[2] Valiev, R. Z., Estrin, Y., Horita, Z., Langdon, T. G., Zehetbauer, M. J., & Zhu, Y. T. (2006). Producing bulk ultrafine-grained materials by severe plastic deformation. JOM, 58 (4), 33–39. https://doi.org/10.1007/s11837-006-0213-7
[3] Pardis, N., & Ebrahimi, R. (2009). Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique. Materials Science and Engineering: A, 527 (1–2), 355–360. https://doi.org/10.1016/j.msea.2009.08.051
[4] Ebrahimi, R., Rezvani, A., & Bagherpour, E. (2018). Circular simple shear extrusion as an alternative for simple shear extrusion technique for producing bulk nanostructured materials. Procedia Manufacturing, 15, 1502–1508. https://doi.org/10.1016/j.promfg.2018.07.328
[5] Bagherpour, E., Pardis, N., Reihanian, M., & Ebrahimi, R. (2016). Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique. Materials Science and Engineering: A, 674, 221–231. https://doi.org/10.1016/j.msea.2016.08.001
[6] Tork, N. B., Alipour, R., Bagherpour, E., Reihanian, M., & Ebrahimi, R. (2019). Microstructure and texture characterization of Mg–Al and Mg–Gd binary alloys processed by simple shear extrusion. Journal of Materials Research and Technology, 8 (1), 1288–1299. https://doi.org/10.1016/j.jmrt.2018.06.023
[8] Wang, M. (2008). High Intensity Focused Ultrasound (HIFU) Ablation Using the Frequency Sweeping Excitation [Master's thesis, National University of Singapore].
[9] Su, Z., Ye, L., & Lu, Y. (2006). Guided lamb waves for identification of damage in composite structures: A review. Journal of Sound and Vibration, 295 (3–5), 753–780. https://doi.org/10.1016/j.jsv.2006.01.020
[10] Amin, S. G., Ahmed, M. H. M., & Youssef, H. A. (1995). Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. Journal of Materials Processing Technology, 55 (3–4), 254–260. https://doi.org/10.1016/0924-0136(95)02015-2
[11] Lee, S. I., & Hong, S. H. (2007). Nonlinear vibration analysis of ultrasonic horn model for flip-chip bonding. In Proceedings of the International Conference on Control, Automation and Systems (pp. 1439–1442). https://doi.org/ 10.1109/ICCAS.2007.4406846
[12] Sherrit, S., Badescu, M., Bao, X., Bar-Cohen, Y., & Chang, Z. (2004). Novel horn designs for power ultrasonics. In Proceedings of the IEEE Ultrasonics Symposium (pp. 445–448). https://doi.org/10.1109/ULTSYM.2004.1418291
[13] Amini, S., Soleimanimehr, H., Nategh, M. J., Abudollah, A., & Sadeghi, M. H. (2008). FEM analysis of Ultrasonic-vibration-assisted turning and the vibratory tool. Journal of Materials Processing Technology, 201 (1–3), 43–47. https://doi.org/10.1016/j.jmatprotec.2007.11.271
[15] Mohsen, E., & Sadeghi, M. H. (2013). Analytical modeling and finite element simulation of exponential horns with rectangular cross-section: Application on ultrasonic assisted grinding. Modares Mechanical Engineering, 13 (14), 185–189.
[16] Ahmadi, F., Farzin, M., Meratian, M., Loeian, S. M., & Forouzan, M. R. (2015). Improvement of ECAP process by imposing ultrasonic vibrations. The International Journal of Advanced Manufacturing Technology, 79(1), 503-512. https://doi.org/10.1007/s00170-015-6848-1
[18] Eskandarzade, M., Masoumi, A., & Faraji, G. (2016). Numerical and analytical investigation of an ultrasonic assisted ECAP process. Journal of Theoretical and Applied Vibration and Acoustics, 2(2), 167-184. https://doi.org/10.22064/tava.2016.22472
[19] Fakheri, F., Pour-Ali, S., Tavangar, R., & Naseri, R. (2024). Effect of ultrasonic assisted-ECAP processing on the microstructure, mechanical properties, and fluoride-induced corrosion performance of pure titanium. Materials Today Communications, 40, 109863. https://doi.org/10.1016/j.mtcomm.2024.109863
[20] Kumar, V., & Singh, H. (2018). Machining optimization in rotary ultrasonic drilling of BK-7 through response surface methodology using desirability approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (2), 81. https://doi.org/10.1007/s40430-017-0953-z
[21] Moghaddas, M. A. (2021). Modeling and optimization of thrust force, torque, and surface roughness in ultrasonic-assisted drilling using surface response methodology. The International Journal of Advanced Manufacturing Technology, 112 (9–10), 2909–2923. https://doi.org/10.1007/s00170-020-06380-w
[22] Balali, M., Seyedkashi, S. M. H., Hasanabadi, A., Gorji, H., Baseri, H., & Khosravi, M. (2025). Effects of Horn Type on the Microhardness and Microstructural Homogeneity in Ultrasonic-Assisted Simple Shear Extrusion. Experimental Techniques, 49 (2), 253–266. https://doi.org/10.1007/s40799-024-00744-7
[23] Balali, M., Seyedkashi, S. M. H., Hasanabadi, A., Gorji, H., Baseri, H., & Khosravi, M. (2025). A new ultrasonic-assisted simple shear extrusion process in production of ultrafine grained copper. International Journal of Engineering, 10 (4), 908–920. https://doi.org/ 10.5829/IJE.2025.38.04A.19
[24] Balali, M., Seyedkashi, S. M. H., Hasanabadi, A., Gorji, H., Baseri, H., & Khosravi, M. (2024). Optimization of effective parameters on ultrasonic horns in simple shear extrusion process using Taguchi design of experiments. Iranian Journal of Manufacturing Engineering, 11 (3), 1–12. https://doi.org/10.22034/IJME.2024.445721.1933
[25] Ghoreishi, M., & Tahmasbi, V. (2014). Optimization of material removal rate in dry electro-discharge machining process. Modares Mechanical Engineering, 14 (12), 113–121.
[26] Montgomery, D. C. (2012). Design and analysis of experiments (8th ed.). John Wiley & Sons.
[27] Montgomery, D. C. (2017). Design and analysis of experiments (9th ed.). John Wiley & Sons.
[28] Bagherzadeh, S., Abrinia, K., & Han, Q. (2020). Analysis of plastic deformation behavior of ultrafine-grained aluminum processed by the newly developed ultrasonic vibration enhanced ECAP: Simulation and experiments. Journal of Manufacturing Processes, 50, 485-497. https://doi.org/10.1016/j.jmapro.2020.01.010
|