain. When the number of observations is 
equal or greater than the number of sources ( IJ > ), the solution to the separation problem is simply 
obtained by estimating the inverse of the mixing matrix, i.e. 1-AW = , and left multiplying both sides of 
the above equation byW . Many solutions have, so far, been proposed for determining the mixing matrix 
and quite satisfactory results have been reported [1]-[6]. 

However, when the number of observations is less than the number of sources ( IJ < ), (e.g. 1=J  
and 2=I  for the case discussed in this paper) the mixing matrix is non-invertible such that the problem 
becomes too ill-conditioned to be solved using common BSS techniques.  In this case, we need auxiliary 
information (e.g. a priori knowledge of sources) to solve the problem. This problem is commonly referred 
to as model-based single channel speech separation and has recently become a hot topic in the signal 
processing realm [8]. Although several solutions to this crux problem have been proposed by including the 
a priori knowledge of underlying speakers into the separation system [9]-[24], the problem has still 
remained a challenge such that current proposed algorithms deliver acceptable quality only in special 
cases. Generally, single channel model-based speech separation techniques are categorized into two 
classes: time domain and frequency domain. 

In time domain techniques [9]-[13] each source is decomposed into independent basis functions in the 
training phase. The basis functions of each source are learnt from a training data set based on independent 
component analysis approaches. Then the trained basis functions along with the constraint imposed by the 
linearity of sources in the time domain are used to estimate the individual speech signals via a maximum 
likelihood optimization. While the techniques perform well when the speech signal is mixed with other 
sounds such as music, separability reduces significantly when the mixture consists of two speech signals 
since the learnt basis functions of two speakers overlap greatly. In frequency domain techniques [14]-[19], 
first a statistical model is fitted to the log spectral vectors of each speaker. Then, the two speaker models 
are combined to model the mixed signal. Finally, in the test phase, the states that best match the mixed 
signal are decoded based on some criteria (e.g., minimum mean square error, likelihood ratio). 

In addition to the above approaches  several works have been proposed from the audiology society 
who  try to develop approaches based on human auditory mechanisms; the techniques are  commonly 
referred to as computational auditory scene analysis (CASA)  [25]-[31]. Though these methods are much 
faster and somehow simpler than model-based techniques, they suffer from two main problems. First, the 
current methods are unable to separate unvoiced speech and second, the separated speech signal suffers 
from crosstalk effects. Moreover, several techniques have been proposed that are categorized neither as 
BSS nor CASA methods [20]-[22]. In [20], a work has been presented based on neural networks and an 
extension of the Kalman filter. In [21] and [22], a generalized Wiener filter and an autoregressive model 
have been applied for general signal separation, respectively. The techniques have a mathematical depth 
that is worth further exploration, but no comprehensive results have been reported on the performance of 
these systems on speech signals. The previous model-based single channel separation techniques separate 
the sound signals with reasonable accuracy only for two special cases:  the first when the mixture sound 
consists of a speech signal plus a non-speech signal, e.g. non-stationary noise or music, and the second 
when the system was trained for two known speakers. In the latter case, the separation system is speaker 
dependent such that the generality of the system is remarkably confined, though the separation results are 
impressive. 
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 In this paper, we propose a new model-based single channel technique that not only takes on the 
advantages of speaker-dependent model-based approaches but also is able to separate the speech signals 
even if they come from unknown speakers.  The system can be adapted to as many speakers as possible 
given a training data set of the speakers. The proposed technique consists of three stages: classification, 
identification, and separation. The algorithm first recognizes the underlying speakers, and then the trained 
models of the selected speakers are used in the separation process. We apply a new separation technique 
which employs Gaussian mixture modeling, maximum likelihood estimation and Wiener filtering to 
separate the speech signals. The classification stage is based on a new algorithm known as the harmonic 
matching classifier followed by the identification stage. We evaluate the performance of the whole system 
as well as the performance of each stage separately. Results show the proposed technique outperforms 
those techniques which apply a single trained model for all speakers. 
The remainder of this paper is organized as follows. In Section 2, we present a brief overview of the whole 
system. In Section 3, we discuss the classification stage. The identification process is given in Section 4 
followed by the separation system which is explored in Section 4. Experimental results are reported in 
Section 5 and, finally, conclusions are discussed in Section 6. 
 

2. MODEL OVERVIEW 
 

In this section, we present a brief overview of the proposed technique and in the subsequent sections we 
elaborate on the details of the algorithm. Fig. 1 shows the system’s block diagram which consists of three 
stages: classification, identification, and separation. 

