[1] Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93. https://doi.org/10.1016/j.pmatsci.2013.10.001
[4] Ye, Y., Wang, Q., Lu, J., Liu, C., & Yang, Y. (2016). High-entropy alloy: challenges and prospects. Materials Today, 19(6), 349-362. https://doi.org/10.1016/j.mattod.2015.11.026
[5] Gao, M. C., Yeh, J. W., Liaw, P. K., & Zhang, Y. (2016). High-entropy alloys: fundamentals and applications. Springer.
[6] Chang, T., Zou, C., Zhu, D., Wang, X., Wei, Z., Wang, H., Fang, N., & Chen, J. (2022b). Second phases’ distribution of FeCoNiSi high-entropy alloy solidified under high pressure and its effect on magnetic properties. IEEE Transactions on Magnetics, 59(6), 1-7. https://doi.org/0.1109/TMAG.2022.3232722
[7] Chang, T., Zou, C., Zhu, D., Wang, X., Wei, Z., Wang, H., Fang, N., & Chen, J. (2022a). The evolution of microstructure, micromechanical and magnetic properties of FeCoNiSi alloys solidified under high pressure. Materials Characterization, 189, 112009. https://doi.org/10.1016/j.matchar.2022.112009
[8] Chen, C., Fan, Y., Zhang, H., Hou, J., Zhang, W., Wei, P., Wang, W., Qin, J., Wei, R., & Wang, T. (2020). A novel Fe-Co-Ni-Si high entropy alloy with high yield strength, saturated magnetization and Curie temperature. Materials Letters, 281, 128653. https://doi.org/10.1016/j.matlet.2020.128653
[9] Yang, Y., Liao, T., Jia, Y., Ding, G., Cao, J., Shang, X., Guo, Y., & Liu, Q. (2024). Additively manufactured FeCoNiSi0. 2 alloy with excellent soft magnetic and mechanical properties through texture engineering. Journal of Materials Research and Technology, 33, 1910-1922. https://doi.org/10.1016/j.jmrt.2024.09.171
[10] Li, H., Li, H., Shen, Z., Zeng, S., Yang, F., Cai, Q., Xu, W., Wang, R., Luo, C., & Liu, Y. (2024). Investigation of the impact of non-magnetic Si element addition and heat treatment on the electromagnetic wave absorption properties of medium entropy FeCoNiSi alloy particles. Powder Technology, 446, 120132. https://doi.org/10.1016/j.powtec.2024.120132
[11] Zuo, T., Li, R., Ren, X., & Zhang, Y. (2014). Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. Journal of Magnetism and Magnetic Materials, 371, 60-68. https://doi.org/10.1016/j.jmmm.2014.07.023
[12] Kaushik, N., Meena, A., & Mali, H. S. (2022). High entropy alloy synthesis, characterisation, manufacturing & potential applications: a review. Materials and Manufacturing Processes, 37(10), 1085-1109. https://doi.org/10.1080/10426914.2021.2006223
[13] Chai, W., Lu, T., & Pan, Y. (2020). Corrosion behaviors of FeCoNiCrx (x= 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation. Intermetallics, 116, 106654. https://doi.org/10.1016/j.intermet.2019.106654
[14] Humphreys, F. J., & Hatherly, M. (2012). Recrystallization and Related Annealing Phenomena. Elsevier Science.
[15] Heidari, Y., Gheisari, K., & Yeganeh, M. (2025). Effect of Cr content on the structure and corrosion properties of (FeCoNi)0.75Cu0.25-xCrx high entropy alloys in 1 M H2SO4. Journal of Materials Research and Technology, 35, 5322-5335. https://doi.org/10.1016/j.jmrt.2025.02.184
[16] Fu, Y., Li, J., Luo, H., Du, C., & Li, X. (2021). Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. Journal of Materials Science & Technology, 80, 217-233. https://doi.org/10.1016/j.jmst.2020.11.044
[17] Wang, Y., Li, G., Qi, H., Zhang, W., Chen, R., Su, R., Yu, B., & Qu, Y. (2024). Effect of non-metallic silicon content on the microstructure and corrosion behaviour of AlCoCrFeNi high-entropy alloys. Materials Chemistry and Physics, 315, 128974. https://doi.org/10.1016/j.matchemphys.2024.128974
[18] Gu, X., Zhuang, Y., & Huang, D. (2022). Corrosion behaviors related to the microstructural evolutions of as-cast Al0. 3CoCrFeNi high entropy alloy with addition of Si and Ti elements. Intermetallics, 147, 107600. https://doi.org/10.1016/j.intermet.2022.107600
[19] Yang, H., Liu, X., Li, A., Li, R., Xu, S., Zhang, M., Yu, P., Yu, S., Jiang, M., & Huo, C. (2023). Effect of silicon addition on the corrosion resistance of Al0. 2CoCrFe1. 5Ni high-entropy alloy in saline solution. Journal of Alloys and Compounds, 964, 171226. https://doi.org/10.1016/j.jallcom.2023.171226
[20] Shi, X., Liang, H., & Li, Y. (2025). Effect of Si content on phase structure, microstructure, and corrosion resistance of FeCrNiAl0.7Cu0.3Six high-entropy alloys in 3.5% NaCl solution. Coatings, 15(3), 342. https://doi.org/10.3390/coatings15030342
|