[1] Popp, G. P., Racz, S. G., Breaz, R. E., Oleksik, V. Ș., Popp, M. O., Morar, D. E., Chicea, A. L., & Popp, I. O. (2024). State of the art in incremental forming: Process variants, tooling, industrial applications for complex part manufacturing and sustainability of the process. Materials, 17(23), 5811. https://doi.org/10.3390/ma17235811
[2] Cheng, Z., Li, Y., Xu, C., Liu, Y., Ghafoor, S., & Li, F. (2020). Incremental sheet forming towards biomedical implants: A review. Journal of Materials Research and Technology, 9(4), 7225-7251. https://doi.org/10.1016/j.jmrt.2020.04.096
[3] Oleksik, V., Trzepieciński, T., Szpunar, M., Chodoła, Ł., Ficek, D., & Szczęsny, I. (2021). Single-point incremental forming of titanium and titanium alloy sheets. Materials, 14(21), 6372. https://doi.org/10.3390/ma14216372
[4] Liu, J., Zhao, Y., Niu, Y., Cao, J., Zhang, L., & Zhao, Y. (2024). Optimization of redundant degrees of freedom in robotic flat-end milling based on dynamic response. Applied Sciences, 14(5), 1877. https://doi.org/10.3390/app14051877
[5] Khatir, F. A., Barzegari, M., Talebi-Ghadikolaee, H., & Seddighi, S. (2021). Integration of design of experiment and finite element method for the study of geometrical parameters in metallic bipolar plates for PEMFCs. International Journal of Hydrogen Energy, 46(79), 39469-39482. https://doi.org/10.1016/j.ijhydene.2021.05.211
[6] Talebi-Ghadikolaee, H., Elyasi, M., Shahgaldi, S., Seddighi, S., Kasaei, M. M., & da Silva, L. F. (2022). The effect of rubber hardness on the channel depth of the metallic bipolar plates fabricated by rubber pad forming. In Materials Design and Applications IV (pp. 123-133). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-18130-6_9
[7] Zeinali, M. S., Naeini, H. M., Talebi-Ghadikolaee, H., & Panahizadeh, V. (2022). Numerical and experimental investigation of fracture in roll forming process using Lou–Huh fracture criterion. Arabian Journal for Science and Engineering, 47(12), 15591-15602. https://doi.org/10.1007/s13369-022-06662-3
[8] Xu, J., Xu, X., Fan, Y., Xiao, J., He, R., & Zhang, J. (2023). The effect of differential lubrication and counter punch on hydroforming of 5A02 thin-walled aluminum alloy Y-shaped tube. The International Journal of Advanced Manufacturing Technology, 127, 2775–2784. https://doi.org/10.1007/s00170-023-11526-7
[9] Edward, L. (1967). Apparatus and process for incremental dieless forming. ed: Google Patents.
[10] Kitazawa, K., Wakabayashi, A., Murata, K., & Yaejima, K. (1996). Metal-flow phenomena in computerized numerically controlled incremental stretch-expanding of aluminum sheets. Keikinzoku, 46(2), 65-70. https://doi.org/10.2464/jilm.46.65
[11] Rezaei, H., & Honarpisheh, M. (2022). Experimental and numerical investigation of forming limit diagram of CP-Ti/St12 bimetal in the incremental forming process. Strength of Materials, 54(4), 681-694. https://doi.org/10.1007/s11223-022-00446-8
[12] Gheysarian, A., and M. Honarpisheh. (2019). Process parameters optimization of the explosive-welded Al/Cu bimetal in the incremental sheet metal forming process. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43(1), 945-956. https://doi.org/10.1007/s40997-018-0205-6
[13] Alinaghian, Mahnoush, Iman Alinaghian, and Mohammad Honarpisheh. (2019). Residual stress measurement of single point incremental formed Al/Cu bimetal using incremental hole-drilling method. International Journal of Lightweight Materials and Manufacture 2(2), 131-139. https://doi.org/10.1016/j.ijlmm.2019.04.003
[14] Honarpisheh, M., M. Mohammadi Jobedar, and I. Alinaghian. (2018). Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology. The International Journal of Advanced Manufacturing Technology 96(9), 3069-3080. https://doi.org/10.1007/s00170-018-1812-5
[15] Xu, D., Wu, W., Malhotra, R., Chen, J., Lu, B., & Cao, J. (2013). Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. International Journal of Machine Tools and Manufacture, 73, 37-46. https://doi.org/10.1016/j.ijmachtools.2013.06.007
[16] Ghafoor, S., Y. Li, G. Zhao, J. Li, I. Ullah, and F. Li, (2022). Deformation characteristics and formability enhancement during ultrasonic-assisted multi-stage incremental sheet forming. Journal of Materials Research and Technology, 18, 1038-1054. https://doi.org/10.1016/j.jmrt.2022.03.036
[17] Shafeek, M., Namboothiri, V. N., & Raju, C. (2022). Formability analysis on titanium grade2 sheets in multi point incremental forming process. Materials Today: Proceedings, 65, 3814-3819. https://doi.org/10.1016/j.matpr.2022.06.578
[19] Durante, M., Formisano, A., & Langella, A. (2011). Observations on the influence of tool-sheet contact conditions on an incremental forming process. Journal of Materials Engineering and Performance, 20, 941-946. https://doi.org/10.1007/s11665-010-9742-x
[22] Zhang, S., Li, K., Li, Z., Tang, G. H., & Qu, J. (2021, November). The Effect of process parameters on the springback of AZ31B Mg alloy in warm incremental sheet forming assisted with oil bath heating. In Advances in Intelligent Data Analysis and Applications: Proceeding of the Sixth Euro-China Conference on Intelligent Data Analysis and Applications, 15–18 October 2019, Arad, Romania (pp. 33-42). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-5036-9_4