 

 
Fig. 1. Schematic diagram of the proposed system. The system consists of 

 classification, identification, and separation stages 
 

The task of the classification stage is to extract the segments by which we can identify the speakers' 
identity. From the human speech production mechanism, we know that the speech signal is generally 
categorized into voiced (V) and unvoiced (U) segments. Consequently, the mixed speech contains U-U, 
U-V, and V-V segments among which the U-V segments are extracted and passed to the speaker 
identification stage. We use the U-V frames for speaker identification because, in this case, the unvoiced 
frames are nearly masked by the voiced frames whose energy contents are generally greater than unvoiced 
frames. Hence, a U-V frame contains information related to one speaker which is appropriate for 
identification. The classification stage consists of two parts; the first part recognizes the U-U frames from 
the U-V and V-V frames and the second part distinguishes the U-V frames from V-V frames. For the first 
part of the classification stage, we use the technique introduced in [32]. While this technique has 
essentially been designed to classify the voiced and unvoiced frames in the single-talker scenario, we 
found through simulations that the technique accurately recognizes the U-U frames from the U-V and V-V 
frames. For the second part of the classification stage, we introduce a new technique which we call the 
harmonic matching classifier. 
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The extracted features (i.e U-V frames) are then transformed to the mel frequency cepstral 
coefficients (MFCC) and passed to the identification stage. The task of the identification stage is to 
identify the two speakers among the N speakers. We apply a speaker identification algorithm based on the 
techniques known as VQ-based speaker identification [33]-[35]. These techniques, however, are designed 
to identify one speaker among the N speakers. Therefore, we modify the VQ-based speaker identification 
algorithms to be able to recognize two speakers among the N speakers. 

Finally, the last stage of the proposed algorithm is intended to separate the underlying speech signals 
of the identified speakers. In this stage, we introduce a new technique which applies Gaussian mixture 
modeling, maximum likelihood estimation, and Wiener filtering to separate speech signals. A block 
diagram of the proposed separation algorithm is shown in Fig. 2. In this stage, the power spectrum density 
(PSD) of the underlying speech signals is estimated in a maximum likelihood estimation process at the 
frame level. Then the estimated PSDs are fed into the Wiener filter so as to estimate the speech signals. In 
the following sections we present the details of these algorithms.  

 
GMM(i)

...

GMM(j)

...

ML Estimator

 x’i(t)

 x’j(t)

Mixed signal 
xmix(t)

 
Fig. 2. Block diagram of the separation stage which separates the underlying speech 

 
3. CLASSIFICATION STAGE 

 
As mentioned earlier the task of the classification stage is to recognize the U-V frames which are 
appropriate for speaker identification.  Fig. 3 shows a schematic of the proposed classifier which consists 
of two stages. At the first stage, we distinguish the U U frames from V-V and U-V frames, and at the 
second stage the U-V frames are recognized from the V-V frames.  

 

Harmonic 
Matching 
Classifier

Mixed signal 
xmix(t)

u/u

v/v

u/vFirst stage 
Classifier

 
Fig. 3. Block diagram of the classification stage consisting of two parts: the U-U classifier 

 and the harmonic match classifier to recognize U-V from V-V 
 

The first classification stage is not a tough task such that common single speech classification 
techniques can be effectively used for the co-channel case as well. Therefore, for the first stage, we use the 
algorithm proposed by Talkin [32] which not only performs a pitch detection task, but also accomplishes 
voiced and unvoiced classification. However, the difficult part of the classification process is to 
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distinguish the V-V frames from the U-V frames. Recently, this topic has been dubbed in speech 
separation literature as usable speech detection [36]. The main application of usable speech detection is in 
the co-channel speaker identification problem where the aim is to recognize the U-V frames whereby 
speaker identities are recognized. Several approaches have been proposed for distinguishing U-V frames 
from V-V frames, namely using the spectral autocorrelation peak valley ratio (SAPVR) criterion [37], 
nonlinear speech processing [38], wavelet analysis [39], Bayesian classifiers [40], or pitch information 
[41]. In this paper, we introduce a new technique which we call the harmonic matching classifier (HMC). 
The algorithm is explained in the following paragraph. 

As mentioned earlier, the main characteristic of voiced frames, i.e. periodic nature, are preserved 
when a voiced frame interacts with an unvoiced frame in the mixed speech signal. In this case, we can fit a 
harmonic model to a U-V analysis frame with a modeling error which is considerably less than that of 
fitting a harmonic model to a V-V frame. In the latter case, harmonic modeling just covers the spectral 
peaks belonging to one speaker and thus leads to a high modeling error. The detailed algorithm for 
extracting the U-V frames is described in Table I. In this algorithm, 2|)(| ωX t

mix denotes the spectrum of the 
tht mixed signal frame. Moreover, the harmonic model is represented by ‡”

)(

1

22 )(
i

i

L

l
il lWA

ω

ω ωω
=

− , in which 
the applied spectrum window, )(ωW , is repeated at integer multiples of the fundamental frequency iω  
with an amplitude proportional to

iωl
A . Also )( iωL represents the number of harmonics in the speech 

bandwidth.  For each frame we find the best harmonic match and compute the model error. If the 
corresponding error is less than the thresholdσ , the frame is classified as a U-V frame, otherwise it is a V-
V frame. Using a training data set we obtained the best value for )}({= =

T
t

temeanσ 1 , where te  is the model 
error for the frame t (see Table 1 for more details). We report the performance of the harmonic matching 
classifier along with a comparison with a state-of-the-art technique in Section 5. Finally, it should be noted 
that although the silence segment in a classification process is desirable, but in this paper we consider the 
silence segments as a special case of unvoiced segments. 

