[1] Jia, L., Cui, H., Yang, S., Lv, S., Xie, X., & Qu, J. (2023). As-cast microstructure and homogenization kinetics of a typical hard-to-deform Ni-base superalloy. Journal of Materials Research and Technology, 23, 5368–5381. https://doi.org/10.1016/j.jmrt.2023.01.150
[2] Li, X. X., Jia, C. L., Zhang, Y., Lü, S. M., & Jiang, Z. H. (2020). Incipient melting phase and its dissolution kinetics for a new superalloy. Transactions of Nonferrous Metals Society of China, 30, 2107–2118. https://doi.org/10.1016/S1003-6326(20)65364-X
[3] Li, X. X., Jia, C. L., & Yu, A. (2023, June). Influence of homogenization degree on microstructure and mechanical properties for a novel wrought superalloy. In Journal of Physics: Conference Series (Vol. 2519, No. 1, p. 012040). IOP Publishing. https://doi.org/10.1088/1742-6596/2519/1/012040
[4] Devaux, A., Picqué, B., Gervais, M. F., Georges, E., Poulain, T., & Héritier, P. (2012). AD730TM-A new nickel-based superalloy for high temperature engine rotative parts. TMS Superalloys, 911919. https://doi.org/10.7449/2012/Superalloys_2012_911_919
[5] Devaux, A., Helstroffer, A., Cormier, J., Villechaise, P., Douin, J., Hantcherli, M., & Pettinari‐Sturmel, F. (2014, November). Effect of aging heat‐treatment on mechanical properties of AD730™ superalloy. In 8th International Symposium on Superalloy 718 and Derivatives (pp. 521-535). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119016854.ch41
[6] Masoumi, F., Jahazi, M., Cormier, J., & Shahriari, D. (2014). Dissolution kinetics and morphological changes of γ′ in AD730TM superalloy. In MATEC Web of Conferences (Vol. 14, p. 13005). EDP Sciences. https://doi.org/10.1051/matecconf/20141413005
[8] Li, X., Jia, C., Jiang, Z., Zhang, Y., & Lv, S. (2020). Investigation of solidification behavior in a new high alloy Ni-based superalloy. JOM, 72(11), 4139-4147. https://doi.org/10.1007/s11837-020-04346-7
[9] Li, Y., et al. (2022). Study on microsegregation and homogenization process of a novel nickel-based wrought superalloy. Journal of Materials Research and Technology., 19, 3366–3379. https://doi.org/10.1016/j.jmrt.2022.06.088
[10] Shui, L., & Fu, J. (2022). An investigation on as-cast microstructure and homogenization of nickel base superalloy René 65. High Temperature. Materials and Processes., 41, 555–567. https://doi.org/10.1515/htmp-2022-0245
[11] Miao, Z. J., Shan, A. D., Lu, J., & Song, H. W. (2011). Segregation and diffusion characterisation in two-stage homogenisation of conventional superalloy. Materials Science and Technology., 27(10), 1551–1557. https://doi.org/10.1179/026708310X12815992418139
[12] Blaizot, J., Finet, L., Chabrier, A., Fornara, A., Fage, M., Remichi, R., Dadé, M., & Perez, M. (2024, August). Gamma Prime Precipitation in Cast and Wrought AD730® Superalloy. In International Symposium on Superalloys (pp. 762-773). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63937-1_72
[13] Li, X. X., Jia, C. L., Zhang, Y., Lv, S. M., & Jiang, Z. H. (2020). Segregation and homogenization for a new nickel-based superalloy. Vacuum, 177, 109379. https://doi.org/10.1016/j.vacuum.2020.109379
[14] Zhou, Z., Zhang, R., Cui, C., Zhou, Y., & Sun, X. (2021). Effects of homogenization treatment on the microsegregation of a Ni–Co based superalloy produced by directional solidification. Acta Metallurgica Sinica (English Letters) 34(7), 943–954. https://doi.org/10.1007/s40195-021-01192-7
[16] Tan, Y. G., et al. (2019). Element segregation and solidification behavior of a Nb, Ti, Al co-strengthened superalloy ЭК151. Acta Metallurgica Sinica (English Letters), 32, 1298–1308. https://doi.org/10.1007/s40195-019-00894-3
[17] Ling, L., Han, Y., Zhou, W., Gao, H., Shu, D., Wang, J., Kang, M., & Sun, B. (2015). Study of microsegregation and Laves phase in INCONEL718 superalloy regarding cooling rate during solidification. Metallurgical and Materials Transactions A, 46, 354–361. https://doi.org/10.1007/s11661-014-2614-5
[19] Stein, F. (2020). Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties Journal of Materials Science, 56(9), 5321-5427. https://doi.org/10.1007/s10853-020-05509-2
[22] Shafiee, A., Nili-Ahmadabadi, M., Kim, H. S., & Jahazi, M. (2020). Development and microstructural characterization of a new wrought high entropy superalloy. Metals and Materials International, 26(5), 591–602. https://doi.org/10.1007/s12540-019-00360-w
[23] Mirzaie, Z., Ebrahimi, G. R., Ezatpour, H., & Ali Akbari Sani, S. (2021). Hot deformation behavior and development of constitutive equations on a novel γ-γ/Ni-base superalloy AD730. Iranian Journal of Materials Forming, 8(3), 4-17. https://doi.org/10.22099/IJMF.2021.40096.1179
[24] Zhuang, X., Tan, Y., Zhao, L., You, X., Li, P., & Cui, C. (2020). Microsegregation of a new Ni-Co-based superalloy prepared through electron beam smelting and its homogenization treatment, Journal of Materials Research and Technology, 9(3), 5422-5430. https://doi.org/10.1016/j.jmrt.2020.03.068
[25] Chen, K., Rui, S., Wang, F., Dong, J., & Yao, Z. (2019). Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, International Journal of Minerals, Metallurgy, and Materials, 26(7) 889–900. https://doi.org/10.1007/s12613-019-1802-0
[26] Roy, I., Balikci, E., Ibekwe, S., & Raman, A. (2005). Precipitate growth activation energy requirements in the duplex size γ′ distribution in the superalloy IN738LC, Journal of Materials Science, 40(23), 6207-6215. https://doi.org/10.1007/s10853-005-3154-6
[28] Anton, D. L., & Giamei, A. F. (1985). Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy. Materials Science and Engineering, 76, 173-180. https://doi.org/10.1016/0025-5416(85)90091-6
[29] Epishin, A., Link, T., Svetlov, I. L., Nolze, G., Neumann, R. S., & Lucas, H. (2013). Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys. International Journal of Materials Research, 104(8), 776-782. https://doi.org/10.3139/146.110924
[30] y Puente, A. P., & Dunand, D. C. (2018). Effect of Cr content on interdiffusion and Kirkendall pore formation during homogenization of pack-aluminized Ni and Ni-Cr wires . Intermetallics, 101, 108-115. https://doi.org/10.1016/j.intermet.2018.07.007
[31] y Puente, A. P., Erdeniz, D., Fife, J. L., & Dunand, D. C. (2016). In situ X-ray tomographic microscopy of Kirkendall pore formation and evolution during homogenization of pack-aluminized Ni–Cr wires. Acta Materialia, 103, 534-546. https://doi.org/10.1016/j.actamat.2015.10.013
|