[1] Ji, S. M., Jang, S. M., Lee, Y. S., Kwak, H. M., Choi, J. M., & Joun, M. S. (2022). Characterization of Ti-6Al-4V alloy in the temperature range of warm metal forming and fracture analysis of the warm capping process. Journal of Materials Research and Technology, 18, 1590-1606. https://doi.org/10.1016/j.jmrt.2022.03.066
[2] Pilehva, F., Zarei-Hanzaki, A., Fatemi-Varzaneh, S., & Khalesian, A. (2015). Hot deformation and dynamic recrystallization of Ti-6Al-7Nb biomedical alloy in single-phase β region. Journal of Materials Engineering and Performance, 24(5), 1799-1808. https://doi.org/10.1007/s11665-015-1468-3
[3] Leyens, C., & Peters, M. (2006). Titanium and titanium alloys: fundamentals and applications, Wiley Online Library.
[4] Chen, G., Ren, C., Qin, X., & Li, J. (2015). Temperature dependent work hardening in Ti–6Al–4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling, Materials & Design. 83, 598-610. https://doi.org/10.1016/j.matdes.2015.06.048
[5] Jiang, F., Fei, L., Jiang, H., Zhang, Y., Feng, Z., & Zhao, S. (2023). Constitutive model research on the hot deformation behavior of Ti6Al4V alloy under wide temperatures. Journal of Materials Research and Technology, 23, 1062-1074. https://doi.org/10.1016/j.jmrt.2023.01.021
[6] Gostariani, R., Vaez, G., Ansaripour, M., & Babanejad, A. (2024). Constitutive modeling and microstructural evolution of hot deformed Ti-6Al-4V alloy starting with initial fully lamellar microstructure. Iranian Journal of Materials Forming, 11(2), 30-45. https://doi.org/10.22099/ijmf.2024.49974.1292
[7] Jha, J. S., Toppo, S. P., Singh, R., Tewari, A., & Mishra, S. K. (2019). Flow stress constitutive relationship between lamellar and equiaxed microstructure during hot deformation of Ti-6Al-4V. Journal of Materials Processing Technology, 270, 216-227. https://doi.org/10.1016/j.jmatprotec.2019.02.030
[8] Lin, Y. C., Wu, Q., Pang, G. D., Jiang, X. Y., & He, D. G. (2020). Hot tensile deformation mechanism and dynamic softening behavior of Ti–6Al–4V alloy with thick lamellar microstructures. Advanced Engineering Materials, 22(3), 1901193. https://doi.org/10.1002/adem.201901193
[9] Ezatpour, H., Ebrahimi, G., & Zarghani, F., (2024). Effect of processing parameters on the morphology of α-phase in Ti-6Al-4V alloy during the two-step hot deformation. Iranian Journal of Materials Forming, 10(3), 54-62. https://doi.org/10.22099/ijmf.2024.49049.1277
[15] Prasad, Y. V. R. K., Gegel, H. L., Doraivelu, S. M., Malas, J. C., Morgan, J. T., Lark, K. A., & Barker, D. R. (1984). Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metallurgical Transactions A, 15(10), 1883-1892. https://doi.org/10.1007/BF02664902
[16] Donachie, M. J. (2000). Titanium: a technical guide. ASM International.
[17] Gostariani, R., & Asadi Asadabad, M. (2023). Studying the hot deformation behavior of Zr-1Nb alloy using processing map and kinetic analysis. Journal of Materials Engineering and Performance, 32(5), 2151-2164. https://doi.org/10.1007/s11665-022-07267-5
[18] Gostariani, R., Ebrahimi, R., & Asadi Asadabad, M. (2018). The study of hot deformation behavior of mechanically milled and hot extruded Al–BN nanocomposite. Transactions of the Indian Institute of Metals, 71(5), 1127-1136. https://doi.org/10.1007/s12666-017-1248-x
[19] Eskandari, H., Reihanian, M., & Alavi Zaree, S. (2023). An analysis of efficiency parameter and its modifications utilized for development of processing maps. Iranian Journal of Materials Forming, 10(4), 45-51. https://doi.org/10.22099/ijmf.2024.49537.1283
[20] Ebrahimi, R., Najafizadeh, A. (2004). Optimization of hot workability in ti-if steel by using the processing map. International Journal of ISSI, 1(1), 1-7.
[21] Kumar, S. S., Raghu, T., Bhattacharjee, P. P., Rao, G. A., & Borah, U. (2017). Work hardening characteristics and microstructural evolution during hot deformation of a nickel superalloy at moderate strain rates. Journal of Alloys and Compounds, 709, 394-409. https://doi.org/10.1016/j.jallcom.2017.03.158
[22] Ning, Y., Xie, B., Liang, H., Li, H., Yang, X., Guo, H. (2015). Dynamic softening behavior of TC18 titanium alloy during hot deformation. Materials & Design, 71, 68-77. https://doi.org/10.1016/j.matdes.2015.01.009
[23] Kim, J. H., Semiatin, S., Lee, Y. H., & Lee, C. S. (2011). A self-consistent approach for modeling the flow behavior of the alpha and beta phases in Ti-6Al-4V. Metallurgical and Materials Transactions A, 42(7), 1805-1814. https://doi.org/10.1007/s11661-010-0567-x
[27] Prasad, Y., Rao, K., & Sasidhar, S. (2015). Hot working guide: a compendium of processing maps, ASM International.
[28] Bodunrin, M. O., Chown, L. H., van der Merwe, J. W., Alaneme, K. K. (2019). Hot working of Ti-6Al-4V with a complex initial microstructure. International Journal of Material Forming, 12(5), 857-874. https://doi.org/10.1007/s12289-018-1457-9
[29] Seshacharyulu, T., Medeiros, S. C., Frazier, W. G., & Prasad Y. V. R. K. (2002). Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Materials Science and Engineering: A, 325(1-2), 112-125. https://doi.org/10.1016/S0921-5093(01)01448-4
[30] Sen, I., Kottada, R. S., & Ramamurty, U. (2010). High temperature deformation processing maps for boron modified Ti–6Al–4V alloys. Materials Science and Engineering: A, 527(23), 6157-6165. https://doi.org/10.1016/j.msea.2010.06.044
[32] Chong, Y., Bhattacharjee, T., Gholizadeh, R., Yi, J., Tsuji, N. (2019). Investigation on the hot deformation behaviors and globularization mechanisms of lamellar Ti–6Al–4V alloy within a wide range of deformation temperatures. Materialia, 8, 100480. https://doi.org/10.1016/j.mtla.2019.100480
|