 
Table 1. Harmonic matching classifier 

 

 

 

 

 

 

 

 

4. IDENTIFICATION STAGE 

Let },,,{=Θ SK21  be a group of speakers among whom we wish to identify the two speaker 
identities given a mixed utterance. Having the training data set for each speaker, we first partition the 
feature space (MFCCs) of each speaker into K partitions using the Linde-Buzo-Gray (LBG) vector 
quantization algorithm [42]. Then, partition centers i

kc (known as codewords) are extracted and form the 
speaker i codebook },,,{=Ψ i

K
ii ccci K21 . Each codeword, in turn, contains the first M MFCCs (excluding 

the first one) that is, Tiii Mccc )](,),(),([= K21ic , where T][⋅ denotes the transpose operation. 

• Find error introduced by fitting a harmonic model 
to the tth mixed analysis frame 
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• V-V and U-V classification 
if  ¡Üσe t  

frame �¸  U-V 
else 

frame �¸ V-V 
end 
• Repeat the algorithm for all frames 
t=1,2,…,T 
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Accordingly, performing quantization on the training data set of all speakers we obtain the set 
},,{=Ψ SCCC K21  consisting of all speakers' codebooks. Now the objective is to find two speakers by 

minimizing the following criteria 
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t
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where *i  and *j are selected speakers and t

mixc mix is the MFCC vector extracted from the tht  U-V mixed 
analysis frame. Additionally, ),( i

k
t
mixD cc  represents the Euclidean distance between the vectors t

mixc  and 
i
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Equations (1) and (2) can be interpreted as follows. First, for those frames recognized as the U-V frames 
in the mixed speech signal, a search is done through all codewords (k=1:K) of all speakers' codebooks 
(i=1:S). The speaker who obtains the minimum distortion measure for all U-V frames is selected as the 
first underlying speaker. A similar process is again performed to select the second underlying speaker but 
the selected speaker from the first search process is excluded from the searching process.  
 

4. SEPARATION STAGE 
 

a) Relation between the log spectra vectors 
 

In this subsection, we assume that the two speakers whose utterances form the mixed speech signal were 
specified from the identification stage. Let )(tx1  and )(tx2  be the speech signal of speaker one and two, 
respectively. An N-dimensional vector of samples of )(tx1  and )(tx2  at time m are denoted by 

Ttttt Nmxmxmxm )](,),(),([)( 11 1111 +−+= Kx                           (4) 
 

Ttttt Nmxmxmxm )](,),(),([)( 11 2222 +−+= Kx                           (5) 
 

where T][⋅  denotes the transpose operation and the superscript t denotes the time domain notation. We 
assume that the observed signal )(mty  is the sum of the speech signals of the two speakers as follows 

 
).(+)(=)( mmm ttt

21 xxy                                             (6) 
We next form the following vectors 

 
Tt

D (D),x),(,x),(x(m))|(F( ][=)|log= 1111101 21 KKxx                   (7) 
 

Tt
D (D),x),(,x),(x(m))|(F ][=)(|log= 2222102 21 KKxx                    (8) 

 
Tt

D ,y(D)),,y(),y((m))|)((|F ][=log= KK 2110 yy                   (9) 
 

where 1x , 2x , and y  denote the D-dimensional log spectral vectors of speaker one and speaker two, the 
mixed signal, )(⋅DF , denotes the D-point discrete Fourier transform, and || ⋅  denotes the magnitude 
operator. The relation between the log spectral vectors of the mixed signal and those of the individual 
signals can be expressed by the Log Max approximation. This approximation was first used in the context 
of robust speech recognition by Nadas et al. [43]. In [44], we have shown that this approximation is, in 
fact, a non-linear minimum mean square error estimator for phase information and implies that the log 
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spectrum of the mixed signal is nearly the element wise maximum of the log spectrum of the two 
underlying signals. Mathematically, the approximation can be formulated as follows 

 
TDxDxdxdxxxMax ))](),(max(,)),(),(max(,)),(),([max(),(ˆ 21212121 11 KK== xxy  (10) 