[23] Raju, C., Haloi, N., & Narayanan, C. S. (2017). Strain distribution and failure mode in single point incremental forming (SPIF) of multiple commercially pure aluminum sheets, Journal of Manufacturing Processes, 30, 328-335. https://doi.org/10.1016/j.jmapro.2017.09.033
[24] Baak, N., Garlich, M., Schmiedt, A., Bambach, M., & Walther, F. (2017). Characterization of residual stresses in austenitic disc springs induced by martensite formation during incremental forming using micromagnetic methods, Materials Testing, 59(4), 309-314. https://doi.org/10.3139/120.111012
[25] Siddiqi, M. U. R., Corney, J. R., Sivaswamy, G., Amir, M., & Bhattacharya, R. (2018). Design and validation of a fixture for positive incremental sheet forming, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(4) 629-643. https://doi.org/10.1177/0954405417703423
[26] Vahdani, M., Mirnia, M. J., Gorji, H., & Bakhshi-Jooybari, M. (2019). Experimental investigation of formability and surface finish into resistance single-point incremental forming of Ti–6Al–4V titanium alloy using Taguchi design, Transactions of the Indian Institute of Metals 72, 1031-1041. https://doi.org/10.1007/s12666-019-01577-4
[27] Frikha, S., Giraud-Moreau, L., Bouguecha, A., & Haddar, M. (2022). Simulation-based process design for asymmetric single-point incremental forming of individual titanium alloy hip cup prosthesis, Materials 15(10) 3442, 2022. https://doi.org/10.3390/ma15103442
[29] Li, Y., Zhai, W., Wang, Z., Li, X., Sun, L., Li, J., & Zhao, G. (2020). Investigation on the material flow and deformation behavior during ultrasonic-assisted incremental forming of straight grooves. Journal of Materials Research and Technology, 9(1), 433-454. https://doi.org/10.1016/j.jmrt.2019.10.072
[30] Cheng, Z., Li, Y., Li, J., Li, F., & Meehan, P. A. (2022). Ultrasonic assisted incremental sheet forming: Constitutive modeling and deformation analysis. Journal of Materials Processing Technology, 299, 117365. https://doi.org/10.1016/j.jmatprotec.2021.117365
[31] Najm, S. M., & Paniti, I. (2023). Investigation and machine learning-based prediction of parametric effects of single point incremental forming on pillow effect and wall profile of AlMn1Mg1 aluminum alloy sheets. Journal of Intelligent Manufacturing, 34(1), 331-367. https://doi.org/10.1007/s10845-022-02026-8
[32] Möllensiep, D., Detering, L., Kulessa, P., Steinhof, M., & Kuhlenkötter, B. (2024). Prediction of forming accuracy in incremental sheet forming using artificial neural networks on local surface representations. The International Journal of Advanced Manufacturing Technology, 133(9), 4923-4938. https://doi.org/10.1007/s00170-024-14023-7
[33] Rafat, M. T., Haapala, K. R., & Fan, Z. (2025). Experimental and numerical analysis of thinning in single point incremental sheet forming (SPIF) of an aluminum alloy (AA3003-H14). Journal of Manufacturing and Materials Processing, 9(9), 307. https://doi.org/10.3390/jmmp9090307
[34] Magrinho, J. P., Silva, M. B., & Martins, P. A. F. (2023). Experimental determination of the fracture forming limits in metal forming. Discover Mechanical Engineering, 2(1), 7. https://doi.org/10.1007/s44245-023-00015-6
[35] Wu, R., Hu, Q., Li, M., Cai, S., & Chen, J. (2021). Evaluation of the forming limit of incremental sheet forming based on ductile damage. Journal of Materials Processing Technology, 287, 116497. https://doi.org/10.1016/j.jmatprotec.2019.116497
[36] Mirnia, M. J., & Shamsari, M. (2017). Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. Journal of Materials Processing Technology, 244, 17-43. https://doi.org/10.1016/j.jmatprotec.2017.01.029
[37] Anderson, K., Weritz, J., & Kaufman, J. G. (Eds.). (2019). Properties and selection of aluminum alloys. ASM International.
[38] Wang, H., Wu, T., Wang, J., Li, J., & Jin, K. (2020). Experimental study on the incremental forming limit of the aluminum alloy AA2024 sheet. The International Journal of Advanced Manufacturing Technology, 108(11), 3507-3515. https://doi.org/10.1007/s00170-020-05613-2
[39] Zhu, H., Wang, Y., & Kang, J. (2021). The effect of extrusion direction on the forming quality in CNC incremental forming with multidirectional adjustment of sheet posture. Journal of Mechanical Science and Technology, 35(4), 1671-1679. https://doi.org/10.1007/s12206-021-0330-9
[40] Kilani, L., Mabrouki, T., Ayadi, M., Chermiti, H., & Belhadi, S. (2020). Effects of rolling ball tool parameters on roughness, sheet thinning, and forming force generated during SPIF process. The International Journal of Advanced Manufacturing Technology, 106(9), 4123-4142. https://doi.org/10.1007/s00170-019-04918-1
[41] Habbachi, M., Kovács, P. Z., & Baksa, A. (2025). Evaluation of thickness distribution during single point incremental forming of pure aluminum alloy Al1050. Key Engineering Materials, 1019, 21-27. https://doi.org/10.4028/p-WmDG1q
|