 
Hence, ŷ  is an approximation to y  with reasonable accuracy. It should be noted that MFFC coefficients 
used in the identification stage cannot be used in the separation stage for two reasons. First, the MFCC is a 
non linear feature such that we cannot re-synthesize the speech signal from the MFCC coefficients. For 
this reason, although MFFC is widely used in classification based techniques such as speech or speaker 
recognition, we cannot use it for re-synthesizing a speech signal.  Second, there is no straightforward 
relationship between the MMFSs of the mixture and those of the underlying signals. 

 
b) Maximum likelihood estimator 

 
We next model the probability density function of the ith speaker's log spectral vectors by a mixture of 

Ki Gaussian densities in the following form 
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represents a D-dimensional normal density function with the mean vector kxi

µ ,  and covariance 
matrix kxi ,U . The D-variant Gaussians are assumed to be diagonal covariant to reduce the order of 
computation. This assumption enables us to represent the multivariate Gaussian as the product of D uni-
variant Gaussians given by 
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where, )(dxi  , )(, dµ kxi

 and )(, dσ kxi

2  are the thd  component of ix , thd  component of the mean vector, and 
the thd  element on the diagonal of the covariance matrix, respectively. 
As mentioned earlier, the log spectral vectors of the mixed signal are almost exactly the maximum 
element-wise components of the log spectral vectors of the underlying signal, that is 

 
).,max(¡Ö 21 xxy                                                        (14) 

 
The cumulative distribution function (CDF) of the mixed log spectral vectors )( yyF  is given by 

 
),(=)( , yyy

21 xxy FF                                                          (15) 
 

where ),(, yy
21 xxF  is the joint CDF of the random vectors 1x  and 2x . Since the speech signals of the two 

speakers are independent, then 
 

).(×)(=)( yyy
21 xxy FFF                                           (16) 
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Thus )( yyf  is obtained by differentiating both sides of Eq. (16) to give 
 

).()(+)()(=)( yyyyy
1221 xxxxy FfFff                                       (17) 

 
The CDF to express )( y

ixF  is obtained by 
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Since the integration of the sum of the exponential functions is identical to the sum of the integral of 
exponentials as well as assuming a diagonal covariance matrix for the distributions, we conclude that 
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The term in the bracket in Eq. 19 is often expressed in terms of the error function 
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Thus, we conclude that 
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Finally, we obtain the PDF of the log spectral vectors of the mixed signal by substituting Eq. (13) and Eq. 
(21) into Eq. (17) to give 
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Equation (23) gives the PDF of log spectral vectors for the mixed signal in terms of the mean and variance 
of the log spectral vectors of the underlying signals. 

Now we apply )( yyf  in a maximum likelihood framework to estimate the parameters of the 
underlying signals. The main objective of the Maximum Likelihood estimator is to find the kth Gaussian in 

);(
11 1 xλf xx  and the lth Gaussian in );(

22 2 xλf xx  such that )( yyf  is maximized. The estimator is given by 
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where 
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,,, σσµµθ =                                              (25) 
 

The estimated mean vectors are then passed to the Wiener filtering stage to estimate the underlying 
speech signals. 
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c) Wiener filtering 
 

From the Wiener filtering theory [45], we know that the optimal filter for stationary processes that can 
estimate a signal corrupted by noise (for our case the term noise means the other speaker's signal) is given 
by 
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where )(

1
ωxS , )(

2
ωxS , and )(ωyS  are the power spectral densities associated with speaker one, speaker 

two, and the mixed signal, respectively. Approximation to 
2

2 ))(( mF t
D x  is also obtained in a similar way. 

In Eq. (26), however, we have no access to the speakers' PSDs, so we replace them by the estimated log 
spectral vectors, i.e. kx ,1

µ  and lx ,2
µ , obtained from the previous subsection (Eq. (25)). Thus, we have 
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Finally, the estimated signals are obtained in the time domain by 

 
( ) }2,1{�¸))((�Ú.))(()(ˆ 1 imyFmxFFmx t

D
t
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i =                                       (28) 

 
where 1−

DF  denotes the inverse Fourier transform and ))((�Ú mF t
D y  is the phase of the Fourier transform 

of the mixed signal. In this way, we obtain an estimate of )(mt
ix . It should be noted that it is common to 

use the phase of the STFT of the mixed signal for reconstructing the individual signals [14]-[16], [27] as it 
has no palpable effect on the quality of the separated signals. Recently it has been shown that the phase of 
the short-time Fourier transform has valuable perceptual information when the speech signal is analyzed 
with a window of long duration, i.e., >1 sec. [46]. To the best of our knowledge no technique has been 
proposed to extract the individual phase values from the mixed phase. 

 
5. EXPERIMENTAL RESULTS 

 
In this section we report the results obtained from the performance evaluation of the proposed system. We 
use the corpus introduced in [48] which consists of 34 speakers, each of whom uttered 500 sentences. We 
randomly choose 15 speakers among the 34 speakers for our experiments. For each speaker, 400 out of 
500 sentences are selected for the training phase where a 10 bit-codebook is extracted for the identification 
stage in the following manner. The sampling rate is decreased to 8 kHz from the original 25 khz rate. The 
training data are first pre-emphasized using a first order filter with α=0.97 and then windowed with a 
Hamming window of duration of 32 msec at a frame rate of 10 msec. Thereafter, 30 mel cepstral 
coefficients (excluding the first one) are extracted from each analysis frame. The lowest and highest band 
edges of mel filters was set to 50 Hz and 3200 Hz, respectively. The set of extracted MFCC vectors for 
each speaker are quantized to 1024 clusters whose centers are used for the identification process. Vector 
quantization is performed using the well-known LBG algorithm [42] with binary splitting initialization. 
For the test phase, we randomly select 200 sentences (not within the training data set) from 15 chosen 
speakers. Then, 100 mixed speech signals are created by digitally adding the underlying speech signals 
with the Target-to-Interference (TIR) ratios set to -9, -6, -3, 0, +3, +6, and +9 dB. TIR represents the ratio 
between the energies of the two underlying speech signals in terms of dB. We randomly select one of the 
speech signals as the target and the other as the interference. 
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We first conduct experiments in order to evaluate the performance of the classification stage. In order 
to put the results into perspective, we compare the voicing state classification results of our model with 
that of Wu et al. [47]. The technique proposed in [47] is, in fact, a multi-pitch tracking system which 
detects not only the underlying speakers' pitch values, but also voicing states. We set the Wu's multi-pitch 
tracking parameters from the package they provided and compare the results with our approach. Table 2 
shows how the voiced and unvoiced frames interact in the 100 mixed speech signals. As the table shows 
13.92, 39.19, and 46.89 percent of the mixed frames belong to U-U, U-V, and V-V states, respectively. In 
Tables 3 and 4 we present the confusion matrix for the classification results obtained from our approach 
and the method proposed in [47], respectively. Each diagonal entry of the matrix shows the number of 
paired frames that are classified correctly and off-diagonal entries show the number of misclassified paired 
frames. From Tables 3 and 4 we can observe that in our system with respect to the Wu's approach, the 
classification performance for the U-U, U-V, and V-V states, on average, have improved 8, 2, and 20 
percentage respectively. The most difficult task in both our system and Wu’s approach is to recognize the 
U-V frames from V-V frames, though our system has significantly decreased the error rate for this case. 
We noticed that two sources of error occur in the classifier. The first one is mainly due to the transitional 
regions where determining the voicing state, even in the single speech case, is a difficult task. The second 
source of misclassification happens when the pitch values of the underlying signals lie within the same 
range. It should be noted that, to the best of our knowledge, no method has so far been proposed to handle 
these circumstances. 
 

Table 2. Interaction of states in the data base 
 

U-U U-V V-V 
2204(13.92%) 6206(39.19%) 7424(46.98%) 

 
Table 3. Confusion matrix of voicing state classification for the method proposed in [47] 

 
 U-U U-V V-V 

U-U 2174(98.64%) 572(09.22%) 223(03.00%) 
U-V 20(00.91%) 4762(76.73%) 1856(25.00%) 
V-V 10(00.45%) 872(14.05%) 5345(72.00%) 

 
Table 4. Confusion matrix of voicing state classification for the proposed method in this paper 

 
 U-U U-V V-V 

U-U 2002(90.83%) 869(14.00%) 608(08.19%) 
U-V 180(08.17%) 4592(74.00%) 2955(39.80%) 
V-V 22(01.00%) 745(12.00%) 3861(52.01%) 

 
In order to evaluate the accuracy of the identification stage, we measure the correct speaker 

identification rate of the system for two groups of input features. First, with the MFCC coefficients of the 
U-V frames obtained from the classification stage; and second with the MFCC coefficients of all frames 
(without classification). 100 test mixed signals are fed to the speaker ID stage and the percentages of times 
in which the target and interference are correctly identified are computed. Figures 4 and 5 show the correct 
speaker ID rate for the target and interferences with and without the U-V frame extraction. We observe 
that the correct identification rate obtained from the U-V features, on average, outperforms that of the non-
classified features. 

We do, however, note that at high or low TIR values where the target or interference speakers' energy 
is remarkably greater than the other, the performance for non-classified features reaches that of the U-V 
features. This improvement can be justified as follows. From speaker recognition techniques we know that 
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the speaker ID rate has a direct relation with the length of the test utterance such that the more test speech 
applied, the better the identification performance obtained [49]. Let c

sn
1
 be the number of detected mixed 

frames in which speaker one is in the V state and speaker two in the U state. Also let o
sn
1
 be the number of 

original voiced frames of speaker one. If we assume that speaker one is the target signal, then when SSR 
increases, o

s
c
s nn

11
�¨ . Thus the performance of the system with/without classification becomes identical. 

The same justification can be made for the interference signal. Accordingly, as the TIR increases or 
decreases from zero the target or interference becomes the dominant speaker (i.e. o

s
c
s nn

11
�¨ ), and 

consequently the performance of with/without classification approaches the same values. 

 
Fig.  4, Correct speaker ID rate versus TIR ratio for target speech signals 
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Fig. 5. Correct speaker ID rate versus TIR ratio for interference speech signals 

 
The last and the most important stage of the system is the separation stage. In this stage, we first 

model the spectral space of each speaker using a mixture of Gaussian densities. The spectral vectors are 
extracted from the segments obtained by applying a Hamming window with a length of 52 msec at a frame 
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rate equal to 10 msec. In [50], we showed that for model based single channel speech separation 
algorithms, this window length leads to the optimal separation performance.  Then, a 512-point discrete 
Fourier transform (D=512) is applied to the windowed segments, resulting in spectral vectors of 
dimension 256 (symmetric part was discarded). In order to fit a mixture of Gaussian densities to each 
speaker’s feature space, we first tried to apply the Expectation-Maximization approach which is 
commonly used for GMM training. Unfortunately we encountered two problems that caused the training 
procedure to be intractable. First, the feature vector's dimension is remarkably higher than that used in 
other applications (e.g. Speech recognition, identification) where a vector with 20-40 elements is applied. 
Second, we need to train a GMM with a large number of elements (we use 256 elements) since we want to 
recover the underlying speech signals from the mean vectors of Gaussians. Hence, we found that for 15 
minute training data it is time consuming to train a GMM with the above specifications using the available 
software. Therefore, we use a semi-continuous GMM model trained in the following manner. We assume 
that all components are equal probable. In addition, the Gaussians mean vectors are obtained using an 8 
bit-codebook and Gaussians covariance matrixes are obtained from computing the sample covariance 
matrix of each cluster. To further decrease the computational burden, we just use the diagonal components 
of the sample covariance matrixes. 

In order to show the superiority of speaker-dependent separation modeling over speaker-independent 
separation modeling, we also fit a GMM to the training data of all speakers. We quantify the degree of the 
separability by computing the SNR between the separated and the original signals in the time domain. The 
SNR value for the separated speech signal of the thi  speaker is defined as 

 

Nn
nxnx

nx

n ii

n i
i ,,,]

))(ˆ)((
)(

[logSNR ‡”
‡”

K2110 2

2

10 =
+

=                                 (29) 

where )(nxi  and )(ˆ nxi  are the original and separated speech signals of length N, respectively. 
Figures 6 and 7 show the SNR results versus the TIR ratio averaged over 20 separated utterances for 

the target and interference speeches, respectively. The circled and squared lines show the results for 
speaker-dependent modeling (multiple database) and speaker-independent modeling (single database), 
respectively. The results are shown for both target (Fig. 6) and interference (Fig. 7) speeches. From Figs. 6 
and 7, we observe that, on average, there is a 3.5 dB performance gain over the speaker-independent 
scenario. This improvement is remarkable in current single channel speech separation techniques.  
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Fig. 6. SNR versus TIR ratio averaged over separated target speech signals 
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Fig. 7. SNR versus TIR ratio averaged over separated interferences speech signals 

 
6. CONCLUSIONS 

 
In this paper, we have presented a new model-based single channel speech separation technique. This 
technique can be effectively applied to separate two speech signals from their mixture where the common 
single channel separation techniques fail to handle the problem. The proposed technique not only 
preserves the advantages of speaker dependent single channel speech separation algorithms, but is also 
able to separate the speech signals of an unlimited number of speakers given the speakers' models. The 
speaker databases can be augmented into the system in an adaptation phase. The proposed technique 
consists of three stages: classification, identification, and separation. The speakers' identities are first 
determined using the classification and identification stages. Then, the identified speakers' models are 
used to separate the underlying signals. The performance of classification, identification and separation 
were evaluated and compared with current algorithms. The obtained results also support the idea that the 
human auditory system uses a priori knowledge about the concurrent sounds to separate them. We believe 
the next step in this research should be to first improve the identification accuracy and second, adapt the 
system for a new speaker using the prevalent speaker adaptation techniques applied in speech recognition. 
 
Acknowledgment- The authors would like to thank the Iran Ministry of Science and Research and the 
Natural Sciences and Engineering Research Council (NSERC) of Canada which partially funded this 
research. 
 

REFERENCES 
 
1. Jutten, C. & Herault, J. (1991). Blind separation of sources, part i: An adaptive algorithm based on neuromimetic 

architecture. Signal Processing, 24, 1–10. 
2. Common, P. (1994). Independent component analysis, a new concept? Signal Processing, 36, 287–314. 
3. Bell, A. J. & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind 

deconvolution. Neural Computation, 7, 1129–1159. 
4. Amari, S. I. & Cardoso, J. F. (1997). Blind source separation–semiparametric statistical approach. IEEE Trans. 

Signal Processing, 45(11), 2692–2700. 
5. Belouchrani, A. & Cardoso, J. F. (1994). On the performance of orthogonal source separation algorithm. in 

EUSIPCO, Edinburgh, Scotland, 768–771. 



M. Radfar / et al. 
 

Iranian Journal of Science & Technology, Volume 31, Number B3                                                                                 June 2007 

374 

6. Burel, G. (1992). Blind separation of sources: a nonlinear neural algorithm. Neural Networks, 5, 937–947. 
7. van der Kouwe, A. J. W., Wang, D. L. & Brown, G. J. (2001). A comparison of auditory and blind separation 

techniques for speech segregation. IEEE Trans. Speech and Audio Processing, 9(3), 189–195. 
8. Ellis, D. (2006). Model-based scene analysis. in Computational Auditory Scene Analysis: Principles, 

Algorithms, and Applications, D. W. G. Brown, Ed. Wiley/IEEE Press in press. 
9. Jang, G. J. & Lee, T. W. (2003). A probabilistic approach to single channel source separation. in Proc. Advances 

in Neural Inform. Process. Systems, 1173–1180. 
10. [10] Fevotte, C. & Godsill, S. J. (2005). A Bayesian approach for blind separation of sparse sources. IEEE 

Trans. on Speech and Audio Processing, 4(99), 1–15.  
11. Girolami, M. (2001). A variational method for learning sparse and overcomplete representations. Neural 

Computation, 13(11), 2517–2532. 
12. Lee, T. W., Lewicki, M. S., Girolami, M. & Sejnowski, T. J. (1999). Blind source separation of more sources 

than mixtures using overcomplete representations. IEEE Signal Processing Letters, 6(4), 87– 90.  
13. Beierholm, T., Pedersen, B. D. & Winther, O. (2004). Low complexity Bayesian single channel source 

separation. in Proc. ICASSP–04, 5, 529–532. 
14. Roweis, S.  (2000). One microphone source separation. in Proc. Neural Inf. Process. Syst., 793–799. 
15. Reyes-Gomez, M. J., Ellis, D. & Jojic, N. (2004). Multiband audio modeling for single channel acoustic source 

separation. Proc. ICASSP–04, 5, 641–644. 
16. Reddy, A. M. & Raj, B. (2004). A minimum mean squared error estimator for single channel speaker separation. 

in INTERSPEECH, 2445–2448. 
17. Kristjansson, T., Attias, H. & Hershey, J. (2004). Single microphone source separation using high resolution 

signal reconstruction. Proc. ICASSP–05, 817–820. 
18. Rowies, S. T. (2003). Factorial models and refiltering for speech separation and denoising. EUROSPEECH–03, 

7, 1009–1012. 
19. Radfar, M. H., Dansereau, R. M. & Sayadiyan, A. (2006). A novel low complexity VQ-based single channel 

speech separation technique. into appear in IEEE International Symposium on Signal Processing and 
Information Technology. 

20. Wan, E. A. & Nelson, A. (1997). Neural dual extended kalman filtering: Applications in speech enhancement 
and monaural blind signal separation. IEEE Proc. Neural Networks for Signal Processing, 466–475. 

21. Hopgood, J. R. & Rayner, P. J. W. (2003). Single channel non-stationary stochastic signal separation using 
linear time-varying filters. IEEE Trans. Acoustics, Speech, and Signal Process, 51(7), 1793–1752. 

22. Balan, R., Jourjine, A. & Rosca, J. (1999). Ar processes and sources can be reconstructed from degenerative 
mixtures. Proc. ICA-99, 467–472. 

23. Radfar, M. H., Dansereau, R. M. & Sayadiyan, A. (2006). A joint probabilistic-deterministic approach using 
source-filter modeling of speech signal for single channel speech separation. Proc. IEEE MLSP-06, 47–52. 

24. Radfar, M. H., Dansereau, R. M. & Sayadiyan, A. (2006). Performance evaluation of three features for model-
based single channel speech separation problem. Interspeech 2006, Intern. Conf. on Spoken Language 
Processing (ICSLP’2006 Pittsburgh), 2610–2613. 

25. Bregman, A. S. (1994). Computational auditory scene analysis. Cambridge MA: MIT Press. 
26. Brown, G. J.  & Cooke, M. (1994). Computational auditory scene analysis. Computer Speech and Language, 

8(4), 297–336. 
27. Hu, G. & Wang, D. (2004). Monaural speech segregation based on pitch tracking and amplitude modulation. 

IEEE Trans. Neural Networks, 15(5), 1135–1150. 
28. Wang, D. L. & Brown, G. J. (1999). Separation of speech from interfering sounds based on oscillatory 

correlation. IEEE Trans. Neural Networks, 10, 684–697. 



A generalized approach for model-based speaker-… 
 

June 2007                                                                                 Iranian Journal of Science & Technology, Volume 31, Number B3 

375

29. Virtanen, T. & Klapuri, A. (2000). Separation of harmonic sound sources using sinusoidal modeling. Proc. 
ICASSP–2000, 765–768. 

30. Quatieri, T. F. & Danisewicz, R. G. (1990). An approach to co-channel talker interference suppression using a 
sinusoidal model for speech. IEEE Trans. Acoustics, Speech, and Signal Process, 38, 56–69. 

31. Radfar, M. H., Sayadiyan, A. & Dansereau, R. M. (2006). Monaural multipitch tracking using joint mean square 
error harmonic modelling and sinusoidal spectrogram. submitted to Speech Communication. 

32. Talkin, D. (1995). Robust pitch tracking. in speech coding and synthesis. W. Kleijn and K. Paliwal, Eds. 
Elsevier. 

33. Kinnunen, T., Karpov, E. & Franti, P. (2006). Real-time speaker identification and verification. IEEE Trans. 
Speech Audio Processing, 14(1), 277–288. 

34. Jialong, H., Li, L. & Palm, G. (1999). A discriminative training algorithm for VQ-based speaker identification. 
IEEE Trans. Speech Audio Processing, 7(3), 353–356. 

35. Soong, F., Rosenberg, A., Rabiner, L. & Juang, B. (1985). A vector quantization approach to speaker 
recognition. Proc. ICASSP-85, 10, 387–390. 

36. Yantorno, R. E. (1999). Co-channel speech study, Air Force Office of Scientific Research Speech Processing 
Lab Rome Labs. Report for Summer Research Faculty Program. 

37. Chandra, N. & Yantorno, R. E. (2002). Usable speech detection using the modified spectral autocorrelation peak 
to valley ratio using the LPC residual. Proc. 4th IASTED–02, 146–149. 

38. Mahgoub, Y. & Dansereau, R. (2005). Voicing-state classification of cochannel speech using nonlinear state-
space reconstruction. Proc. ICASSP–05, 1, 409–412.  

39. Kizhanatham, A. R., Chandra, N. & Yantorno, R. E. (2002). Co-channel speech detection approaches using 
cyclostationarity or wavelet transform. Proc. IASTED-02. 

40. Benincasa, D. S. & Savic, M. I. (1998). Voicing state determination of cochannel speech. Proc. ICASSP–98, 2, 
1021–1024. 

41. Shao, Y. & Wang, D. L. (2003). Co-channel speaker identification using usable speech extraction based on 
multi-pitch tracking. Proc. ICASSP-03, 2, 205–208. 

42. Gersho, A. & Gray, R. M. (1992). Vector quantization and signal compression. Norwell MA: Kluwer Academic. 
43. Nadas, A., Nahamoo, D. & Picheny, M. A. (1989). Speech recognition using noise-adaptive prototypes. IEEE 

Trans. Acoust. Speech Sig. Process., 37(10), 1495–1503. 
44. Banihashemi, M. H. R. A., Dansereau, R. M. & Sayadiyan, A. (2006). A non-linear minimum mean square error 

estimator for the mixture-maximization approximation. Electronic Letters, 42(12), 75–76. 
45. Papoulis, A. (1991). Probability, random variables, and stochastic processes. McGraw-Hill. 
46. Paliwal, K. K. & Alsteris, L. D. (2005). On the usefulness of stft phase spectrum in human listening tests. 

Speech Communication, 45(2), 153–170. 
47. Wu, M., Wang, D. L. & Brown, G. J. (2003). A multipitch tracking algorithm for noisy speech. IEEE Trans. 

Acoustics, Speech, and Signal Process, 11(3), 229–241. 
48. Cooke, M. P., Barker, J., Cunningham, S. P. & Shao, X. (2005). An audiovisual corpus for speech perception 

and automatic speech recognition. JASA, http://www.dcs.shef.ac.uk/spandh/gridcorpus. 
49. Campbell, J. & Reynolds, D. A. (1999). Corpora for the evaluation of speaker recognition systems. Proc. 

ICASSP-99, 2, 829–832. 
50. Radfar, M. H., Dansereau, R. M. & Sayadiyan, A. On the choice of window size in model-based single channel 

speech separation. Proc. of the IEEE Canadian Conf. on Elec. and Comp. Eng, 1, 981–984. 
 


